Files
pip/src_main/io/piiodevice.h

395 lines
14 KiB
C++
Executable File

/*! \file piiodevice.h
* \brief Abstract input/output device
*/
/*
PIP - Platform Independent Primitives
Abstract input/output device
Copyright (C) 2018 Ivan Pelipenko peri4ko@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIIODEVICE_H
#define PIIODEVICE_H
#include "piinit.h"
#include "picollection.h"
#include "pitimer.h"
#include "piqueue.h"
// function executed from threaded read, pass ThreadedReadData, readedData, sizeOfData
typedef bool (*ReadRetFunc)(void * , uchar * , int );
#ifdef DOXYGEN
//! \relatesalso PIIODevice \brief Use this macro to enable automatic creation instances of your class with \a createFromFullPath() function
# define REGISTER_DEVICE(class)
//! \relatesalso PIIODevice \brief Use this macro instead of PIOBJECT when describe your own PIIODevice
# define PIIODEVICE(class)
#else
# define REGISTER_DEVICE(class) ADD_NEW_TO_COLLECTION_WITH_NAME(__PIIODevices__, class, __S__collection_##class##__)
# define PIIODEVICE(class) PIOBJECT_SUBCLASS(class, PIIODevice) PIIODevice * copy() const {return new class();}
#endif
class PIP_EXPORT PIIODevice: public PIThread
{
PIOBJECT_SUBCLASS(PIIODevice, PIThread)
friend void __DevicePool_threadReadDP(void * ddp);
public:
//! Constructs a empty PIIODevice
explicit PIIODevice();
//! \brief Open modes for PIIODevice
enum DeviceMode {
ReadOnly /*! Device can only read */ = 0x01,
WriteOnly /*! Device can only write */ = 0x02,
ReadWrite /*! Device can both read and write */ = 0x03
};
//! \brief Options for PIIODevice, works with some devices
enum DeviceOption {
BlockingRead /*! \a read block until data is received, default off */ = 0x01,
BlockingWrite /*! \a write block until data is sent, default off */ = 0x02
};
//! \brief Characteristics of PIIODevice subclass
enum DeviceInfoFlag {
Sequential /*! Continuous channel */ = 0x01,
Reliable /*! Channel is safe */ = 0x02
};
typedef PIFlags<DeviceOption> DeviceOptions;
typedef PIFlags<DeviceInfoFlag> DeviceInfoFlags;
explicit PIIODevice(const PIString & path, DeviceMode mode = ReadWrite);
virtual ~PIIODevice();
//! Current open mode of device
DeviceMode mode() const {return mode_;}
//! Set open mode of device
void setMode(DeviceMode m) {mode_ = m;}
//! Current device options
DeviceOptions options() const {return options_;}
//! Current device option "o" state
bool isOptionSet(DeviceOption o) const {return options_[o];}
//! Set device options
void setOptions(DeviceOptions o);
//! Set device option "o" to "yes" and return previous state
bool setOption(DeviceOption o, bool yes = true);
//! Returns device characteristic flags
DeviceInfoFlags infoFlags() const {return deviceInfoFlags();}
//! Current path of device
PIString path() const {return property(PIStringAscii("path")).toString();}
//! Set path of device
void setPath(const PIString & path) {setProperty(PIStringAscii("path"), path);}
//! Return \b true if mode is ReadOnly or ReadWrite
bool isReadable() const {return (mode_ & ReadOnly);}
//! Return \b true if mode is WriteOnly or ReadWrite
bool isWriteable() const {return (mode_ & WriteOnly);}
//! Return \b true if device is successfully opened
bool isOpened() const {return opened_;}
//! Return \b true if device is closed
bool isClosed() const {return !opened_;}
//! Return \b true if device can read \b now
virtual bool canRead() const {return opened_ && (mode_ & ReadOnly);}
//! Return \b true if device can write \b now
virtual bool canWrite() const {return opened_ && (mode_ & WriteOnly);}
//! Set execution of \a open enabled while threaded read on closed device
void setReopenEnabled(bool yes = true) {setProperty(PIStringAscii("reopenEnabled"), yes);}
//! Set timeout in milliseconds between \a open tryings if reopen is enabled
void setReopenTimeout(int msecs) {setProperty(PIStringAscii("reopenTimeout"), msecs);}
//! Return reopen enable
bool isReopenEnabled() const {return property(PIStringAscii("reopenEnabled")).toBool();}
//! Return reopen timeout
int reopenTimeout() {return property(PIStringAscii("reopenTimeout")).toInt();}
/** \brief Set "threaded read slot"
* \details Set external static function of threaded read that will be executed
