Files
pip/pimath.h

1027 lines
43 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*! \file pimath.h
* \brief Many mathematical functions and classes
*/
/*
PIP - Platform Independent Primitives
Math
Copyright (C) 2014 Ivan Pelipenko peri4ko@gmail.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIMATH_H
#define PIMATH_H
#include "pibytearray.h"
#ifndef QNX
# include <complex>
# include <cmath>
#else
# include <complex.h>
# include <math.h>
# undef PIP_MATH_J0
# undef PIP_MATH_J1
# undef PIP_MATH_JN
# undef PIP_MATH_Y0
# undef PIP_MATH_Y1
# undef PIP_MATH_YN
#endif
#ifndef M_LN2
# define M_LN2 0.69314718055994530942
#endif
#ifndef M_LN10
# define M_LN10 2.30258509299404568402
#endif
#ifndef M_SQRT2
# define M_SQRT2 1.41421356237309514547
#endif
#ifndef M_SQRT3
# define M_SQRT3 1.73205080756887719318
#endif
#ifndef M_1_SQRT2
# define M_1_SQRT2 0.70710678118654746172
#endif
#ifndef M_1_SQRT3
# define M_1_SQRT3 0.57735026918962584208
#endif
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
#ifndef M_2PI
# define M_2PI 6.28318530717958647692
#endif
#ifndef M_PI_3
# define M_PI_3 1.04719755119659774615
#endif
#ifndef M_2PI_3
# define M_2PI_3 2.0943951023931954923
#endif
#ifndef M_180_PI
# define M_180_PI 57.2957795130823208768
#endif
#ifndef M_PI_180
# define M_PI_180 1.74532925199432957692e-2
#endif
#ifndef M_E
# define M_E 2.7182818284590452353602874713527
#endif
#ifndef M_LIGHT_SPEED
# define M_LIGHT_SPEED 2.99792458e+8
#endif
using std::complex;
typedef complex<int> complexi;
typedef complex<float> complexf;
typedef complex<double> complexd;
typedef complex<ldouble> complexld;
const complexld complexld_i(0., 1.);
const complexld complexld_0(0.);
const complexld complexld_1(1.);
const complexd complexd_i(0., 1.);
const complexd complexd_0(0.);
const complexd complexd_1(1.);
__PICONTAINERS_SIMPLE_TYPE__(complexi)
__PICONTAINERS_SIMPLE_TYPE__(complexf)
__PICONTAINERS_SIMPLE_TYPE__(complexd)
__PICONTAINERS_SIMPLE_TYPE__(complexld)
const double deg2rad = M_PI_180;
const double rad2deg = M_180_PI;
inline int sign(const float & x) {return (x < 0.) ? -1 : (x > 0. ? 1 : 0);}
inline int sign(const double & x) {return (x < 0.) ? -1 : (x > 0. ? 1 : 0);}
inline complexd sign(const complexd & x) {return complexd(sign(x.real()), sign(x.imag()));}
inline int pow2(const int p) {return 1 << p;}
inline double sqr(const int v) {return v * v;}
inline double sqr(const float & v) {return v * v;}
inline double sqr(const double & v) {return v * v;}
inline double sinc(const double & v) {if (v == 0.) return 1.; double t = M_PI * v; return sin(t) / t;}
inline complexd round(const complexd & c) {return complexd(piRound<double>(c.real()), piRound<double>(c.imag()));}
inline complexd floor(const complexd & c) {return complexd(floor(c.real()), floor(c.imag()));}
inline complexd ceil(const complexd & c) {return complexd(ceil(c.real()), ceil(c.imag()));}
inline complexd atanc(const complexd & c) {return -complexd(-0.5, 1.) * log((complexd_1 + complexd_i * c) / (complexd_1 - complexd_i * c));}
inline complexd asinc(const complexd & c) {return -complexd_i * log(complexd_i * c + sqrt(complexd_1 - c * c));}
inline complexd acosc(const complexd & c) {return -complexd_i * log(c + complexd_i * sqrt(complexd_1 - c * c));}
#ifdef CC_GCC
# if CC_GCC_VERSION <= 0x025F
inline complexd tan(const complexd & c) {return sin(c) / cos(c);}
inline complexd tanh(const complexd & c) {return sinh(c) / cosh(c);}
inline complexd log2(const complexd & c) {return log(c) / M_LN2;}
inline complexd log10(const complexd & c) {return log(c) / M_LN10;}
# endif
#endif
double piJ0(const double & v);
double piJ1(const double & v);
double piJn(int n, const double & v);
double piY0(const double & v);
double piY1(const double & v);
double piYn(int n, const double & v);
inline double toDb(double val) {return 10. * log10(val);}
inline double fromDb(double val) {return pow(10., val / 10.);}
inline double toRad(double deg) {return deg * M_PI_180;}
inline double toDeg(double rad) {return rad * M_180_PI;}
template<typename T>
inline PICout operator <<(PICout s, const complex<T> & v) {s.space(); s.setControl(0, true); s << "(" << v.real() << "; " << v.imag() << ")"; s.restoreControl(); return s;}
// [-1 ; 1]
inline double randomd() {return (double)random() / RAND_MAX * 2. - 1.;}
// [-1 ; 1] normal
double randomn(double dv = 0., double sv = 1.);
inline PIVector<double> abs(const PIVector<complexd> & v) {
PIVector<double> result;
result.resize(v.size());
for (uint i = 0; i < v.size(); i++)
result[i] = abs(v[i]);
return result;
}
inline PIVector<double> abs(const PIVector<double> & v) {
PIVector<double> result;
result.resize(v.size());
for (uint i = 0; i < v.size(); i++)
result[i] = abs(v[i]);
return result;
}
template<uint Cols, uint Rows, typename Type>
class PIMathMatrixT;
/// Vector templated
