/*! \file pimath.h * \brief Many mathematical functions and classes */ /* PIP - Platform Independent Primitives Math Copyright (C) 2014 Ivan Pelipenko peri4ko@gmail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef PIMATH_H #define PIMATH_H #include "pibytearray.h" #ifndef QNX # include # include #else # include # include # undef PIP_MATH_J0 # undef PIP_MATH_J1 # undef PIP_MATH_JN # undef PIP_MATH_Y0 # undef PIP_MATH_Y1 # undef PIP_MATH_YN #endif #ifndef M_LN2 # define M_LN2 0.69314718055994530942 #endif #ifndef M_LN10 # define M_LN10 2.30258509299404568402 #endif #ifndef M_SQRT2 # define M_SQRT2 1.41421356237309514547 #endif #ifndef M_SQRT3 # define M_SQRT3 1.73205080756887719318 #endif #ifndef M_1_SQRT2 # define M_1_SQRT2 0.70710678118654746172 #endif #ifndef M_1_SQRT3 # define M_1_SQRT3 0.57735026918962584208 #endif #ifndef M_PI # define M_PI 3.14159265358979323846 #endif #ifndef M_2PI # define M_2PI 6.28318530717958647692 #endif #ifndef M_PI_3 # define M_PI_3 1.04719755119659774615 #endif #ifndef M_2PI_3 # define M_2PI_3 2.0943951023931954923 #endif #ifndef M_180_PI # define M_180_PI 57.2957795130823208768 #endif #ifndef M_PI_180 # define M_PI_180 1.74532925199432957692e-2 #endif #ifndef M_E # define M_E 2.7182818284590452353602874713527 #endif #ifndef M_LIGHT_SPEED # define M_LIGHT_SPEED 2.99792458e+8 #endif using std::complex; typedef complex complexi; typedef complex complexf; typedef complex complexd; typedef complex complexld; const complexld complexld_i(0., 1.); const complexld complexld_0(0.); const complexld complexld_1(1.); const complexd complexd_i(0., 1.); const complexd complexd_0(0.); const complexd complexd_1(1.); __PICONTAINERS_SIMPLE_TYPE__(complexi) __PICONTAINERS_SIMPLE_TYPE__(complexf) __PICONTAINERS_SIMPLE_TYPE__(complexd) __PICONTAINERS_SIMPLE_TYPE__(complexld) const double deg2rad = M_PI_180; const double rad2deg = M_180_PI; inline int sign(const float & x) {return (x < 0.) ? -1 : (x > 0. ? 1 : 0);} inline int sign(const double & x) {return (x < 0.) ? -1 : (x > 0. ? 1 : 0);} inline complexd sign(const complexd & x) {return complexd(sign(x.real()), sign(x.imag()));} inline int pow2(const int p) {return 1 << p;} inline double sqr(const int v) {return v * v;} inline double sqr(const float & v) {return v * v;} inline double sqr(const double & v) {return v * v;} inline double sinc(const double & v) {if (v == 0.) return 1.; double t = M_PI * v; return sin(t) / t;} inline complexd round(const complexd & c) {return complexd(piRound(c.real()), piRound(c.imag()));} inline complexd floor(const complexd & c) {return complexd(floor(c.real()), floor(c.imag()));} inline complexd ceil(const complexd & c) {return complexd(ceil(c.real()), ceil(c.imag()));} inline complexd atanc(const complexd & c) {return -complexd(-0.5, 1.) * log((complexd_1 + complexd_i * c) / (complexd_1 - complexd_i * c));} inline complexd asinc(const complexd & c) {return -complexd_i * log(complexd_i * c + sqrt(complexd_1 - c * c));} inline complexd acosc(const complexd & c) {return -complexd_i * log(c + complexd_i * sqrt(complexd_1 - c * c));} #ifdef CC_GCC # if CC_GCC_VERSION <= 0x025F inline complexd tan(const complexd & c) {return sin(c) / cos(c);} inline complexd tanh(const complexd & c) {return sinh(c) / cosh(c);} inline complexd log2(const complexd & c) {return log(c) / M_LN2;} inline complexd log10(const complexd & c) {return log(c) / M_LN10;} # endif #endif double piJ0(const double & v); double piJ1(const double & v); double piJn(int n, const double & v); double piY0(const double & v); double piY1(const double & v); double piYn(int n, const double & v); inline double toDb(double val) {return 10. * log10(val);} inline double fromDb(double val) {return pow(10., val / 10.);} inline double toRad(double deg) {return deg * M_PI_180;} inline double toDeg(double rad) {return rad * M_180_PI;} template inline PICout operator <<(PICout s, const complex & v) {s.space(); s.setControl(0, true); s << "(" << v.real() << "; " << v.imag() << ")"; s.restoreControl(); return s;} // [-1 ; 1] inline double randomd() {return (double)random() / RAND_MAX * 2. - 1.;} // [-1 ; 1] normal double randomn(double dv = 0., double sv = 1.); inline PIVector abs(const PIVector & v) { PIVector result; result.resize(v.size()); for (uint i = 0; i < v.size(); i++) result[i] = abs(v[i]); return result; } inline PIVector abs(const PIVector & v) { PIVector result; result.resize(v.size()); for (uint i = 0; i < v.size(); i++) result[i] = abs(v[i]); return result; } template class PIMathMatrixT; /// Vector templated #define PIMV_FOR(v, s) for (uint v = s; v < Size; ++v) #pragma pack(push, 1) template class PIP_EXPORT PIMathVectorT { typedef PIMathVectorT _CVector; public: PIMathVectorT() {resize(Size);} //PIMathVectorT(Type val) {resize(Size); PIMV_FOR(i, 0) c[i] = val;} PIMathVectorT(Type fval, ...) {resize(Size); c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl);} PIMathVectorT(const PIVector & val) {resize(Size); PIMV_FOR(i, 0) c[i] = val[i];} PIMathVectorT(const _CVector & st, const _CVector & fn) {resize(Size); set(st, fn);} uint size() const {return Size;} _CVector & fill(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;} _CVector & set(Type fval, ...) {c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl); return *this;} _CVector & set(const _CVector & st, const _CVector & fn) {PIMV_FOR(i, 0) c[i] = fn[i] - st[i]; return *this;} _CVector & move(const Type & v) {PIMV_FOR(i, 0) c[i] += v; return *this;} _CVector & move(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i]; return *this;} _CVector & move(Type fval, ...) {c[0] += fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] += va_arg(vl, Type); va_end(vl); return *this;} Type lengthSqr() const {Type tv(0); PIMV_FOR(i, 0) tv += (c[i] * c[i]); return tv;} Type length() const {return sqrt(lengthSqr());} Type manhattanLength() const {Type tv(0); PIMV_FOR(i, 0) tv += fabs(c[i]); return tv;} Type angleCos(const _CVector & v) const {Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);} Type angleSin(const _CVector & v) const {Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);} Type angleRad(const _CVector & v) const {return acos(angleCos(v));} Type angleDeg(const _CVector & v) const {return toDeg(acos(angleCos(v)));} _CVector projection(const _CVector & v) {Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));} _CVector & normalize() {Type tv = length(); if (tv == Type(1)) return *this; if (piAbs(tv) <= Type(1E-100)) {fill(Type(0)); return *this;} PIMV_FOR(i, 0) c[i] /= tv; return *this;} _CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;} bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;} bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);} Type & at(uint index) {return c[index];} Type at(uint index) const {return c[index];} Type & operator [](uint index) {return c[index];} Type operator [](uint index) const {return c[index];} _CVector & operator =(const _CVector & v) {memcpy(c, v.c, sizeof(Type) * Size); return *this;} bool operator ==(const _CVector & v) const {PIMV_FOR(i, 0) if (c[i] != v[i]) return false; return true;} bool operator !=(const _CVector & v) const {return !(*this == c);} void operator +=(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i];} void operator -=(const _CVector & v) {PIMV_FOR(i, 0) c[i] -= v[i];} void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;} void operator *=(const _CVector & v) {PIMV_FOR(i, 0) c[i] *= v[i];} void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;} void operator /=(const _CVector & v) {PIMV_FOR(i, 0) c[i] /= v[i];} _CVector operator -() const {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;} _CVector operator +(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;} _CVector operator -(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;} _CVector operator *(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v; return tv;} _CVector operator /(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;} _CVector operator /(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v[i]; return tv;} _CVector operator *(const _CVector & v) const {if (Size > 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;} Type operator ^(const _CVector & v) const {Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;} operator PIMathMatrixT<1, Size, Type>() {return PIMathMatrixT<1, Size, Type>(c);} Type distToLine(const _CVector & lp0, const _CVector & lp1) { _CVector a(lp0, lp1), b(lp0, *this), c(lp1, *this); Type f = fabs(a[0]*b[1] - a[1]*b[0]) / a.length();//, s = b.length() + c.length() - a.length(); return f;} template /// vector {Size, Type} to vector {Size1, Type1} PIMathVectorT turnTo() {PIMathVectorT tv; uint sz = piMin(Size, Size1); for (uint i = 0; i < sz; ++i) tv[i] = c[i]; return