doc correction

This commit is contained in:
Шишов Максим Денисович
2020-09-08 16:05:22 +03:00
parent f1a0a3ec4a
commit 05a32ccf1a
3 changed files with 530 additions and 388 deletions

View File

@@ -28,18 +28,35 @@
#include "pimathvector.h"
#include "pimathcomplex.h"
/**
* @brief Inline funtion of compare with zero different types
*
* @param v is input parameter of type T
* @return true if zero, false if not zero
*/
template<typename T>
inline bool _PIMathMatrixNullCompare(const T v) {
static_assert(std::is_floating_point<T>::value, "Type must be floating point");
return (piAbs(v) < T(1E-200));
}
/**
* @brief Inline funtion of compare with zero colmplexf type
*
* @param v is input parameter of type colmplexf
* @return true if zero, false if not zero
*/
template<>
inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
return (abs(v) < float(1E-200));
}
/**
* @brief Inline funtion of compare with zero complexd type
*
* @param v is input parameter of type colmplexd
* @return true if zero, false if not zero
*/
template<>
inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
return (abs(v) < double(1E-200));
@@ -68,8 +85,19 @@ class PIP_EXPORT PIMathMatrixT {
static_assert(Rows > 0, "Row count must be > 0");
static_assert(Cols > 0, "Column count must be > 0");
public:
/**
* @brief Constructor that calls the private resize method
*
* @return identitied matrix of type PIMathMatrixT
*/
PIMathMatrixT() { resize(Rows, Cols); }
/**
* @brief Constructor that calls the private resize method
*
* @param val is the PIVector with which the matrix is filled
* @return identitied matrix of type PIMathMatrixT
*/
PIMathMatrixT(const PIVector<Type> &val) {
resize(Rows, Cols);
int i = 0;
@@ -77,10 +105,10 @@ public:
}
/**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @return identitied matrix of type PIMathMatrixT
*/
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @return identity matrix of type PIMathMatrixT
*/
static _CMatrix identity() {
_CMatrix tm = _CMatrix();
PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0));
@@ -88,11 +116,11 @@ public:
}
/**
* @brief Creates a matrix that is filled with elements
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT
*/
* @brief Creates a matrix that is filled with elements
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT
*/
static _CMatrix filled(const Type &v) {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = v;
@@ -100,73 +128,73 @@ public:
}
/**
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix
* @return rotated matrix
*/
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix
* @return rotated matrix
*/
static _CMatrix rotation(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the X axis
* @return rotated matrix
*/
* @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the X axis
* @return rotated matrix
*/
static _CMatrix rotationX(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the Y axis
* @return rotated matrix
*/
* @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the Y axis
* @return rotated matrix
*/
static _CMatrix rotationY(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the Z axis
* @return rotated matrix
*/
* @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the Z axis
* @return rotated matrix
*/
static _CMatrix rotationZ(double angle) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by X axis
* @return rotated matrix
*/
* @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by X axis
* @return rotated matrix
*/
static _CMatrix scaleX(double factor) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by Y axis
* @return rotated matrix
*/
* @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by Y axis
* @return rotated matrix
*/
static _CMatrix scaleY(double factor) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by Z axis
* @return rotated matrix
*/
* @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by Z axis
* @return rotated matrix
*/
static _CMatrix scaleZ(double factor) { return _CMatrix(); }
/**
* @brief Method which returns number of columns in matrix
*
* @return type uint shows number of columns
*/
* @brief Method which returns number of columns in matrix
*
* @return type uint shows number of columns
*/
uint cols() const { return Cols; }
/**
@@ -177,11 +205,12 @@ public:
uint rows() const { return Rows; }
/**
* @brief Method which returns the selected column in PIMathVectorT format
*
* @param index is the number of the selected column
* @return column in PIMathVectorT format
*/
* @brief Method which returns the selected column in PIMathVectorT format.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected column
* @return column in PIMathVectorT format
*/
_CMCol col(uint index) {
_CMCol tv;
PIMM_FOR_R(i) tv[i] = m[i][index];
@@ -189,11 +218,12 @@ public:
}
/**
* @brief Method which returns the selected row in PIMathVectorT format
*
* @param index is the number of the selected row
* @return row in PIMathVectorT format
*/
* @brief Method which returns the selected row in PIMathVectorT format
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected row
* @return row in PIMathVectorT format
*/
_CMRow row(uint index) {
_CMRow tv;
PIMM_FOR_C(i) tv[i] = m[index][i];
@@ -201,36 +231,39 @@ public:
}
/**
* @brief Set the selected column in matrix
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
* @brief Set the selected column in matrix.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) m[i][index] = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
* @brief Set the selected row in matrix
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix &setRow(uint index, const _CMRow &v) {
PIMM_FOR_C(i) m[index][i] = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
* @brief Method which changes selected rows in a matrix.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint r0, uint r1) {