#define PIMV_FOR(v, s) for (uint v = s; v < Size; ++v)
#pragma pack(push, 1)
template<uint Size, typename Type = double>
class PIP_EXPORT PIMathVectorT {
typedef PIMathVectorT<Size, Type> _CVector;
public:
PIMathVectorT() {resize(Size);}
//PIMathVectorT(Type val) {resize(Size); PIMV_FOR(i, 0) c[i] = val;}
PIMathVectorT(Type fval, ...) {resize(Size); c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl);}
PIMathVectorT(const PIVector<Type> & val) {resize(Size); PIMV_FOR(i, 0) c[i] = val[i];}
PIMathVectorT(const _CVector & st, const _CVector & fn) {resize(Size); set(st, fn);}
uint size() const {return Size;}
_CVector & fill(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;}
_CVector & set(Type fval, ...) {c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl); return *this;}
_CVector & set(const _CVector & st, const _CVector & fn) {PIMV_FOR(i, 0) c[i] = fn[i] - st[i]; return *this;}
_CVector & move(const Type & v) {PIMV_FOR(i, 0) c[i] += v; return *this;}
_CVector & move(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i]; return *this;}
_CVector & move(Type fval, ...) {c[0] += fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] += va_arg(vl, Type); va_end(vl); return *this;}
Type lengthSqr() const {Type tv(0); PIMV_FOR(i, 0) tv += (c[i] * c[i]); return tv;}
Type length() const {return sqrt(lengthSqr());}
Type manhattanLength() const {Type tv(0); PIMV_FOR(i, 0) tv += fabs(c[i]); return tv;}
Type angleCos(const _CVector & v) const {Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);}
Type angleSin(const _CVector & v) const {Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);}
Type angleRad(const _CVector & v) const {return acos(angleCos(v));}
Type angleDeg(const _CVector & v) const {return toDeg(acos(angleCos(v)));}
_CVector projection(const _CVector & v) {Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));}
_CVector & normalize() {Type tv = length(); if (tv == Type(1)) return *this; if (piAbs<Type>(tv) <= Type(1E-100)) {fill(Type(0)); return *this;} PIMV_FOR(i, 0) c[i] /= tv; return *this;}
_CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;}
bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;}
bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);}
Type & at(uint index) {return c[index];}
Type at(uint index) const {return c[index];}
Type & operator [](uint index) {return c[index];}
Type operator [](uint index) const {return c[index];}
_CVector & operator =(const _CVector & v) {memcpy(c, v.c, sizeof(Type) * Size); return *this;}
bool operator ==(const _CVector & v) const {PIMV_FOR(i, 0) if (c[i] != v[i]) return false; return true;}
bool operator !=(const _CVector & v) const {return !(*this == c);}
void operator +=(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i];}
void operator -=(const _CVector & v) {PIMV_FOR(i, 0) c[i] -= v[i];}
void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;}
void operator *=(const _CVector & v) {PIMV_FOR(i, 0) c[i] *= v[i];}
void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;}
void operator /=(const _CVector & v) {PIMV_FOR(i, 0) c[i] /= v[i];}
_CVector operator -() const {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;}
_CVector operator +(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;}
_CVector operator -(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;}
_CVector operator *(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v; return tv;}
_CVector operator /(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;}
_CVector operator /(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v[i]; return tv;}
_CVector operator *(const _CVector & v) const {if (Size > 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;}
Type operator ^(const _CVector & v) const {Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;}
operator PIMathMatrixT<1, Size, Type>() {return PIMathMatrixT<1, Size, Type>(c);}
Type distToLine(const _CVector & lp0, const _CVector & lp1) {
_CVector a(lp0, lp1), b(lp0, *this), c(lp1, *this);
Type f = fabs(a[0]*b[1] - a[1]*b[0]) / a.length();//, s = b.length() + c.length() - a.length();
return f;}
template<uint Size1, typename Type1> /// vector {Size, Type} to vector {Size1, Type1}
PIMathVectorT<Size1, Type1> turnTo() {PIMathVectorT<Size1, Type1> tv; uint sz = piMin<uint>(Size, Size1); for (uint i = 0; i < sz; ++i) tv[i] = c[i]; return tv;}
private:
void resize(uint size, const Type & new_value = Type()) {s = size; for (int i = 0; i < s; ++i) c[i] = new_value;}
int s;
Type c[Size];
};
#pragma pack(pop)
template<uint Size, typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathVectorT<Size, Type> & v) {s << '{'; PIMV_FOR(i, 0) {s << v[i]; if (i < Size - 1) s << ", ";} s << '}'; return s;}
template<uint Size, typename Type>
inline PICout operator <<(PICout s, const PIMathVectorT<Size, Type> & v) {s << '{'; PIMV_FOR(i, 0) {s << v[i]; if (i < Size - 1) s << ", ";} s << '}'; return s;}