tv;} private: void resize(uint size, const Type & new_value = Type()) {s = size; for (int i = 0; i < s; ++i) c[i] = new_value;} int s; Type c[Size]; }; #pragma pack(pop) template inline std::ostream & operator <<(std::ostream & s, const PIMathVectorT & v) {s << '{'; PIMV_FOR(i, 0) {s << v[i]; if (i < Size - 1) s << ", ";} s << '}'; return s;} template inline PICout operator <<(PICout s, const PIMathVectorT & v) {s << '{'; PIMV_FOR(i, 0) {s << v[i]; if (i < Size - 1) s << ", ";} s << '}'; return s;} template inline bool operator ||(const PIMathVectorT & f, const PIMathVectorT & s) {return (f * s).isNull();} template inline PIMathVectorT sqrt(const PIMathVectorT & v) {PIMathVectorT ret; PIMV_FOR(i, 0) {ret[i] = sqrt(v[i]);} return ret;} template inline PIMathVectorT sqr(const PIMathVectorT & v) {PIMathVectorT ret; PIMV_FOR(i, 0) {ret[i] = sqr(v[i]);} return ret;} template inline PIByteArray & operator <<(PIByteArray & s, const PIMathVectorT & v) {for (int i = 0; i < Size; ++i) s << v[i]; return s;} template inline PIByteArray & operator >>(PIByteArray & s, PIMathVectorT & v) {for (int i = 0; i < Size; ++i) s >> v[i]; return s;} //template /// vector {Size0, Type0} to vector {Size1, Type1} //inline operator PIMathVectorT(const PIMathVectorT & v) {PIMathVectorT tv; uint sz = piMin(Size0, Size1); for (uint i = 0; i < sz; ++i) tv[i] = v[i]; return tv;} typedef PIMathVectorT<2u, int> PIMathVectorT2i; typedef PIMathVectorT<3u, int> PIMathVectorT3i; typedef PIMathVectorT<4u, int> PIMathVectorT4i; typedef PIMathVectorT<2u, double> PIMathVectorT2d; typedef PIMathVectorT<3u, double> PIMathVectorT3d; typedef PIMathVectorT<4u, double> PIMathVectorT4d; /// Matrix templated #define PIMM_FOR(c, r) for (uint c = 0; c < Cols; ++c) { for (uint r = 0; r < Rows; ++r) { #define PIMM_FOR_WB(c, r) for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) // without brakes #define PIMM_FOR_I(c, r) for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) { #define PIMM_FOR_I_WB(c, r) for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) // without brakes #define PIMM_FOR_C(v) for (uint v = 0; v < Cols; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v) #pragma pack(push, 1) template class PIP_EXPORT PIMathMatrixT { typedef PIMathMatrixT _CMatrix; typedef PIMathMatrixT _CMatrixI; typedef PIMathVectorT _CMCol; typedef PIMathVectorT _CMRow; public: PIMathMatrixT() {resize(Cols, Rows);} PIMathMatrixT(Type fval, ...) {resize(Cols, Rows); va_list vl; va_start(vl, fval); PIMM_FOR_I_WB(c, r) m[c][r] = (r + c == 0 ? fval : va_arg(vl, Type)); va_end(vl);} PIMathMatrixT(const PIVector & val) {resize(Cols, Rows); int i = 0; PIMM_FOR_I_WB(c, r) m[c][r] = val[i++];} static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(c, r) tm.m[c][r] = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix rotation(double angle) {return _CMatrix();} static _CMatrix rotationX(double angle) {return _CMatrix();} static _CMatrix rotationY(double angle) {return _CMatrix();} static _CMatrix rotationZ(double angle) {return _CMatrix();} uint cols() const {return Cols;} uint rows() const {return Rows;} _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[index][i]; return tv;} _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[i][index]; return tv;} _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[index][i] = v[i]; return *this;} _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[i][index] = v[i]; return *this;} _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[i][r0]; m[i][r0] = m[i][r1]; m[i][r1] = t;} return *this;} _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[c0][i]; m[c0][i] = m[c1][i]; m[c1][i] = t;} return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] = v; return *this;} //inline _CMatrix & set(Type fval, ...) {m[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) m[i] = va_arg(vl, Type); va_end(vl); return *this;} //inline void normalize() {Type tv = length(); if (tv == Type(1)) return; PIMV_FOR(i, 0) m[i] /= tv;} bool isSquare() const {return cols() == rows();} bool isIdentity() const {PIMM_FOR_WB(c, r) if ((c == r) ? m[c][r] != Type(1) : m[c][r] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_WB(c, r) if (m[c][r] != Type(0)) return false; return true;} Type & at(uint col, uint row) {return m[col][row];} Type at(uint col, uint row) const {return m[col][row];} Type * operator [](uint col) {return