* at every successful threaded read. Function should have format
* "bool func(void * data, uchar * readed, int size)" */
void setThreadedReadSlot(ReadRetFunc func) {ret_func_ = func;}
//! Set custom data that will be passed to "threaded read slot"
void setThreadedReadData(void * d) {ret_data_ = d;}
/** \brief Set size of threaded read buffer
* \details Default size is 4096 bytes. If your device can read at single read
* more than 4096 bytes you should use this function to adjust buffer size */
void setThreadedReadBufferSize(int new_size) {buffer_tr.resize(new_size); threadedReadBufferSizeChanged();}
//! Return size of threaded read buffer
int threadedReadBufferSize() const {return buffer_tr.size_s();}
//! Return content of threaded read buffer
const uchar * threadedReadBuffer() const {return buffer_tr.data();}
//! Return custom data that will be passed to "threaded read slot"
void * threadedReadData() const {return ret_data_;}
//! Return \b true if threaded read is started
bool isThreadedRead() const {return isRunning();}
//! Start threaded read
void startThreadedRead() {if (!isRunning()) PIThread::start();}
//! Start threaded read and assign "threaded read slot" to "func"
void startThreadedRead(ReadRetFunc func) {ret_func_ = func; if (!isRunning()) PIThread::start();}
//! Stop threaded read
void stopThreadedRead() {PIThread::terminate();}
//! Return \b true if threaded write is started
bool isThreadedWrite() const {return write_thread.isRunning();}
//! Start threaded write
void startThreadedWrite() {if (!write_thread.isRunning()) write_thread.startOnce();}
//! Stop threaded write
void stopThreadedWrite() {write_thread.terminate();}
//! Clear threaded write task queue
void clearThreadedWriteQueue() {write_thread.lock(); write_queue.clear(); write_thread.unlock();}
//! Start both threaded read and threaded write
void start() {startThreadedRead(); startThreadedWrite();}
//! Stop both threaded read and threaded write and if "wait" block until both threads are stop
void stop(bool wait = false) {stopThreadedRead(); stopThreadedWrite(); if (wait) while (write_thread.isRunning() || isRunning()) msleep(1);}
//! Read from device maximum "max_size" bytes to "read_to"
int read(void * read_to, int max_size) {return readDevice(read_to, max_size);}
//! Read from device maximum "max_size" bytes and return them as PIByteArray
PIByteArray read(int max_size) {buffer_in.resize(max_size); int ret = readDevice(buffer_in.data(), max_size); if (ret < 0) return PIByteArray(); return buffer_in.resized(ret);}
//! Write maximum "max_size" bytes of "data" to device
int write(const void * data, int max_size) {return writeDevice(data, max_size);}
//! Write "data" to device
int write(const PIByteArray & data) {return writeDevice(data.data(), data.size_s());}
//! Read from device for "timeout_ms" milliseconds and return readed data as PIByteArray. Timeout should to be greater than 0
PIByteArray readForTime(double timeout_ms);
//! Add task to threaded write queue and return task ID
ullong writeThreaded(const void * data, int max_size) {return writeThreaded(PIByteArray(data, uint(max_size)));}
//! Add task to threaded write queue and return task ID
ullong writeThreaded(const PIByteArray & data);
//! Configure device from section "section" of file "config_file", if "parent_section" parent section also will be read
bool configure(const PIString & config_file, const PIString & section, bool parent_section = false);
//! Reimplement to construct full unambiguous string prefix. \ref PIIODevice_sec7
virtual PIString fullPathPrefix() const {return PIString();}
//! Reimplement to construct full unambiguous string, describes this device, default returns \a fullPathPrefix() + "://" + \a path()
PIString constructFullPath() const;
//! Reimplement to configure your device with parameters of full unambiguous string. Default implementation does nothing
void configureFromFullPath(const PIString & full_path);
//! \brief Try to determine suitable device, create new one, configure it with \a configureFromFullPath() and returns it.
//! \details To function \a configureFromFullPath() "full_path" passed without \a fullPathPrefix() + "://".