Type t;
PIMM_FOR_C(i) {
@@ -242,12 +275,13 @@ public:
}
/**
* @brief Method which changes selected columns in a matrix
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
* @brief Method which changes selected columns in a matrix.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
_CMatrix &swapCols(uint c0, uint c1) {
Type t;
PIMM_FOR_R(i) {
@@ -259,140 +293,142 @@ public:
}
/**
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix &fill(const Type &v) {
PIMM_FOR_WB(r, c) m[r][c] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const { return cols() == rows(); }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
bool isIdentity() const {
PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
bool isNull() const {
PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Full access to elements reference by row "row" and col "col"
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return reference to element of matrix by row "row" and col "col"
*/
* @brief Full access to elements reference by row "row" and col "col".
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return reference to element of matrix by row "row" and col "col"
*/
Type &at(uint row, uint col) { return m[row][col]; }
/**
* @brief Full access to element by row "row" and col "col"
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return element of matrix by row "row" and col "col"
*/
* @brief Full access to element by row "row" and col "col".
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return element of matrix by row "row" and col "col"
*/
Type at(uint row, uint col) const { return m[row][col]; }
/**
* @brief Full access to the matrix row pointer
*
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
* @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
Type *operator[](uint row) { return m[row]; }
/**
* @brief Read-only access to the matrix row pointer
*
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
* @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
const Type *operator[](uint row) const { return m[row]; }
/**
* @brief Matrix assignment to matrix "sm"
*
* @param sm matrix for the assigment
* @return matrix equal with sm
*/
* @brief Matrix assignment to matrix "sm"
*
* @param sm matrix for the assigment
* @return matrix equal with sm
*/
_CMatrix &operator=(const _CMatrix &sm) {
memcpy(m, sm.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
bool operator==(const _CMatrix &sm) const {
PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false;
return true;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; }
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; }
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; }
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; }
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator/=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] /= v; }
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator-() const {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c];
@@ -400,11 +436,11 @@ public:
}
/**
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c];
@@ -412,11 +448,11 @@ public:
}
/**
* @brief Matrix substraction
*
* @param sm is matrix subtractor
* @return the result of matrix substraction
*/
* @brief Matrix substraction
*
* @param sm is matrix subtractor
* @return the result of matrix substraction
*/
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c];
@@ -424,11 +460,11 @@ public:
}
/**
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator*(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] *= v;
@@ -436,11 +472,11 @@ public:
}
/**
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator/(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] /= v;
@@ -448,10 +484,10 @@ public:
}
/**
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
@@ -468,10 +504,10 @@ public:
}
/**
* @brief Transforming matrix to upper triangular
*
* @return transformed upper triangular matrix
*/
* @brief Transforming matrix to upper triangular
*
* @return copy of transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (Cols != Rows) {
if (ok != 0) *ok = false;
@@ -510,10 +546,10 @@ public:
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
* @brief Matrix inversion operation
*
* @return copy of inverted matrix
*/
_CMatrix &invert(bool *ok = 0) {
static_assert(Cols == Rows, "Only square matrix invertable");
_CMatrix mtmp = _CMatrix::identity(), smat(*this);
@@ -563,10 +599,10 @@ public:
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
@@ -574,10 +610,10 @@ public:
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrixI transposed() const {
_CMatrixI tm;
PIMM_FOR_WB(r, c) tm[c][r] = m[r][c];
@@ -687,6 +723,13 @@ template<uint Rows, uint Cols, typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Cols, Type> & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PICout type
* @param m PIMathMatrixT type
* @return bitwise left PICout
*/
template<uint Rows, uint Cols, typename Type>
inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
s << "{";
@@ -698,6 +741,13 @@ inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
}
/// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1}
/**
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<uint CR, uint Rows0, uint Cols1, typename Type>
inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR, Type> &fm,
const PIMathMatrixT<CR, Cols1, Type> &sm) {
@@ -715,6 +765,13 @@ inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR
}
/// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows}
/**
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sv second vector multiplier
* @return vector that is the result of multiplication
*/
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type> &fm,
const PIMathVectorT<Cols, Type> &sv) {
@@ -730,6 +787,13 @@ inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type>
