Vector experiments, fixed atomic flag mistake, begin block-sync algorithm

This commit is contained in:
5 changed files with 313 additions and 3 deletions

View File

@@ -47,4 +47,10 @@ add_executable(mutex experiments/mutex.cpp)
target_link_libraries(mutex ${PIP_LIBRARY} ${PIP_CONCURRENT_LIBRARY})
add_executable(mutex_multithread experiments/mutex_multithread.cpp)
target_link_libraries(mutex_multithread ${PIP_LIBRARY} ${PIP_CONCURRENT_LIBRARY})
target_link_libraries(mutex_multithread ${PIP_LIBRARY} ${PIP_CONCURRENT_LIBRARY})
add_executable(vectors experiments/vectors.cpp)
target_link_libraries(vectors ${PIP_LIBRARY})
add_executable(block_choice experiments/block_choice.cpp)
target_link_libraries(block_choice ${PIP_LIBRARY})

View File

@@ -0,0 +1,254 @@
#include <pivector.h>
#include <vector>
#include <pimap.h>
#include <picout.h>
#include <future>
#include <thread>
#include <iostream>
#define assert(_Expression) \
(void) \
((!!(_Expression)) || \
(_assert(#_Expression,__FILE__,__LINE__),0))
void _assert (const char *_Message, const char *_File, unsigned _Line) {
std::cerr << "assert (" << _Message << ") failed in " << _File << " line " << _Line << std::endl;
exit(1);
}
std::atomic_flag is_calc_barrier = ATOMIC_FLAG_INIT;
PIVector<bool> is_calc_statuses;
namespace sm {
struct block {
PIVector<block*> input_blocks;
PIVector<block*> output_blocks;
std::atomic_flag barrier = ATOMIC_FLAG_INIT;
const int is_calc_idx;
block(const int isCalcIdx) : is_calc_idx(isCalcIdx) {}
void calc() {
std::this_thread::sleep_for(std::chrono::microseconds(rand() % 20));
}
};
}
void link(sm::block* out, sm::block* in) {
out->output_blocks.push_back(in);
in->input_blocks.push_back(out);
}
PIVector<sm::block*> generate_scheme(int blocks_count = 100, int begin_block_count = 3, int expansion = 3, float connectivity = 0.3) {
PIVector<sm::block*> start_blocks;
if (blocks_count <= 0) return start_blocks;
is_calc_statuses.resize(blocks_count, false);
int all_block_count;
for (all_block_count = 0; all_block_count < begin_block_count; ++all_block_count) {
auto block = new sm::block(all_block_count);
start_blocks.push_back(block);
if (all_block_count + 1 == blocks_count) return start_blocks;
}
PIVector<sm::block*> current_blocks = start_blocks;
do {
int new_blocks_count = rand() % (2 * expansion) - expansion + current_blocks.size();
if (new_blocks_count < 1) new_blocks_count = 1;
new_blocks_count = new_blocks_count + all_block_count > blocks_count ? blocks_count - all_block_count : new_blocks_count;
PIVector<sm::block*> next_current_blocks;
for (int i = 0; i < new_blocks_count; ++i) {
auto block = new sm::block(all_block_count);
next_current_blocks.push_back(block);
bool is_connected = false;
for (int j = 0; j < current_blocks.size(); ++j) {
if (rand() % 1000 < int(connectivity * 1000)) {
link(current_blocks[j], block);
is_connected = true;
}
}
if (!is_connected) link(current_blocks[0], block);
current_blocks = next_current_blocks;
all_block_count++;
if (all_block_count == blocks_count) return start_blocks;
}
} while (all_block_count < blocks_count);
return start_blocks;
}
void print_scheme(PIVector<sm::block*>& start_blocks) {
PIVector<sm::block*> current_blocks = start_blocks;
int num = 1;
PIMap<sm::block*, int> block_nums;
for (auto & current_block : current_blocks) {
block_nums[current_block] = num++;
}
while (current_blocks.size() > 0) {
PIVector<sm::block*> next_current_blocks;
for (auto current_block : current_blocks) {
PICout cout = piCout;
cout.setControl(0, true);
cout << current_block->is_calc_idx << "(";
for (auto & output_block : current_block->output_blocks) {
if (block_nums.contains(output_block)) continue;
block_nums[output_block] = num++;
cout << output_block->is_calc_idx << ",";
next_current_blocks.push_back(output_block);
}
cout << ") ";
}
piCout << "";
current_blocks = next_current_blocks;
}
}
void unlock(sm::block* block, int locks_count = -1) {
if (locks_count == -1) locks_count = block->input_blocks.size();
for (int i = 0; i < locks_count; ++i) {
block->input_blocks[i]->barrier.clear(std::memory_order_release);
}
block->barrier.clear(std::memory_order_release);
}
int try_lock(PIVector<sm::block*>& block_pool) {