//! See \ref PIIODevice_sec7
static PIIODevice * createFromFullPath(const PIString & full_path);
static PIString normalizeFullPath(const PIString & full_path);
static void splitFullPath(PIString fpwm, PIString * full_path, DeviceMode * mode = 0, DeviceOptions * opts = 0);
EVENT_HANDLER(bool, open) {if (!init_) init(); opened_ = openDevice(); if (opened_) opened(); return opened_;}
EVENT_HANDLER1(bool, open, const PIString &, _path) {setPath(_path); if (!init_) init(); opened_ = openDevice(); if (opened_) opened(); return opened_;}
bool open(DeviceMode _mode) {mode_ = _mode; if (!init_) init(); opened_ = openDevice(); if (opened_) opened(); return opened_;}
EVENT_HANDLER2(bool, open, const PIString &, _path, DeviceMode, _mode) {setPath(_path); mode_ = _mode; if (!init_) init(); opened_ = openDevice(); if (opened_) opened(); return opened_;}
EVENT_HANDLER(bool, close) {opened_ = !closeDevice(); if (!opened_) closed(); return !opened_;}
EVENT_VHANDLER(void, flush) {;}
EVENT(opened)
EVENT(closed)
EVENT2(threadedReadEvent, uchar * , readed, int, size)
EVENT2(threadedWriteEvent, ullong, id, int, written_size)
//! \handlers
//! \{
//! \fn bool open()
//! \brief Open device
//! \fn bool open(const PIString & path)
//! \brief Open device with path "path"
//! \fn bool open(const DeviceMode & mode)
//! \brief Open device with mode "mode"
//! \fn bool open(const PIString & path, const DeviceMode & mode)
//! \brief Open device with path "path" and mode "mode"
//! \fn bool close()
//! \brief Close device
//! \}
//! \vhandlers
//! \{
//! \fn void flush()
//! \brief Immediate write all buffers
//! \}
//! \events
//! \{
//! \fn void opened()
//! \brief Raise if succesfull open
//! \fn void closed()
//! \brief Raise if succesfull close
//! \fn void threadedReadEvent(uchar * readed, int size)
//! \brief Raise if read thread succesfull read some data
//! \fn void threadedWriteEvent(ullong id, int written_size)
//! \brief Raise if write thread successfull write some data of task with ID "id"
//! \}
//! \ioparams
//! \{
#ifdef DOXYGEN
//! \brief setReopenEnabled, default "true"
bool reopenEnabled;
//! \brief setReopenTimeout in ms, default 1000
int reopenTimeout;
//! \brief setThreadedReadBufferSize in bytes, default 4096
int threadedReadBufferSize;
#endif
//! \}
protected:
//! Function executed before first \a openDevice() or from constructor
virtual bool init() {return true;}
//! Reimplement to configure device from entries "e_main" and "e_parent", cast arguments to \a PIConfig::Entry*
virtual bool configureDevice(const void * e_main, const void * e_parent = 0) {return true;}
//! Reimplement to open device, return value will be set to "opened_" variable; don't call this function in subclass, use open()
virtual bool openDevice() = 0; // use path_, type_, opened_, init_ variables
//! Reimplement to close device, inverse return value will be set to "opened_" variable
virtual bool closeDevice() {return true;} // use path_, type_, opened_, init_ variables
//! Reimplement this function to read from your device
virtual int readDevice(void * read_to, int max_size) {piCoutObj << "\"read\" is not implemented!"; return -2;}
//! Reimplement this function to write to your device
virtual int writeDevice(const void * data, int max_size) {piCoutObj << "\"write\" is not implemented!"; return -2;}
//! Function executed when thread read some data, default implementation execute external slot "ret_func_"
virtual bool threadedRead(uchar * readed, int size);
//! Reimplement to construct full unambiguous string, describes this device. Default implementation returns \a path()
virtual PIString constructFullPathDevice() const {return path();}
//! Reimplement to configure your device with parameters of full unambiguous string. Default implementation does nothing
virtual void configureFromFullPathDevice(const PIString & full_path) {;}
//! Reimplement to apply new device options
virtual void optionsChanged() {;}
//! Reimplement to return correct \a DeviceInfoFlags. Default implementation returns 0
virtual DeviceInfoFlags deviceInfoFlags() const {return 0;}
//! Reimplement to apply new \a threadedReadBufferSize()
virtual void threadedReadBufferSizeChanged() {;}
void terminate();
DeviceMode mode_;
DeviceOptions options_;
ReadRetFunc ret_func_;
bool opened_;
void * ret_data_;
private:
EVENT_HANDLER2(void, check_start, void * , data, int, delim);
EVENT_HANDLER(void, write_func);
virtual PIIODevice * copy() const {return 0;}
PIString fullPathOptions() const;
void _init();
void begin();
void run();
void end() {terminate();}
static void cacheFullPath(const PIString & full_path, const PIIODevice * d);
explicit PIIODevice(const PIIODevice & );
void operator =(const PIIODevice & );
PITimer timer;
PITimeMeasurer tm;
PIThread write_thread;
PIByteArray buffer_in, buffer_tr;
PIQueue<PIPair<PIByteArray, ullong> > write_queue;
ullong tri;
int readed_;
bool init_, thread_started_, raise_threaded_read_;
static PIMutex nfp_mutex;
static PIMap<PIString, PIString> nfp_cache;
};
#endif // PIIODEVICE_H