template<uint Size, typename Type>
inline bool operator ||(const PIMathVectorT<Size, Type> & f, const PIMathVectorT<Size, Type> & s) {return (f * s).isNull();}
template<uint Size, typename Type>
inline PIMathVectorT<Size, Type> sqrt(const PIMathVectorT<Size, Type> & v) {PIMathVectorT<Size, Type> ret; PIMV_FOR(i, 0) {ret[i] = sqrt(v[i]);} return ret;}
template<uint Size, typename Type>
inline PIMathVectorT<Size, Type> sqr(const PIMathVectorT<Size, Type> & v) {PIMathVectorT<Size, Type> ret; PIMV_FOR(i, 0) {ret[i] = sqr(v[i]);} return ret;}
template<uint Size, typename Type>
inline PIByteArray & operator <<(PIByteArray & s, const PIMathVectorT<Size, Type> & v) {for (int i = 0; i < Size; ++i) s << v[i]; return s;}
template<uint Size, typename Type>
inline PIByteArray & operator >>(PIByteArray & s, PIMathVectorT<Size, Type> & v) {for (int i = 0; i < Size; ++i) s >> v[i]; return s;}
//template<uint Size0, typename Type0 = double, uint Size1 = Size0, typename Type1 = Type0> /// vector {Size0, Type0} to vector {Size1, Type1}
//inline operator PIMathVectorT<Size1, Type1>(const PIMathVectorT<Size0, Type0> & v) {PIMathVectorT<Size1, Type1> tv; uint sz = piMin<uint>(Size0, Size1); for (uint i = 0; i < sz; ++i) tv[i] = v[i]; return tv;}
typedef PIMathVectorT<2u, int> PIMathVectorT2i;
typedef PIMathVectorT<3u, int> PIMathVectorT3i;
typedef PIMathVectorT<4u, int> PIMathVectorT4i;
typedef PIMathVectorT<2u, double> PIMathVectorT2d;
typedef PIMathVectorT<3u, double> PIMathVectorT3d;
typedef PIMathVectorT<4u, double> PIMathVectorT4d;
/// Matrix templated
#define PIMM_FOR(c, r) for (uint c = 0; c < Cols; ++c) { for (uint r = 0; r < Rows; ++r) {
#define PIMM_FOR_WB(c, r) for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) // without brakes
#define PIMM_FOR_I(c, r) for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) {
#define PIMM_FOR_I_WB(c, r) for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) // without brakes
#define PIMM_FOR_C(v) for (uint v = 0; v < Cols; ++v)
#define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v)
#pragma pack(push, 1)
template<uint Cols, uint Rows = Cols, typename Type = double>
class PIP_EXPORT PIMathMatrixT {
typedef PIMathMatrixT<Cols, Rows, Type> _CMatrix;
typedef PIMathMatrixT<Rows, Cols, Type> _CMatrixI;
typedef PIMathVectorT<Rows, Type> _CMCol;
typedef PIMathVectorT<Cols, Type> _CMRow;
public:
PIMathMatrixT() {resize(Cols, Rows);}
PIMathMatrixT(Type fval, ...) {resize(Cols, Rows); va_list vl; va_start(vl, fval); PIMM_FOR_I_WB(c, r) m[c][r] = (r + c == 0 ? fval : va_arg(vl, Type)); va_end(vl);}
PIMathMatrixT(const PIVector<Type> & val) {resize(Cols, Rows); int i = 0; PIMM_FOR_I_WB(c, r) m[c][r] = val[i++];}
static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(c, r) tm.m[c][r] = (c == r ? Type(1) : Type(0)); return tm;}
static _CMatrix rotation(double angle) {return _CMatrix();}
static _CMatrix rotationX(double angle) {return _CMatrix();}
static _CMatrix rotationY(double angle) {return _CMatrix();}
static _CMatrix rotationZ(double angle) {return _CMatrix();}
uint cols() const {return Cols;}
uint rows() const {return Rows;}
_CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[index][i]; return tv;}
_CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[i][index]; return tv;}
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[index][i] = v[i]; return *this;}
_CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[i][index] = v[i]; return *this;}
_CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[i][r0]; m[i][r0] = m[i][r1]; m[i][r1] = t;} return *this;}
_CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[c0][i]; m[c0][i] = m[c1][i]; m[c1][i] = t;} return *this;}
_CMatrix & fill(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] = v; return *this;}
//inline _CMatrix & set(Type fval, ...) {m[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) m[i] = va_arg(vl, Type); va_end(vl); return *this;}
//inline void normalize() {Type tv = length(); if (tv == Type(1)) return; PIMV_FOR(i, 0) m[i] /= tv;}
bool isSquare() const {return cols() == rows();}
bool isIdentity() const {PIMM_FOR_WB(c, r) if ((c == r) ? m[c][r] != Type(1) : m[c][r] != Type(0)) return false; return true;}
bool isNull() const {PIMM_FOR_WB(c, r) if (m[c][r] != Type(0)) return false; return true;}
Type & at(uint col, uint row) {return m[col][row];}
Type at(uint col, uint row) const {return m[col][row];}
Type * operator [](uint col) {return m[col];}
const Type * operator [](uint col) const {return m[col];}
void operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows);}
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(c, r) if (m[c][r] != sm.m[c][r]) return false; return true;}
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] += sm.m[c][r];}
