182 lines
5.1 KiB
C++
182 lines
5.1 KiB
C++
/*! \file pimathbase.h
|
|
* \brief Basic mathematical functions and defines
|
|
*/
|
|
/*
|
|
PIP - Platform Independent Primitives
|
|
Basic mathematical functions and defines
|
|
Ivan Pelipenko peri4ko@yandex.ru
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef PIMATHBASE_H
|
|
#define PIMATHBASE_H
|
|
|
|
#include "piinit.h"
|
|
#include "pivector.h"
|
|
#include "pipair.h"
|
|
#ifdef QNX
|
|
# undef PIP_MATH_J0
|
|
# undef PIP_MATH_J1
|
|
# undef PIP_MATH_JN
|
|
# undef PIP_MATH_Y0
|
|
# undef PIP_MATH_Y1
|
|
# undef PIP_MATH_YN
|
|
# include <math.h>
|
|
#else
|
|
# include <cmath>
|
|
#endif
|
|
|
|
#ifndef M_LN2
|
|
# define M_LN2 0.69314718055994530942
|
|
#endif
|
|
#ifndef M_LN10
|
|
# define M_LN10 2.30258509299404568402
|
|
#endif
|
|
#ifndef M_SQRT2
|
|
# define M_SQRT2 1.41421356237309514547
|
|
#endif
|
|
#ifndef M_SQRT3
|
|
# define M_SQRT3 1.73205080756887719318
|
|
#endif
|
|
#ifndef M_1_SQRT2
|
|
# define M_1_SQRT2 0.70710678118654746172
|
|
#endif
|
|
#ifndef M_1_SQRT3
|
|
# define M_1_SQRT3 0.57735026918962584208
|
|
#endif
|
|
#ifndef M_PI
|
|
# define M_PI 3.141592653589793238462643383280
|
|
#endif
|
|
#ifndef M_2PI
|
|
# define M_2PI 6.283185307179586476925286766559
|
|
#endif
|
|
#ifndef M_PI_3
|
|
# define M_PI_3 1.04719755119659774615
|
|
#endif
|
|
#ifndef M_2PI_3
|
|
# define M_2PI_3 2.0943951023931954923
|
|
#endif
|
|
#ifndef M_180_PI
|
|
# define M_180_PI 57.2957795130823208768
|
|
#endif
|
|
#ifndef M_PI_180
|
|
# define M_PI_180 1.74532925199432957692e-2
|
|
#endif
|
|
#ifndef M_SQRT_PI
|
|
# define M_SQRT_PI 1.772453850905516027298167483341
|
|
#endif
|
|
#ifndef M_E
|
|
# define M_E 2.7182818284590452353602874713527
|
|
#endif
|
|
#ifndef M_LIGHT_SPEED
|
|
# define M_LIGHT_SPEED 2.99792458e+8
|
|
#endif
|
|
#ifndef M_RELATIVE_CONST
|
|
# define M_RELATIVE_CONST -4.442807633e-10;
|
|
#endif
|
|
#ifndef M_GRAVITY_CONST
|
|
# define M_GRAVITY_CONST 398600.4418e9;
|
|
#endif
|
|
|
|
|
|
|
|
const double deg2rad = M_PI_180;
|
|
const double rad2deg = M_180_PI;
|
|
|
|
inline int sign(const float & x) {return (x < 0.) ? -1 : (x > 0. ? 1 : 0);}
|
|
inline int sign(const double & x) {return (x < 0.) ? -1 : (x > 0. ? 1 : 0);}
|
|
inline int pow2(const int p) {return 1 << p;}
|
|
inline double sinc(const double & v) {if (v == 0.) return 1.; double t = M_PI * v; return sin(t) / t;}
|
|
|
|
PIP_EXPORT double piJ0(const double & v);
|
|
PIP_EXPORT double piJ1(const double & v);
|
|
PIP_EXPORT double piJn(int n, const double & v);
|
|
PIP_EXPORT double piY0(const double & v);
|
|
PIP_EXPORT double piY1(const double & v);
|
|
PIP_EXPORT double piYn(int n, const double & v);
|
|
|
|
template <typename T> inline constexpr T toDb(T val) {return T(10.) * std::log10(val);}
|
|
template <typename T> inline constexpr T fromDb(T val) {return std::pow(T(10.), val / T(10.));}
|
|
template <typename T> inline constexpr T toRad(T deg) {return deg * T(M_PI_180);}
|
|
template <typename T> inline constexpr T toDeg(T rad) {return rad * T(M_180_PI);}
|
|
template <typename T> inline constexpr T sqr(const T & v) {return v * v;}
|
|
|
|
// [-1 ; 1]
|
|
PIP_EXPORT double randomd();
|
|
// [-1 ; 1] normal
|
|
PIP_EXPORT double randomn(double dv = 0., double sv = 1.);
|
|
|
|
template<typename T> inline PIVector<T> piAbs(const PIVector<T> & v) {
|
|
PIVector<T> result;
|
|
result.resize(v.size());
|
|
for (uint i = 0; i < v.size(); i++)
|
|
result[i] = piAbs<T>(v[i]);
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool OLS_Linear(const PIVector<PIPair<T, T> > & input, T * out_a, T * out_b) {
|
|
static_assert(std::is_arithmetic<T>::value, "Type must be arithmetic");
|
|
if (input.size_s() < 2)
|
|
return false;
|
|
int n = input.size_s();
|
|
T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a = T(), b = T();
|
|
for (int i = 0; i < n; ++i) {
|
|
const PIPair<T, T> & cv(input[i]);
|
|
a_t0 += cv.first * cv.second;
|
|
a_t1 += cv.first;
|
|
a_t2 += cv.second;
|
|
a_t3 += cv.first * cv.first;
|
|
}
|
|
a_t4 = n * a_t3 - a_t1 * a_t1;
|
|
if (a_t4 != T())
|
|
a = (n * a_t0 - a_t1 * a_t2) / a_t4;
|
|
b = (a_t2 - a * a_t1) / n;
|
|
if (out_a != 0) *out_a = a;
|
|
if (out_b != 0) *out_b = b;
|
|
return true;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool WLS_Linear(const PIVector<PIPair<T, T> > & input, const PIVector<T> & weights, T * out_a, T * out_b) {
|
|
static_assert(std::is_arithmetic<T>::value, "Type must be arithmetic");
|
|
if (input.size_s() < 2)
|
|
return false;
|
|
if (input.size_s() != weights.size_s())
|
|
return false;
|
|
int n = input.size_s();
|
|
T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a_n = T(), a = T(), b = T();
|
|
for (int i = 0; i < n; ++i) {
|
|
T cp = weights[i];
|
|
const PIPair<T, T> & cv(input[i]);
|
|
a_t0 += cv.first * cv.second * cp;
|
|
a_t1 += cv.first * cp;
|
|
a_t2 += cv.second * cp;
|
|
a_t3 += cv.first * cv.first * cp;
|
|
a_n += cp;
|
|
}
|
|
a_t4 = a_n * a_t3 - a_t1 * a_t1;
|
|
if (a_t4 != T())
|
|
a = (a_n * a_t0 - a_t1 * a_t2) / a_t4;
|
|
b = (a_t2 - a * a_t1) / a_n;
|
|
if (out_a != 0) *out_a = a;
|
|
if (out_b != 0) *out_b = b;
|
|
return true;
|
|
}
|
|
|
|
#endif // PIMATHBASE_H
|