for (int i = 0; i < block_pool.size(); ++i) {
auto block = block_pool[i];
if (block->barrier.test_and_set(std::memory_order_acquire)) continue;
int locks_count = 0;
for (auto & input_block : block->input_blocks) {
if (input_block->barrier.test_and_set(std::memory_order_acquire)) break;
locks_count++;
}
if (locks_count == block->input_blocks.size()) return i;
unlock(block, locks_count);
}
return -1;
}
sm::block* try_lock_next_and_post(std::atomic_flag& block_pool_flag, PIVector<sm::block*>& block_pool, bool& is_block_pool_empty, PIVector<sm::block*>& new_available_blocks) {
while(block_pool_flag.test_and_set(std::memory_order_acquire)) {
std::this_thread::yield();
}
block_pool << new_available_blocks;
sm::block* block = nullptr;
if (block_pool.isEmpty()) {
is_block_pool_empty = true;
} else {
is_block_pool_empty = false;
int block_idx = try_lock(block_pool);
if (block_idx != -1) {
block = block_pool[block_idx];
block_pool.remove(block_idx);
// std::cout << block->is_calc_idx << ": locked for calc" << std::endl;
}
}
block_pool_flag.clear(std::memory_order_release);
return block;
}
bool is_available_block(sm::block* block) {
for (auto input_block : block->input_blocks) {
// std::cout << input_block->is_calc_idx << ": check " << is_calc_statuses[input_block->is_calc_idx] << std::endl;
if (!is_calc_statuses[input_block->is_calc_idx]) return false;
}
return true;
}
void post_available_blocks(sm::block* calc_block, PIVector<sm::block*>& new_available_blocks) {
while(is_calc_barrier.test_and_set(std::memory_order_acquire)) {
std::this_thread::yield();
}
// std::cout << calc_block->is_calc_idx << ": looking for new available blocks" << std::endl;
is_calc_statuses[calc_block->is_calc_idx] = true;
new_available_blocks.clear();
for (auto output_block : calc_block->output_blocks) {
if (is_available_block(output_block)) {
// std::cout << calc_block->is_calc_idx << ": new available block: " << output_block->is_calc_idx << std::endl;
new_available_blocks.push_back(output_block);
}
}
is_calc_barrier.clear(std::memory_order_release);
}
int main() {
srand(time(nullptr));
PIVector<sm::block*> start_blocks = generate_scheme(100);
print_scheme(start_blocks);
std::atomic_int waiting_threads_flags;
std::atomic_flag block_pool_flag = ATOMIC_FLAG_INIT;
PIVector<sm::block*> block_pool = start_blocks;
const unsigned THREAD_COUNT = 6;
std::vector<std::future<double>> duration_futures;
for (unsigned i = 0; i < THREAD_COUNT; ++i) {
auto duration = std::async(std::launch::deferred, [&, i](){
bool is_block_pool_empty;
bool is_block_pool_empty_old;
PIVector<sm::block*> new_available_blocks;
double calc_time = 0;
auto all_start = std::chrono::high_resolution_clock::now();
do {
auto block = try_lock_next_and_post(block_pool_flag, block_pool, is_block_pool_empty,
new_available_blocks);
new_available_blocks.clear();
if (is_block_pool_empty && !is_block_pool_empty_old) {
int waiting_threads_val = waiting_threads_flags.fetch_or(1u << i) | 1u << i;
// std::cout << i << " wtv=" << waiting_threads_val << std::endl;
if (waiting_threads_val == (1u << THREAD_COUNT) - 1) break;
is_block_pool_empty_old = is_block_pool_empty;
} else if (!is_block_pool_empty && is_block_pool_empty_old) {
waiting_threads_flags.fetch_and(~(1u << i));
is_block_pool_empty_old = is_block_pool_empty;
}
if (block == nullptr) {
std::this_thread::yield();
} else {
auto start = std::chrono::high_resolution_clock::now();
block->calc();
auto end = std::chrono::high_resolution_clock::now();
calc_time += std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() / 1000.;
unlock(block);
post_available_blocks(block, new_available_blocks);
}
} while (true);
std::cout << "terminating thread " << i << std::endl;
auto all_end = std::chrono::high_resolution_clock::now();
double all_time = std::chrono::duration_cast<std::chrono::microseconds>(all_end - all_start).count() / 1000.f;
return all_time - calc_time;
});
duration_futures.push_back(std::move(duration));
}
for (auto & future : duration_futures) future.wait();
std::cout << "Sync durations: ";
for (auto & future : duration_futures) std::cout << future.get() << "ms ";
std::cout << std::endl;
return 0;
}