void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] -= sm.m[c][r];}
void operator *=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] *= v;}
void operator /=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] /= v;}
_CMatrix operator -() {_CMatrix tm; PIMM_FOR_WB(c, r) tm.m[c][r] = -m[c][r]; return tm;}
_CMatrix operator +(const _CMatrix & sm) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] += sm.m[c][r]; return tm;}
_CMatrix operator -(const _CMatrix & sm) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] -= sm.m[c][r]; return tm;}
_CMatrix operator *(const Type & v) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] *= v; return tm;}
_CMatrix operator /(const Type & v) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] /= v; return tm;}
_CMatrix & toUpperTriangular(bool * ok = 0) {
if (Cols != Rows) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix smat(*this);
bool ndet;
uint crow;
Type mul;
for (uint i = 0; i < Cols; ++i) {
ndet = true;
for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < Cols; ++i) {
crow = i;
while (smat.m[i][i] == Type(0))
smat.swapRows(i, ++crow);
for (uint j = i + 1; j < Rows; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
}
if (i < Cols - 1) {
if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) {
if (ok != 0) *ok = false;
return *this;
}
}
}
if (ok != 0) *ok = true;
memcpy(m, smat.m, sizeof(Type) * Cols * Rows);
return *this;
}
_CMatrix & invert(bool * ok = 0) {
if (Cols != Rows) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix mtmp = _CMatrix::identity(), smat(*this);
bool ndet;
uint crow;
Type mul, iddiv;
for (uint i = 0; i < Cols; ++i) {
ndet = true;
for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < Cols; ++i) {
crow = i;
while (smat.m[i][i] == Type(0)) {
++crow;
smat.swapRows(i, crow);
mtmp.swapRows(i, crow);
}
for (uint j = i + 1; j < Rows; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i];
}
//cout << i << endl << smat << endl;
if (i < Cols - 1) {
if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) {
if (ok != 0) *ok = false;
return *this;
}
}
iddiv = smat.m[i][i];
for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv;
for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv;
}
for (uint i = Cols - 1; i > 0; --i) {
for (uint j = 0; j < i; ++j) {
mul = smat.m[i][j];
smat.m[i][j] -= mul;
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul;
}
}
if (ok != 0) *ok = true;
memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows);
return *this;
}
_CMatrix inverted(bool * ok = 0) {_CMatrix tm(*this); tm.invert(ok); return tm;}
_CMatrixI transposed() {_CMatrixI tm; PIMM_FOR_WB(c, r) tm[r][c] = m[c][r]; return tm;}
private:
void resize(uint cols_, uint rows_, const Type & new_value = Type()) {c_ = cols_; r_ = rows_; PIMM_FOR_WB(c, r) m[c][r] = new_value;}
int c_, r_;
Type m[Cols][Rows];
};
#pragma pack(pop)
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = -s; tm[1][2] = s; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = s; tm[0][2] = -s; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = -s; tm[0][1] = s; return tm;}
template<uint Cols, uint Rows, typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Cols, Rows, Type> & m) {s << '{'; PIMM_FOR_I(c, r) s << m[c][r]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << endl << ' ';} s << '}'; return s;}
template<uint Cols, uint Rows, typename Type>
inline PICout operator <<(PICout s, const PIMathMatrixT<Cols, Rows, Type> & m) {s << '{'; PIMM_FOR_I(c, r) s << m[c][r]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << NewLine << ' ';} s << '}'; return s;}
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
template<uint CR, uint Rows0, uint Cols1, typename Type>
inline PIMathMatrixT<Cols1, Rows0, Type> operator *(const PIMathMatrixT<CR, Rows0, Type> & fm,
const PIMathMatrixT<Cols1, CR, Type> & sm) {
PIMathMatrixT<Cols1, Rows0, Type> tm;
Type t;
for (uint j = 0; j < Rows0; ++j) {
for (uint i = 0; i < Cols1; ++i) {
t = Type(0);
for (uint k = 0; k < CR; ++k)
t += fm[k][j] * sm[i][k];
tm[i][j] = t;
}
}
return tm;
}
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Rows, Type> operator *(const PIMathMatrixT<Cols, Rows, Type> & fm,
const PIMathVectorT<Cols, Type> & sv) {
PIMathVectorT<Rows, Type> tv;
Type t;
for (uint i = 0; i < Rows; ++i) {
t = Type(0);
for (uint j = 0; j < Cols; ++j)
t += fm[j][i] * sv[j];
tv[i] = t;
}
return tv;
}
typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i;
typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i;
typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i;
typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d;
typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d;
typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d;
template<typename Type>
class PIMathMatrix;
#undef PIMV_FOR
#undef PIMM_FOR
#undef PIMM_FOR_WB
#undef PIMM_FOR_I