m[col];} const Type * operator [](uint col) const {return m[col];} void operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows);} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(c, r) if (m[c][r] != sm.m[c][r]) return false; return true;} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] += sm.m[c][r];} void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] -= sm.m[c][r];} void operator *=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] *= v;} void operator /=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] /= v;} _CMatrix operator -() {_CMatrix tm; PIMM_FOR_WB(c, r) tm.m[c][r] = -m[c][r]; return tm;} _CMatrix operator +(const _CMatrix & sm) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] += sm.m[c][r]; return tm;} _CMatrix operator -(const _CMatrix & sm) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] -= sm.m[c][r]; return tm;} _CMatrix operator *(const Type & v) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] *= v; return tm;} _CMatrix operator /(const Type & v) {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(c, r) tm.m[c][r] /= v; return tm;} _CMatrix & toUpperTriangular(bool * ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < Cols - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; memcpy(m, smat.m, sizeof(Type) * Cols * Rows); return *this; } _CMatrix & invert(bool * ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); } for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; } //cout << i << endl << smat << endl; if (i < Cols - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv; } for (uint i = Cols - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; } } if (ok != 0) *ok = true; memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows); return *this; } _CMatrix inverted(bool * ok = 0) {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrixI transposed() {_CMatrixI tm; PIMM_FOR_WB(c, r) tm[r][c] = m[c][r]; return tm;} private: void resize(uint cols_, uint rows_, const Type & new_value = Type()) {c_ = cols_; r_ = rows_; PIMM_FOR_WB(c, r) m[c][r] = new_value;} int c_, r_; Type m[Cols][Rows]; }; #pragma pack(pop) template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = -s; tm[1][2] = s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = s; tm[0][2] = -s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = -s; tm[0][1] = s; return tm;} template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) {s << '{'; PIMM_FOR_I(c, r) s << m[c][r]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << endl << ' ';} s << '}'; return s;} template inline PICout operator <<(PICout s, const PIMathMatrixT & m) {s << '{'; PIMM_FOR_I(c, r) s << m[c][r]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << NewLine << ' ';} s << '}'; return s;} /// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0} template inline PIMathMatrixT operator *(const PIMathMatrixT & fm, const PIMathMatrixT & sm) { PIMathMatrixT tm; Type t; for (uint j = 0; j < Rows0; ++j) { for (uint i = 0; i < Cols1; ++i) { t = Type(0); for (uint k = 0; k < CR; ++k) t += fm[k][j] * sm[i][k]; tm[i][j] = t; } } return tm; } /// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows} template inline PIMathVectorT operator *(const PIMathMatrixT & fm, const PIMathVectorT & sv) { PIMathVectorT tv; Type t; for (uint i = 0; i < Rows; ++i) { t = Type(0); for (uint j = 0; j < Cols; ++j) t += fm[j][i] * sv[j]; tv[i] = t; } return tv; } typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i; typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i; typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i; typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d; typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d; typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d; template class PIMathMatrix; #undef PIMV_FOR #undef PIMM_FOR #undef PIMM_FOR_WB #undef PIMM_FOR_I #undef PIMM_FOR_I_WB #undef PIMM_FOR_C #undef PIMM_FOR_R /// Vector #define PIMV_FOR(v, s) for (uint v = s; v < size_; ++v) template class PIP_EXPORT PIMathVector { typedef PIMathVector _CVector; public: PIMathVector(const uint size = 3) {resize(size);} PIMathVector(const uint size, Type fval, ...) {resize(size); c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl);} PIMathVector(const PIVector & val) {resize(val.size); PIMV_FOR(i, 0) c[i] = val[i];} PIMathVector(const _CVector & st, const _CVector & fn) {resize(st.size()); PIMV_FOR(i, 0) c[i] = fn[i] - st[i];} uint size() const {return size_;} _CVector & resize(uint size, const Type & new_value = Type()) {size_ = size; c.resize(size, new_value); return *this;} _CVector resized(uint size, const Type & new_value = Type()) {_CVector tv = _CVector(*this); tv.resize(size, new_value); return tv;} _CVector & fill(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;} _CVector & set(Type fval, ...) {c[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] = va_arg(vl, Type); va_end(vl); return *this;} _CVector & move(const Type & v) {PIMV_FOR(i, 0) c[i] += v; return *this;} _CVector & move(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i]; return *this;} _CVector & move(Type fval, ...) {c[0] += fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) c[i] += va_arg(vl, Type); va_end(vl); return *this;} _CVector & swap(uint fe, uint se) {piSwap(c[fe], c[se]); return *this;} Type lengthSqr() const {Type tv(0); PIMV_FOR(i, 0) tv += (c[i] * c[i]); return tv;} Type length() const {return sqrt(lengthSqr());} Type manhattanLength() const {Type tv(0); PIMV_FOR(i, 0) tv += fabs(c[i]); return tv;} Type angleCos(const _CVector & v) const {Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);} Type angleSin(const _CVector & v) const {Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);} Type angleRad(const _CVector & v) const {return acos(angleCos(v));} Type angleDeg(const _CVector & v) const {return toDeg(acos(angleCos(v)));} _CVector projection(const _CVector & v) {Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));} _CVector & normalize() {Type tv = length(); if (tv == Type(1)) return *this; if (piAbs(tv) <= Type(1E-100)) {fill(Type(0)); return *this;} PIMV_FOR(i, 0) c[i] /= tv; return *this;} _CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;} bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;} bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);} Type & at(uint index) {return c[index];} Type at(uint index) const {return c[index];} Type & operator [](uint index) {return c[index];} Type operator [](uint index) const {return c[index];} void operator =(const _CVector & v) {c = v.c;} bool operator ==(const _CVector & v) const {PIMV_FOR(i, 0) if (c[i] != v[i]) return false; return true;} bool operator !=(const _CVector & v) const {return !(*this == c);} void operator +=(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i];} void operator -=(const _CVector & v) {PIMV_FOR(i, 0) c[i] -= v[i];} void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;} void operator *=(const _CVector & v) {PIMV_FOR(i, 0) c[i] *= v[i];} void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;} void operator /=(const _CVector & v) {PIMV_FOR(i, 0) c[i] /= v[i];} _CVector operator -() {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;} _CVector operator +(const _CVector & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;} _CVector operator -(const _CVector & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;} _CVector operator *(const Type & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v; return tv;} _CVector operator /(const Type & v) {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;} _CVector operator *(const _CVector & v) {if (size_ < 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;} Type operator ^(const _CVector & v) const {Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;} //inline operator PIMathMatrix<1, Size, Type>() {return PIMathMatrix<1, Size, Type>(c);} Type distToLine(const _CVector & lp0, const _CVector & lp1) { _CVector a(lp0, lp1), b(lp0, *this), c(lp1, *this); Type f = fabs(a[0]*b[1] - a[1]*b[0]) / a.length();//, s = b.length() + c.length() - a.length(); return f;} template PIMathVector turnTo(uint size) {PIMathVector tv; uint sz = piMin(size_, size); for (uint i = 0; i < sz; ++i) tv[i] = c[i]; return tv;} private: uint size_; PIVector c; }; template inline std::ostream & operator <<(std::ostream & s, const PIMathVector & v) {s << '{'; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << '}'; return s;} template inline PICout operator <<(PICout s, const PIMathVector & v) {s << '{'; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << '}'; return s;} typedef PIMathVector PIMathVectori; typedef PIMathVector PIMathVectord; /// Matrix #define PIMM_FOR(c, r) for (uint c = 0; c < cols_; ++c) { for (uint r = 0; r < rows_; ++r) { #define PIMM_FOR_WB(c, r) for (uint c = 0; c < cols_; ++c) for (uint r = 0; r < rows_; ++r) // without brakes #define PIMM_FOR_I(c, r) for (uint r = 0; r < rows_; ++r) { for (uint c = 0; c < cols_; ++c) { #define PIMM_FOR_I_WB(c, r) for (uint r = 0; r < rows_; ++r) for (uint c = 0; c < cols_; ++c) // without brakes #define PIMM_FOR_C(v) for (uint v = 0; v < cols_; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < rows_; ++v) template class PIP_EXPORT PIMathMatrix { typedef PIMathMatrix _CMatrix; typedef PIMathVector _CMCol; typedef PIMathVector _CMRow; public: PIMathMatrix(const uint cols = 3, const uint rows = 3) {resize(cols, rows);} PIMathMatrix(const uint cols, const uint rows, Type fval, ...) {resize(cols, rows); va_list vl; va_start(vl, fval); PIMM_FOR_I_WB(c, r) m[c][r] = (r + c == 0 ? fval : va_arg(vl, Type)); va_end(vl);} PIMathMatrix(const uint cols, const uint rows, const PIVector & val) {resize(cols, rows); int i = 0; PIMM_FOR_I_WB(c, r) m[c][r] = val[i++];} static _CMatrix identity(const uint cols_, const uint rows_) {_CMatrix tm(cols_, rows_); PIMM_FOR_WB(c, r) tm.m[c][r] = (c == r ? Type(1) : Type(0)); return tm;} uint cols() const {return cols_;} uint rows() const {return rows_;} _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[index][i]; return tv;} _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[i][index]; return tv;} _CMatrix & resize(const uint cols, const uint rows, const Type & new_value = Type()) {cols_ = cols; rows_ = rows; m.resize(cols); PIMM_FOR_C(i) m[i].resize(rows, new_value); return *this;} _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[index][i] = v[i]; return *this;} _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[i][index] = v[i]; return *this;} _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[i][r0]; m[i][r0] = m[i][r1]; m[i][r1] = t;} return *this;} _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[c0][i]; m[c0][i] = m[c1][i]; m[c1][i] = t;} return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] = v; return *this;} //inline _CMatrix & set(Type fval, ...) {m[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) m[i] = va_arg(vl, Type); va_end(vl); return *this;} //inline void normalize() {Type tv = length(); if (tv == Type(1)) return; PIMV_FOR(i, 0) m[i] /= tv;} bool isSquare() const {return cols() == rows();} bool isIdentity() const {PIMM_FOR_WB(c, r) if ((c == r) ? m[c][r] != Type(1) : m[c][r] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_WB(c, r) if (m[c][r] != Type(0)) return false; return true;} Type & at(uint col, uint row) {return m[col][row];} Type at(uint col, uint row) const {return m[col][row];} PIVector & operator [](uint col) {return m[col];} PIVector operator [](uint col) const {return m[col];} void operator =(const _CMatrix & sm) {m = sm.m;} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(c, r) if (m[c][r] != sm.m[c][r]) return false; return true;} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] += sm.m[c][r];} void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] -= sm.m[c][r];} void operator *=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] *= v;} void operator /=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] /= v;} _CMatrix operator -() {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] = -m[c][r]; return tm;} _CMatrix operator +(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] += sm.m[c][r]; return tm;} _CMatrix operator -(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] -= sm.m[c][r]; return tm;} _CMatrix operator *(const Type & v) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] *= v; return tm;} _CMatrix operator /(const Type & v) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] /= v; return tm;} _CMatrix & toUpperTriangular(bool * ok = 0) { if (cols_ != rows_) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < cols_; ++i) { ndet = true; for (uint j = 0; j < rows_; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < cols_; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < cols_; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < rows_; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < cols_; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < cols_ - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; m = smat.m; return *this; } _CMatrix & invert(bool * ok = 0, _CMCol * sv = 