View File

@@ -46,7 +46,7 @@ int main() {
});
piCout << "stdMutex:" << stdMutexPerformance.get() << "ms";
std::atomic_flag stdAtomic;
std::atomic_flag stdAtomic = ATOMIC_FLAG_INIT;
auto stdAtomicPerformance = check_performance([&stdAtomic](){
while(stdAtomic.test_and_set(std::memory_order_acquire)) {
std::this_thread::yield();

View File

@@ -57,7 +57,7 @@ int main() {
});
piCout << "stdMutex:" << stdMutexPerformance << "ms";
std::atomic_flag stdAtomic;
std::atomic_flag stdAtomic = ATOMIC_FLAG_INIT;
auto stdAtomicPerformance = check_performance([&stdAtomic](long& k){
while(stdAtomic.test_and_set(std::memory_order_acquire)) {
std::this_thread::yield();

50
experiments/vectors.cpp Normal file
View File

@@ -0,0 +1,50 @@
#include <vector>
#include <pivector.h>
#include <chrono>
#include <memory>
template<typename Func>
float check_performance(Func test_function) {
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < 1000; ++i) {
test_function();
}
auto end = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() / 1000.f;
}
int main() {
float piVectorPerformance = check_performance([](){
PIVector<int> piVector;
for (int i = 0; i < 1000; ++i) {
piVector.push_back(i);
}
});
piCout << "piVector without preallocation:" << piVectorPerformance << "ms";
float stdVectorPerformance = check_performance([](){
std::vector<int> stdVector;
for (int i = 0; i < 1000; ++i) {
stdVector.push_back(i);
}
});
piCout << "stdVector without preallocation:" << stdVectorPerformance << "ms";
std::unique_ptr<std::vector<int> > stdVector(new std::vector<int>(1000));
stdVectorPerformance = check_performance(std::bind([](std::unique_ptr<std::vector<int> >& stdVector){
for (int i = 0; i < 1000; ++i) {
stdVector->at(i) = i;
}
}, std::move(stdVector)));
piCout << "stdVector with preallocation:" << stdVectorPerformance << "ms";
std::unique_ptr<int> array(new int[1000]);
float arrayPerformance = check_performance(std::bind([](std::unique_ptr<int>& array){
for (int i = 0; i < 1000; ++i) {
array.get()[i] = i;
}
}, std::move(array)));
piCout << "array:" << arrayPerformance << "ms";
return 0;
}