#undef PIMM_FOR_I_WB
#undef PIMM_FOR_C
#undef PIMM_FOR_R
/// Vector
#define PIMV_FOR(v, s) for (uint v = s; v < size_; ++v)
template<typename Type>
class PIP_EXPORT PIMathVector {
typedef PIMathVector<Type> _CVector;
public:
PIMathVector(const uint size = 3) {resize(size);}
PIMathVector(const uint size, Type fval, ...) {resize(size); c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl);}
PIMathVector(const PIVector<Type> & val) {resize(val.size); PIMV_FOR(i, 0) c[i] = val[i];}
PIMathVector(const _CVector & st, const _CVector & fn) {resize(st.size()); PIMV_FOR(i, 0) c[i] = fn[i] - st[i];}
uint size() const {return size_;}
_CVector & resize(uint size, const Type & new_value = Type()) {size_ = size; c.resize(size, new_value); return *this;}
_CVector resized(uint size, const Type & new_value = Type()) {_CVector tv = _CVector(*this); tv.resize(size, new_value); return tv;}
_CVector & fill(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;}
_CVector & set(Type fval, ...) {c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl); return *this;}
_CVector & move(const Type & v) {PIMV_FOR(i, 0) c[i] += v; return *this;}
_CVector & move(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i]; return *this;}
_CVector & move(Type fval, ...) {c[0] += fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] += va_arg(vl, Type); va_end(vl); return *this;}
_CVector & swap(uint fe, uint se) {piSwap<Type>(c[fe], c[se]); return *this;}
Type lengthSqr() const {Type tv(0); PIMV_FOR(i, 0) tv += (c[i] * c[i]); return tv;}
Type length() const {return sqrt(lengthSqr());}
Type manhattanLength() const {Type tv(0); PIMV_FOR(i, 0) tv += fabs(c[i]); return tv;}
Type angleCos(const _CVector & v) const {Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);}
Type angleSin(const _CVector & v) const {Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);}
Type angleRad(const _CVector & v) const {return acos(angleCos(v));}
Type angleDeg(const _CVector & v) const {return toDeg(acos(angleCos(v)));}
_CVector projection(const _CVector & v) {Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));}
_CVector & normalize() {Type tv = length(); if (tv == Type(1)) return *this; if (piAbs<Type>(tv) <= Type(1E-100)) {fill(Type(0)); return *this;} PIMV_FOR(i, 0) c[i] /= tv; return *this;}
_CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;}
bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;}
bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);}
Type & at(uint index) {return c[index];}
Type at(uint index) const {return c[index];}
Type & operator [](uint index) {return c[index];}
Type operator [](uint index) const {return c[index];}
void operator =(const _CVector & v) {c = v.c;}
bool operator ==(const _CVector & v) const {PIMV_FOR(i, 0) if (c[i] != v[i]) return false; return true;}
bool operator !=(const _CVector & v) const {return !(*this == c);}
void operator +=(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i];}
void operator -=(const _CVector & v) {PIMV_FOR(i, 0) c[i] -= v[i];}
void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;}
void operator *=(const _CVector & v) {PIMV_FOR(i, 0) c[i] *= v[i];}
void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;}
void operator /=(const _CVector & v) {PIMV_FOR(i, 0) c[i] /= v[i];}
_CVector operator -() {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;}
_CVector operator +(const _CVector & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;}
_CVector operator -(const _CVector & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;}
_CVector operator *(const Type & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v; return tv;}
_CVector operator /(const Type & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;}
_CVector operator *(const _CVector & v) {if (size_ < 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;}
Type operator ^(const _CVector & v) const {Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;}
//inline operator PIMathMatrix<1, Size, Type>() {return PIMathMatrix<1, Size, Type>(c);}
Type distToLine(const _CVector & lp0, const _CVector & lp1) {
_CVector a(lp0, lp1), b(lp0, *this), c(lp1, *this);
Type f = fabs(a[0]*b[1] - a[1]*b[0]) / a.length();//, s = b.length() + c.length() - a.length();
return f;}
template<typename Type1>
PIMathVector turnTo(uint size) {PIMathVector<Type1> tv; uint sz = piMin<uint>(size_, size); for (uint i = 0; i < sz; ++i) tv[i] = c[i]; return tv;}
private:
uint size_;
PIVector<Type> c;
};
template<typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathVector<Type> & v) {s << '{'; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << '}'; return s;}
template<typename Type>
inline PICout operator <<(PICout s, const PIMathVector<Type> & v) {s << '{'; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << '}'; return s;}
typedef PIMathVector<int> PIMathVectori;
