Files
pip/libs/main/geo/pigeoposition.h
2022-12-14 14:13:52 +03:00

214 lines
9.1 KiB
C++

/*! \file pigeoposition.h
* \ingroup Geo
* \~\brief
* \~english Class for geo position storage and conversions
* \~russian Класс для хранения географической позиции и преобразований
*/
/*
PIP - Platform Independent Primitives
Class for geo position storage and conversions
Andrey Bychkov work.a.b@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIGEOPOSITION_H
#define PIGEOPOSITION_H
#include "piellipsoidmodel.h"
#include "pimathvector.h"
class PIP_EXPORT PIGeoPosition: public PIMathVectorT3d {
public:
enum CoordinateSystem {
Unknown = 0, /// Unknown coordinate system
Geodetic, /// Geodetic latitude, longitude, and height above ellipsoid
Geocentric, /// Geocentric (regular spherical coordinates)
Cartesian, /// Cartesian (Earth-centered, Earth-fixed)
Spherical /// Spherical coordinates (theta,phi,radius)
};
static const double one_cm_tolerance; /// One centimeter tolerance.
static const double one_mm_tolerance; /// One millimeter tolerance.
static const double one_um_tolerance; /// One micron tolerance.
static double position_tolerance; /// Default tolerance (default 1mm)
static double setPositionTolerance(const double tol) {
position_tolerance = tol;
return position_tolerance;
}
static double getPositionTolerance() { return position_tolerance; }
PIGeoPosition();
PIGeoPosition(double a, double b, double c, CoordinateSystem s = Cartesian, PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
PIGeoPosition(PIMathVectorT3d v, CoordinateSystem s = Cartesian, PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
PIGeoPosition & transformTo(CoordinateSystem sys);
PIGeoPosition & asGeodetic() {
transformTo(Geodetic);
return *this;
} /// Convert to geodetic coordinate
PIGeoPosition & asGeodetic(const PIEllipsoidModel & ell) {
setEllipsoidModel(ell);
transformTo(Geodetic);
return *this;
} /// Convert to another ell, then to geodetic coordinates
PIGeoPosition & asECEF() {
transformTo(Cartesian);
return *this;
} /// Convert to cartesian coordinates
double x() const;
double y() const;
double z() const;
double latitudeGeodetic() const;
double latitudeGeocentric() const;
double longitude() const;
double theta() const;
double phi() const;
double radius() const;
double height() const;
/// Set the ellipsoid values for this PIGeoPosition given a ellipsoid.
void setEllipsoidModel(const PIEllipsoidModel & ell) { el = ell; }
/// Set the \a PIGeoPosition given geodetic coordinates in degrees. \a CoordinateSystem is set to \a Geodetic.
PIGeoPosition & setGeodetic(double lat, double lon, double ht, PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
/// Set the \a PIGeoPosition given geocentric coordinates in degrees. \a CoordinateSystem is set to \a Geocentric
PIGeoPosition & setGeocentric(double lat, double lon, double rad);
/// Set the \a PIGeoPosition given spherical coordinates in degrees. \a CoordinateSystem is set to \a Spherical
PIGeoPosition & setSpherical(double theta, double phi, double rad);
/// Set the \a PIGeoPosition given ECEF coordinates in meeters. \a CoordinateSystem is set to \a Cartesian.
PIGeoPosition & setECEF(double x, double y, double z);
/// Fundamental conversion from spherical to cartesian coordinates.
static void convertSphericalToCartesian(const PIMathVectorT3d & tpr, PIMathVectorT3d & xyz);
/// Fundamental routine to convert cartesian to spherical coordinates.
static void convertCartesianToSpherical(const PIMathVectorT3d & xyz, PIMathVectorT3d & tpr);
/// Fundamental routine to convert ECEF (cartesian) to geodetic coordinates,
static void convertCartesianToGeodetic(const PIMathVectorT3d & xyz,
PIMathVectorT3d & llh,
PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
/// Fundamental routine to convert geodetic to ECEF (cartesian) coordinates,
static void convertGeodeticToCartesian(const PIMathVectorT3d & llh,
PIMathVectorT3d & xyz,
PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
/// Fundamental routine to convert cartesian (ECEF) to geocentric
static void convertCartesianToGeocentric(const PIMathVectorT3d & xyz, PIMathVectorT3d & llr);
/// Fundamental routine to convert geocentric to cartesian (ECEF)
static void convertGeocentricToCartesian(const PIMathVectorT3d & llr, PIMathVectorT3d & xyz);
/// Fundamental routine to convert geocentric to geodetic
static void convertGeocentricToGeodetic(const PIMathVectorT3d & llr,
PIMathVectorT3d & llh,
PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
/// Fundamental routine to convert geodetic to geocentric
static void convertGeodeticToGeocentric(const PIMathVectorT3d & llh,
PIMathVectorT3d & llr,
PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
/// Compute the radius of the ellipsoidal Earth, given the geodetic latitude.