0) { if (cols_ != rows_) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(cols_, rows_), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < cols_; ++i) { ndet = true; for (uint j = 0; j < rows_; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < cols_; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < cols_; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); if (sv != 0) sv->swap(i, crow); } for (uint j = i + 1; j < rows_; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < cols_; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < cols_; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } //cout << i << endl << smat << endl; if (i < cols_ - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < cols_; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < cols_; ++j) mtmp.m[j][i] /= iddiv; if (sv != 0) (*sv)[i] /= iddiv; } for (uint i = cols_ - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < cols_; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } } if (ok != 0) *ok = true; m = mtmp.m; return *this; } _CMatrix inverted(bool * ok = 0) {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrix transposed() {_CMatrix tm(rows_, cols_); PIMM_FOR_WB(c, r) tm[r][c] = m[c][r]; return tm;} private: uint cols_, rows_; PIVector > m; }; template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << endl << ' ';} s << '}'; return s;} template inline PICout operator <<(PICout s, const PIMathMatrix & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << NewLine << ' ';} s << '}'; return s;} /// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0} template inline PIMathMatrix operator *(const PIMathMatrix & fm, const PIMathMatrix & sm) { uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols(); PIMathMatrix tm(cols1, rows0); if (fm.cols() != sm.rows()) return tm; Type t; for (uint j = 0; j < rows0; ++j) { for (uint i = 0; i < cols1; ++i) { t = Type(0); for (uint k = 0; k < cr; ++k) t += fm[k][j] * sm[i][k]; tm[i][j] = t; } } return tm; } /// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows} template inline PIMathVector operator *(const PIMathMatrix & fm, const PIMathVector & sv) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(r); if (c != sv.size()) return tv; Type t; for (uint i = 0; i < r; ++i) { t = Type(0); for (uint j = 0; j < c; ++j) t += fm[j][i] * sv[j]; tv[i] = t; } return tv; } typedef PIMathMatrix PIMathMatrixi; typedef PIMathMatrix PIMathMatrixd; #undef PIMV_FOR #undef PIMM_FOR #undef PIMM_FOR_WB #undef PIMM_FOR_I #undef PIMM_FOR_I_WB #undef PIMM_FOR_C #undef PIMM_FOR_R /// Differential evaluations struct TransferFunction { // Для задания передаточной функции PIVector vector_Bm, vector_An; }; // Класс, служащий для перевода передаточной функции в систему ОДУ первого порядка // реализованы след. методы решения дифф. ур-ний: // Эйлера // Рунге-Кутта 4-го порядка // Адамса-Бэшфортса-Моултона 2, 3, 4 порядков class PIP_EXPORT Solver { public: enum Method {Global = -1, Eyler_1 = 01, Eyler_2 = 02, EylerKoshi = 03, RungeKutta_4 = 14, AdamsBashfortMoulton_2 = 22, AdamsBashfortMoulton_3 = 23, AdamsBashfortMoulton_4 = 24, PolynomialApproximation_2 = 32, PolynomialApproximation_3 = 33, PolynomialApproximation_4 = 34, PolynomialApproximation_5 = 35 }; Solver() {times.resize(4); step = 0;} void solve(double u, double h); void fromTF(const TransferFunction & TF); void setMethod(Method m) {method = m;} void setTime(double time) {times.pop_back(); times.push_front(time);} void solveEyler1(double u, double h); void solveEyler2(double u, double h); void solveRK4(double u, double h); void solveABM2(double u, double h); void solveABM3(double u, double h); void solveABM4(double u, double h); void solvePA(double u, double h, uint deg); void solvePA2(double u, double h) {if (step > 0) solvePA(u, h, 2); else solveEyler1(u, h);} void solvePA3(double u, double h) {if (step > 1) solvePA(u, h, 3); else solvePA2(u, h);} void solvePA4(double u, double h) {if (step > 2) solvePA(u, h, 4); else solvePA3(u, h);} void solvePA5(double u, double h) {if (step > 3) solvePA(u, h, 5); else solvePA4(u, h);} PIMathVectord X; static Method method_global; static const char methods_desc[]; private: void moveF() {for (uint i = F.size() - 1; i > 0; --i) F[i] = F[i - 1];} PIMathMatrixd A, M; PIMathVectord d, a1, b1; PIMathVectord k1, k2, k3, k4, xx; PIMathVectord XX, Y, pY; PIVector F; PIVector times; uint