typedef PIMathVector<double> PIMathVectord;
/// Matrix
#define PIMM_FOR(c, r) for (uint c = 0; c < cols_; ++c) { for (uint r = 0; r < rows_; ++r) {
#define PIMM_FOR_WB(c, r) for (uint c = 0; c < cols_; ++c) for (uint r = 0; r < rows_; ++r) // without brakes
#define PIMM_FOR_I(c, r) for (uint r = 0; r < rows_; ++r) { for (uint c = 0; c < cols_; ++c) {
#define PIMM_FOR_I_WB(c, r) for (uint r = 0; r < rows_; ++r) for (uint c = 0; c < cols_; ++c) // without brakes
#define PIMM_FOR_C(v) for (uint v = 0; v < cols_; ++v)
#define PIMM_FOR_R(v) for (uint v = 0; v < rows_; ++v)
template<typename Type>
class PIP_EXPORT PIMathMatrix {
typedef PIMathMatrix<Type> _CMatrix;
typedef PIMathVector<Type> _CMCol;
typedef PIMathVector<Type> _CMRow;
public:
PIMathMatrix(const uint cols = 3, const uint rows = 3) {resize(cols, rows);}
PIMathMatrix(const uint cols, const uint rows, Type fval, ...) {resize(cols, rows); va_list vl; va_start(vl, fval); PIMM_FOR_I_WB(c, r) m[c][r] = (r + c == 0 ? fval : va_arg(vl, Type)); va_end(vl);}
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> & val) {resize(cols, rows); int i = 0; PIMM_FOR_I_WB(c, r) m[c][r] = val[i++];}
static _CMatrix identity(const uint cols_, const uint rows_) {_CMatrix tm(cols_, rows_); PIMM_FOR_WB(c, r) tm.m[c][r] = (c == r ? Type(1) : Type(0)); return tm;}
uint cols() const {return cols_;}
uint rows() const {return rows_;}
_CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[index][i]; return tv;}
_CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[i][index]; return tv;}
_CMatrix & resize(const uint cols, const uint rows, const Type & new_value = Type()) {cols_ = cols; rows_ = rows; m.resize(cols); PIMM_FOR_C(i) m[i].resize(rows, new_value); return *this;}
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[index][i] = v[i]; return *this;}
_CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[i][index] = v[i]; return *this;}
_CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[i][r0]; m[i][r0] = m[i][r1]; m[i][r1] = t;} return *this;}
_CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[c0][i]; m[c0][i] = m[c1][i]; m[c1][i] = t;} return *this;}
_CMatrix & fill(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] = v; return *this;}
//inline _CMatrix & set(Type fval, ...) {m[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) m[i] = va_arg(vl, Type); va_end(vl); return *this;}
//inline void normalize() {Type tv = length(); if (tv == Type(1)) return; PIMV_FOR(i, 0) m[i] /= tv;}
bool isSquare() const {return cols() == rows();}
bool isIdentity() const {PIMM_FOR_WB(c, r) if ((c == r) ? m[c][r] != Type(1) : m[c][r] != Type(0)) return false; return true;}
bool isNull() const {PIMM_FOR_WB(c, r) if (m[c][r] != Type(0)) return false; return true;}
Type & at(uint col, uint row) {return m[col][row];}
Type at(uint col, uint row) const {return m[col][row];}
PIVector<Type> & operator [](uint col) {return m[col];}
PIVector<Type> operator [](uint col) const {return m[col];}
void operator =(const _CMatrix & sm) {m = sm.m;}
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(c, r) if (m[c][r] != sm.m[c][r]) return false; return true;}
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] += sm.m[c][r];}
void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] -= sm.m[c][r];}
void operator *=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] *= v;}
void operator /=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] /= v;}
_CMatrix operator -() {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] = -m[c][r]; return tm;}
_CMatrix operator +(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] += sm.m[c][r]; return tm;}
_CMatrix operator -(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] -= sm.m[c][r]; return tm;}
_CMatrix operator *(const Type & v) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] *= v; return tm;}
_CMatrix operator /(const Type & v) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] /= v; return tm;}
_CMatrix & toUpperTriangular(bool * ok = 0) {
if (cols_ != rows_) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix smat(*this);
bool ndet;
uint crow;
Type mul;
for (uint i = 0; i < cols_; ++i) {
ndet = true;
for (uint j = 0; j < rows_; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
for (uint j = 0; j < cols_; ++j) if (smat.m[j][i] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < cols_; ++i) {
crow = i;
while (smat.m[i][i] == Type(0))
smat.swapRows(i, ++crow);
for (uint j = i + 1; j < rows_; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < cols_; ++k) smat.m[k][j] -= mul * smat.m[k][i];
}
if (i < cols_ - 1) {
if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) {
if (ok != 0) *ok = false;
return *this;
}
}
}
if (ok != 0) *ok = true;
m = smat.m;
return *this;
}
_CMatrix & invert(bool * ok = 0, _CMCol * sv = 0) {