static double radiusEarth(double geolat, PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
double radiusEarth() const {
PIGeoPosition p(*this);
p.transformTo(PIGeoPosition::Geodetic);
return PIGeoPosition::radiusEarth((*this)[0], p.el);
}
/// Compute the range in meters between two PIGeoPositions.
static double range(const PIGeoPosition & a, const PIGeoPosition & b);
double range(const PIGeoPosition & p) const { return range((*this), p); }
/// Computes the elevation of the input (p) position as seen from this PIGeoPosition.
double elevation(const PIGeoPosition & p) const;
/// Computes the elevation of the input (p) position as seen from this PIGeoPosition, using a Geodetic (ellipsoidal) system.
double elevationGeodetic(const PIGeoPosition & p) const;
/// Computes the azimuth of the input (p) position as seen from this PIGeoPosition.
double azimuth(const PIGeoPosition & p) const;
/// Computes the azimuth of the input (p) position as seen from this PIGeoPosition, using a Geodetic (ellipsoidal) system.
double azimuthGeodetic(const PIGeoPosition & p) const;
/// Computes the radius of curvature of the meridian (Rm) corresponding to this PIGeoPosition.
double getCurvMeridian() const;
/// Computes the radius of curvature in the prime vertical (Rn) corresponding to this PIGeoPosition.
double getCurvPrimeVertical() const;
/// Returns as PIMathVectorT3d
const PIMathVectorT3d & vector() const { return *this; }
PIGeoPosition & operator=(const PIMathVectorT3d & v);
PIGeoPosition & operator-=(const PIGeoPosition & right);
PIGeoPosition & operator+=(const PIGeoPosition & right);
friend PIGeoPosition operator-(const PIGeoPosition & left, const PIGeoPosition & right);
friend PIGeoPosition operator+(const PIGeoPosition & left, const PIGeoPosition & right);
friend PIGeoPosition operator*(const double & scale, const PIGeoPosition & right);
friend PIGeoPosition operator*(const PIGeoPosition & left, const double & scale);
friend PIGeoPosition operator*(const int & scale, const PIGeoPosition & right);
friend PIGeoPosition operator*(const PIGeoPosition & left, const int & scale);
bool operator==(const PIGeoPosition & right) const;
bool operator!=(const PIGeoPosition & right) const { return !(operator==(right)); }
private:
void initialize(PIMathVectorT3d v, CoordinateSystem sys = Cartesian, PIEllipsoidModel ell = PIEllipsoidModel::WGS84Ellipsoid());
PIEllipsoidModel el;
CoordinateSystem s;
};
inline PIGeoPosition operator-(const PIGeoPosition & left, const PIGeoPosition & right) {
PIGeoPosition l(left), r(right);
l.transformTo(PIGeoPosition::Cartesian);
r.transformTo(PIGeoPosition::Cartesian);
l -= r;
return l;
}
inline PIGeoPosition operator+(const PIGeoPosition & left, const PIGeoPosition & right) {
PIGeoPosition l(left), r(right);
l.transformTo(PIGeoPosition::Cartesian);
r.transformTo(PIGeoPosition::Cartesian);
l += r;
return l;
}
inline PIGeoPosition operator*(const double & scale, const PIGeoPosition & right) {
PIMathVectorT3d tmp(right);
tmp *= scale;
return PIGeoPosition(tmp);
}
inline PIGeoPosition operator*(const PIGeoPosition & left, const double & scale) {
return operator*(scale, left);
}
inline PIGeoPosition operator*(const int & scale, const PIGeoPosition & right) {
return operator*(double(scale), right);
}
inline PIGeoPosition operator*(const PIGeoPosition & left, const int & scale) {
return operator*(double(scale), left);
}
#endif // PIGEOPOSITION_H