size, step; Method method; double sum, td, ct, lp, dh, t, x1, x0; bool ok; }; class PIP_EXPORT PIFFT { public: PIFFT(); // const PIVector & getIndexes() {return indexes;} // const PIVector & getCoefs() {return coefs;} PIVector * calcFFT(const PIVector &val); PIVector * calcFFT(const PIVector &val); PIVector * calcFFTinverse(const PIVector &val); PIVector * calcHilbert(const PIVector &val); PIVector getAmplitude(); private: // PIVector indexes; // PIVector coefs; PIVector result; // uint iterations; bool prepared; // uint out_size; typedef ptrdiff_t ae_int_t; void calc_coefs(uint cnt2); void calc_indexes(uint cnt2, uint deep2); complexd coef(uint n, uint k); struct ftplan { PIVector plan; PIVector precomputed; PIVector tmpbuf; PIVector stackbuf; }; ftplan curplan; void fftc1d(const PIVector &a, uint n); void fftc1r(const PIVector &a, uint n); void fftc1dinv(const PIVector &a, uint n); void createPlan(uint n); void ftbasegeneratecomplexfftplan(uint n, ftplan *plan); void ftbase_ftbasegenerateplanrec(int n, int tasktype, ftplan *plan, int *plansize, int *precomputedsize, int *planarraysize, int *tmpmemsize, int *stackmemsize, ae_int_t stackptr, int debugi=0); void ftbase_ftbaseprecomputeplanrec(ftplan *plan, int entryoffset, ae_int_t stackptr); void ftbasefactorize(int n, int *n1, int *n2); void ftbase_ftbasefindsmoothrec(int n, int seed, int leastfactor, int *best); int ftbasefindsmooth(int n); void ftbaseexecuteplan(PIVector *a, int aoffset, int n, ftplan *plan); void ftbaseexecuteplanrec(PIVector *a, int aoffset, ftplan *plan, int entryoffset, ae_int_t stackptr); void ftbase_internalcomplexlintranspose(PIVector *a, int m, int n, int astart, PIVector *buf); void ftbase_ffticltrec(PIVector *a, int astart, int astride, PIVector *b, int bstart, int bstride, int m, int n); void ftbase_internalreallintranspose(PIVector *a, int m, int n, int astart, PIVector *buf); void ftbase_fftirltrec(PIVector *a, int astart, int astride, PIVector *b, int bstart, int bstride, int m, int n); void ftbase_ffttwcalc(PIVector *a, int aoffset, int n1, int n2); }; template class PIP_EXPORT PIStatistic { public: PIStatistic() { mean = T(); variance = T(); skewness = T(); kurtosis = T(); } bool calculate(const PIVector &val) { T v = T(), v1 = T(), v2 = T(), stddev = T(); int i, n = val.size(); mean = T(); variance = T(); skewness = T(); kurtosis = T(); if (n < 2) return false; /* * Mean */ for (i = 0; i < n; i++) mean += val[i]; mean /= n; /* * Variance (using corrected two-pass algorithm) */ for (i = 0; i < n; i++) { v1 += sqr(val[i] - mean); } for (i = 0; i < n; i++) v2 += val[i] - mean; v2 = sqr(v2) / n; variance = (v1 - v2) / (n - 1); if (variance < T()) variance = T(); stddev = sqrt(variance); /* * Skewness and kurtosis */ if (stddev != T()) { for (i = 0; i < n; i++) { v = (val[i] - mean) / stddev; v2 = sqr(v); skewness = skewness + v2 * v; kurtosis = kurtosis + sqr(v2); } skewness /= n; kurtosis = kurtosis / n - 3.; } return true; } T mean; T variance; T skewness; T kurtosis; }; typedef PIStatistic PIStatistici; typedef PIStatistic PIStatisticf; typedef PIStatistic PIStatisticd; template bool OLS_Linear(const PIVector > & input, T * out_a, T * out_b) { if (input.size_s() < 2) return false; int n = input.size_s(); T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a = T(), b = T(); for (int i = 0; i < n; ++i) { const PIPair & cv(input[i]); a_t0 += cv.first * cv.second; a_t1 += cv.first; a_t2 += cv.second; a_t3 += cv.first * cv.first; } a_t4 = n * a_t3 - a_t1 * a_t1; if (a_t4 != T()) a = (n * a_t0 - a_t1 * a_t2) / a_t4; b = (a_t2 - a * a_t1) / n; if (out_a != 0) *out_a = a; if (out_b != 0) *out_b = b; return true; } template bool WLS_Linear(const PIVector > & input, const PIVector & weights, T * out_a, T * out_b) { if (input.size_s() < 2) return false; if (input.size_s() != weights.size_s()) return false; int n = input.size_s(); T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a_n = T(), a = T(), b = T(); for (int i = 0; i < n; ++i) { T cp = weights[i]; const PIPair & cv(input[i]); a_t0 += cv.first * cv.second * cp; a_t1 += cv.first * cp; a_t2 += cv.second * cp; a_t3 += cv.first * cv.first * cp; a_n += cp; } a_t4 = a_n * a_t3 - a_t1 * a_t1; if (a_t4 != T()) a = (a_n * a_t0 - a_t1 * a_t2) / a_t4; b = (a_t2 - a * a_t1) / a_n; if (out_a != 0) *out_a = a; if (out_b != 0) *out_b = b; return true; } #endif // PIMATH_H