if (cols_ != rows_) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix mtmp = _CMatrix::identity(cols_, rows_), smat(*this);
bool ndet;
uint crow;
Type mul, iddiv;
for (uint i = 0; i < cols_; ++i) {
ndet = true;
for (uint j = 0; j < rows_; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
for (uint j = 0; j < cols_; ++j) if (smat.m[j][i] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < cols_; ++i) {
crow = i;
while (smat.m[i][i] == Type(0)) {
++crow;
smat.swapRows(i, crow);
mtmp.swapRows(i, crow);
if (sv != 0) sv->swap(i, crow);
}
for (uint j = i + 1; j < rows_; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < cols_; ++k) smat.m[k][j] -= mul * smat.m[k][i];
for (uint k = 0; k < cols_; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i];
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
//cout << i << endl << smat << endl;
if (i < cols_ - 1) {
if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) {
if (ok != 0) *ok = false;
return *this;
}
}
iddiv = smat.m[i][i];
for (uint j = i; j < cols_; ++j) smat.m[j][i] /= iddiv;
for (uint j = 0; j < cols_; ++j) mtmp.m[j][i] /= iddiv;
if (sv != 0) (*sv)[i] /= iddiv;
}
for (uint i = cols_ - 1; i > 0; --i) {
for (uint j = 0; j < i; ++j) {
mul = smat.m[i][j];
smat.m[i][j] -= mul;
for (uint k = 0; k < cols_; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul;
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
}
if (ok != 0) *ok = true;
m = mtmp.m;
return *this;
}
_CMatrix inverted(bool * ok = 0) {_CMatrix tm(*this); tm.invert(ok); return tm;}
_CMatrix transposed() {_CMatrix tm(rows_, cols_); PIMM_FOR_WB(c, r) tm[r][c] = m[c][r]; return tm;}
private:
uint cols_, rows_;
PIVector<PIVector<Type> > m;
};
template<typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << endl << ' ';} s << '}'; return s;}
template<typename Type>
inline PICout operator <<(PICout s, const PIMathMatrix<Type> & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << NewLine << ' ';} s << '}'; return s;}
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
template<typename Type>
inline PIMathMatrix<Type> operator *(const PIMathMatrix<Type> & fm,
const PIMathMatrix<Type> & sm) {
uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols();
PIMathMatrix<Type> tm(cols1, rows0);
if (fm.cols() != sm.rows()) return tm;
Type t;
for (uint j = 0; j < rows0; ++j) {
for (uint i = 0; i < cols1; ++i) {
t = Type(0);
for (uint k = 0; k < cr; ++k)
t += fm[k][j] * sm[i][k];
tm[i][j] = t;
}
}
return tm;
}
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
template<typename Type>
inline PIMathVector<Type> operator *(const PIMathMatrix<Type> & fm,
const PIMathVector<Type> & sv) {
uint c = fm.cols(), r = fm.rows();
PIMathVector<Type> tv(r);
if (c != sv.size()) return tv;
Type t;
for (uint i = 0; i < r; ++i) {
t = Type(0);
for (uint j = 0; j < c; ++j)
t += fm[j][i] * sv[j];
tv[i] = t;
}
return tv;
}
typedef PIMathMatrix<int> PIMathMatrixi;
typedef PIMathMatrix<double> PIMathMatrixd;
#undef PIMV_FOR
#undef PIMM_FOR
#undef PIMM_FOR_WB
#undef PIMM_FOR_I
#undef PIMM_FOR_I_WB
#undef PIMM_FOR_C
#undef PIMM_FOR_R
/// Differential evaluations
struct TransferFunction { // Для задания передаточной функции
PIVector<double> vector_Bm, vector_An;
};
// Класс, служащий для перевода передаточной функции в систему ОДУ первого порядка
// реализованы след. методы решения дифф. ур-ний:
// Эйлера
// Рунге-Кутта 4-го порядка
// Адамса-Бэшфортса-Моултона 2, 3, 4 порядков
class PIP_EXPORT Solver
{
public:
enum Method {Global = -1,
Eyler_1 = 01,
Eyler_2 = 02,
EylerKoshi = 03,
RungeKutta_4 = 14,
AdamsBashfortMoulton_2 = 22,
AdamsBashfortMoulton_3 = 23,
AdamsBashfortMoulton_4 = 24,
PolynomialApproximation_2 = 32,
PolynomialApproximation_3 = 33,
PolynomialApproximation_4 = 34,
PolynomialApproximation_5 = 35
};
Solver() {times.resize(4); step = 0;}
void solve(double u, double h);
void fromTF(const TransferFunction & TF);
void setMethod(Method m) {method = m;}
void setTime(double time) {times.pop_back(); times.push_front(time);}
void solveEyler1(double u, double h);
void solveEyler2(double u, double h);
void solveRK4(double u, double h);
void solveABM2(double u, double h);
void solveABM3(double u, double h);
void solveABM4(double u, double h);
void solvePA(double u, double h, uint deg);
void solvePA2(double u, double h) {if (step > 0) solvePA(u, h, 2); else solveEyler1(u, h);}
void solvePA3(double u, double h) {if (step > 1) solvePA(u, h, 3); else solvePA2(u, h);}
void solvePA4(double u, double h) {if (step > 2) solvePA(u, h, 4); else solvePA3(u, h);}
void solvePA5(double u, double h) {if (step > 3) solvePA(u, h, 5); else solvePA4(u, h);}
PIMathVectord X;
static Method method_global;
static const char methods_desc[];
private:
void moveF() {for (uint i = F.size() - 1; i > 0; --i) F[i] = F[i - 1];}
PIMathMatrixd A, M;
PIMathVectord d, a1, b1;
PIMathVectord k1, k2, k3, k4, xx;