}
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
/**
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param sv first vector multiplier
* @param fm second matrix multiplier
* @return vector that is the result of multiplication
*/
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
const PIMathMatrixT<Rows, Cols, Type> &fm) {
@@ -745,6 +809,13 @@ inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
}
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
/**
* @brief Multiplying value of type Type and matrix
*
* @param x first multiplier of type Type
* @param fm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<uint Cols, uint Rows, typename Type>
inline PIMathMatrixT<Rows, Cols, Type> operator*(const Type &x, const PIMathMatrixT<Rows, Cols, Type> &v) {
return v * x;
@@ -788,14 +859,33 @@ class PIP_EXPORT PIMathMatrix : public PIVector2D<Type> {
typedef PIMathMatrix<Type> _CMatrix;
typedef PIMathVector<Type> _CMCol;
public:
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @param f is type of matrix elements
*/
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @param val is PIVector<Type> of matrix elements
*/
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> &val) {
_V2D::resize(rows, cols);
int i = 0;
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];
}
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param val is PIVector<Type> of PIVector, which creates matrix
*/
PIMathMatrix(const PIVector<PIVector<Type> > &val) {
if (!val.isEmpty()) {
_V2D::resize(val.size(), val[0].size());
@@ -803,6 +893,11 @@ public:
}
}
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param val is PIVector2D<Type>, which creates matrix
*/
PIMathMatrix(const PIVector2D<Type> &val) {
if (!val.isEmpty()) {
_V2D::resize(val.rows(), val.cols());
@@ -810,191 +905,194 @@ public:
}
}
/**
* @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @return identity matrix of type PIMathMatrix
*/
/**
* @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @return identity matrix of type PIMathMatrix
*/
static _CMatrix identity(const uint cols, const uint rows) {
_CMatrix tm(cols, rows);
for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Creates a matrix whose row equal to vector
*
* @param val is the vector type PIMathVector
* @return identity matrix by vector
*/
/**
* @brief Creates a row matrix of every element that is equal to every element of the vector
*
* @param val is the vector type PIMathVector
* @return row matrix of every element that is equal to every element of the vector
*/
static _CMatrix matrixRow(const PIMathVector<Type> &val) { return _CMatrix(val.size(), 1, val.toVector()); }
/**
* @brief Creates a matrix whose column equal to vector
*
* @param val is the vector type PIMathVector
* @return identity matrix by vector
*/
* @brief Creates a column matrix of every element that is equal to every element of the vector
*
* @param val is the vector type PIMathVector
* @return column matrix of every element that is equal to every element of the vector
*/
static _CMatrix matrixCol(const PIMathVector<Type> &val) { return _CMatrix(1, val.size(), val.toVector()); }
/**
* @brief Set the selected column in matrix
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
* @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix
* or index larger than the number of columns otherwise there will be a SEGFAULT
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) _V2D::element(i, index) = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
* @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix,
* or index larger than the number of rows otherwise there will be a SEGFAULT
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix &setRow(uint index, const _CMCol &v) {
PIMM_FOR_C(i) _V2D::element(index, i) = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
* @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns,
* otherwise there will be a SEGFAULT
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapCols(uint r0, uint r1) {
PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); }
return *this;
}
/**
* @brief Method which changes selected columns in a matrix
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
/**
* @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows,
* otherwise there will be a SEGFAULT
*
* @param c0 is the number of the first selected row
* @param c1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint c0, uint c1) {
PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); }
return *this;
}
/**
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix &fill(const Type &v) {
PIMM_FOR_A(i) _V2D::mat[i] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const { return _V2D::cols_ == _V2D::rows_; }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identity, else false
*/
bool isIdentity() const {
PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix elements equal to zero, else false
*/
bool isNull() const {
PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if matrix is empty
*
* @return true if matrix is valid, else false
*/
* @brief Method which checks if matrix is empty
*
* @return true if matrix is valid, else false
*/
bool isValid() const { return !PIVector2D<Type>::isEmpty(); }
/**
* @brief Matrix assignment to matrix "v"
*
* @param v matrix for the assigment
* @return matrix equal with v
*/
* @brief Matrix assignment to matrix "v"
*
* @param v matrix for the assigment
* @return matrix equal with v
*/
_CMatrix &operator=(const PIVector<PIVector<Type> > &v) {
*this = _CMatrix(v);
return *this;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
bool operator==(const _CMatrix &sm) const {
PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false;
return true;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; }