PIMathVectord XX, Y, pY;
PIVector<PIMathVectord> F;
PIVector<double> times;
uint size, step;
Method method;
double sum, td, ct, lp, dh, t, x1, x0;
bool ok;
};
class PIP_EXPORT PIFFT
{
public:
PIFFT();
// const PIVector<uint> & getIndexes() {return indexes;}
// const PIVector<complexd> & getCoefs() {return coefs;}
PIVector<complexd> * calcFFT(const PIVector<complexd> &val);
PIVector<complexd> * calcFFT(const PIVector<double> &val);
PIVector<complexd> * calcFFTinverse(const PIVector<complexd> &val);
PIVector<complexd> * calcHilbert(const PIVector<double> &val);
PIVector<double> getAmplitude();
private:
// PIVector<uint> indexes;
// PIVector<complexd> coefs;
PIVector<complexd> result;
// uint iterations;
bool prepared;
// uint out_size;
typedef ptrdiff_t ae_int_t;
void calc_coefs(uint cnt2);
void calc_indexes(uint cnt2, uint deep2);
complexd coef(uint n, uint k);
struct ftplan {
PIVector<int> plan;
PIVector<double> precomputed;
PIVector<double> tmpbuf;
PIVector<double> stackbuf;
};
ftplan curplan;
void fftc1d(const PIVector<complexd> &a, uint n);
void fftc1r(const PIVector<double> &a, uint n);
void fftc1dinv(const PIVector<complexd> &a, uint n);
void createPlan(uint n);
void ftbasegeneratecomplexfftplan(uint n, ftplan *plan);
void ftbase_ftbasegenerateplanrec(int n, int tasktype, ftplan *plan, int *plansize, int *precomputedsize, int *planarraysize, int *tmpmemsize, int *stackmemsize, ae_int_t stackptr, int debugi=0);
void ftbase_ftbaseprecomputeplanrec(ftplan *plan, int entryoffset, ae_int_t stackptr);
void ftbasefactorize(int n, int *n1, int *n2);
void ftbase_ftbasefindsmoothrec(int n, int seed, int leastfactor, int *best);
int ftbasefindsmooth(int n);
void ftbaseexecuteplan(PIVector<double> *a, int aoffset, int n, ftplan *plan);
void ftbaseexecuteplanrec(PIVector<double> *a, int aoffset, ftplan *plan, int entryoffset, ae_int_t stackptr);
void ftbase_internalcomplexlintranspose(PIVector<double> *a, int m, int n, int astart, PIVector<double> *buf);
void ftbase_ffticltrec(PIVector<double> *a, int astart, int astride, PIVector<double> *b, int bstart, int bstride, int m, int n);
void ftbase_internalreallintranspose(PIVector<double> *a, int m, int n, int astart, PIVector<double> *buf);
void ftbase_fftirltrec(PIVector<double> *a, int astart, int astride, PIVector<double> *b, int bstart, int bstride, int m, int n);
void ftbase_ffttwcalc(PIVector<double> *a, int aoffset, int n1, int n2);
};
template <typename T>
class PIP_EXPORT PIStatistic {
public:
PIStatistic() {
mean = T();
variance = T();
skewness = T();
kurtosis = T();
}
bool calculate(const PIVector<T> &val) {
T v = T(), v1 = T(), v2 = T(), stddev = T();
int i, n = val.size();
mean = T();
variance = T();
skewness = T();
kurtosis = T();
if (n < 2)
return false;
/*
* Mean
*/
for (i = 0; i < n; i++)
mean += val[i];
mean /= n;
/*
* Variance (using corrected two-pass algorithm)
*/
for (i = 0; i < n; i++) {
v1 += sqr(val[i] - mean);
}
for (i = 0; i < n; i++)
v2 += val[i] - mean;
v2 = sqr(v2) / n;
variance = (v1 - v2) / (n - 1);
if (variance < T())
variance = T();
stddev = sqrt(variance);
/*
* Skewness and kurtosis
*/
if (stddev != T()) {
for (i = 0; i < n; i++) {
v = (val[i] - mean) / stddev;
v2 = sqr(v);
skewness = skewness + v2 * v;
kurtosis = kurtosis + sqr(v2);
}
skewness /= n;
kurtosis = kurtosis / n - 3.;
}
return true;
}
T mean;
T variance;
T skewness;
T kurtosis;
};
typedef PIStatistic<int> PIStatistici;
typedef PIStatistic<float> PIStatisticf;
typedef PIStatistic<double> PIStatisticd;
template <typename T>
bool OLS_Linear(const PIVector<PIPair<T, T> > & input, T * out_a, T * out_b) {
if (input.size_s() < 2)
return false;
int n = input.size_s();
T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a = T(), b = T();
for (int i = 0; i < n; ++i) {
const PIPair<T, T> & cv(input[i]);
a_t0 += cv.first * cv.second;
a_t1 += cv.first;
a_t2 += cv.second;
a_t3 += cv.first * cv.first;
}
a_t4 = n * a_t3 - a_t1 * a_t1;
if (a_t4 != T())
a = (n * a_t0 - a_t1 * a_t2) / a_t4;
b = (a_t2 - a * a_t1) / n;
if (out_a != 0) *out_a = a;
if (out_b != 0) *out_b = b;
return true;
}
template <typename T>
bool WLS_Linear(const PIVector<PIPair<T, T> > & input, const PIVector<T> & weights, T * out_a, T * out_b) {
if (input.size_s() < 2)
return false;
if (input.size_s() != weights.size_s())
return false;
int n = input.size_s();
T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a_n = T(), a = T(), b = T();
for (int i = 0; i < n; ++i) {
T cp = weights[i];
const PIPair<T, T> & cv(input[i]);
a_t0 += cv.first * cv.second * cp;
a_t1 += cv.first * cp;
a_t2 += cv.second * cp;
a_t3 += cv.first * cv.first * cp;
a_n += cp;
}
a_t4 = a_n * a_t3 - a_t1 * a_t1;
if (a_t4 != T())
a = (a_n * a_t0 - a_t1 * a_t2) / a_t4;
b = (a_t2 - a * a_t1) / a_n;
if (out_a != 0) *out_a = a;
if (out_b != 0) *out_b = b;
return true;
}
#endif // PIMATH_H