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; }
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; }
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator/=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] /= v; }
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator-() const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i];
@@ -1002,11 +1100,11 @@ public:
}
/**
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] += sm.mat[i];
@@ -1014,11 +1112,11 @@ public:
}
/**
* @brief Matrix subtraction
*
* @param sm is matrix subtractor
* @return the result of matrix subtraction
*/
* @brief Matrix subtraction
*
* @param sm is matrix subtractor
* @return the result of matrix subtraction
*/
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i];
@@ -1026,11 +1124,11 @@ public:
}
/**
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator*(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] *= v;
@@ -1038,11 +1136,11 @@ public:
}
/**
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator/(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] /= v;
@@ -1050,10 +1148,10 @@ public:
}
/**
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
* @brief Determinant of the matrix is calculated. Works only with square matrix
*
* @return matrix determinant
*/
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
@@ -1070,10 +1168,10 @@ public:
}
/**
* @brief Trace of the matrix is calculated
*
* @return matrix trace
*/
* @brief Trace of the matrix is calculated. Works only with square matrix
*
* @return matrix trace
*/
Type trace(bool *ok = 0) const {
Type ret = Type(0);
if (!isSquare()) {
@@ -1088,10 +1186,10 @@ public:
}
/**
* @brief Transforming matrix to upper triangular
*
* @return transformed upper triangular matrix
*/
* @brief Transforming matrix to upper triangular. Works only with square matrix
*
* @return copy of transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
@@ -1130,10 +1228,10 @@ public:
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
* @brief Matrix inversion operation. Works only with square matrix
*
* @return copy of inverted matrix
*/
_CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
@@ -1190,10 +1288,10 @@ public:
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
@@ -1201,10 +1299,10 @@ public:
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrix transposed() const {
_CMatrix tm(_V2D::rows_, _V2D::cols_);
PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c);
@@ -1218,6 +1316,13 @@ template<typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PICout type
* @param m PIMathMatrix type
* @return bitwise left PICout
*/
template<typename Type>
inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
s << "Matrix{";
@@ -1232,12 +1337,26 @@ inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
return s;
}
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PIByteArray type
* @param v PIMathMatrix type
* @return bitwise left PIByteArray
*/
template<typename Type>
inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix<Type> &v) {
s << (const PIVector2D<Type> &) v;
return s;
}
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PIByteArray type
* @param v PIMathMatrix type
* @return bitwise right PIByteArray
*/
template<typename Type>
inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
s >> (PIVector2D<Type> &) v;
@@ -1246,6 +1365,13 @@ inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
/**
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<typename Type>
inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
const PIMathMatrix<Type> &sm) {
@@ -1265,6 +1391,13 @@ inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
}
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
/**
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sv second vector multiplier
* @return vector that is the result of multiplication
*/
template<typename Type>
inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
const PIMathVector<Type> &sv) {
@@ -1283,6 +1416,13 @@ inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
/**
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param sv first vector multiplier
* @param fm second matrix multiplier
* @return vector that is the result of multiplication
*/
template<typename Type>
inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
const PIMathMatrix<Type> &fm) {
@@ -1299,6 +1439,13 @@ inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
}
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
/**
* @brief Multiplying value of type Type and matrix
*
* @param x first multiplier of type Type
* @param fm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<typename Type>
inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v) {
return v * x;
@@ -1307,6 +1454,12 @@ inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v)
typedef PIMathMatrix<int> PIMathMatrixi;
typedef PIMathMatrix<double> PIMathMatrixd;
/**
* @brief Searching hermitian matrix
*
* @param m conjugate transpose matrix
* @return result of the hermitian
*/
template<typename T>
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > &m) {
PIMathMatrix<complex<T> > ret(m);

View File

@@ -34,24 +34,22 @@ bool cmpMatrixWithValue(PIMathMatrix<double> matrix, double val)
TEST(PIMathMatrix_Test, identity)
{
PIMathMatrix<double> origMatr;
PIMathMatrix<double> matrix;
int i;
bool b;
matrix = origMatr.identity(3, 3);
for(i = 0; i < 3; i++)
{
if(matrix[i][i] == 1.0)
{
b = true;
}
else
{
b = false;
break;
auto matrix = PIMathMatrix<double>::identity(3, 3);
for(int i = 0; i < 3; i++){
if(matrix[i][i] != 1.0){
ASSERT_TRUE(false);
}
}
ASSERT_TRUE(b);
for(int i = 0; i < 3; i++){
for(int j = 0; j < 3; j++){
if(i != j){
if(matrix[i][j] != 0.0){
ASSERT_TRUE(false);
}
}
}
}
ASSERT_TRUE(true);
}
TEST(PIMathMatrix_Test, matrixRow)

View File

@@ -38,31 +38,22 @@ bool cmpMatrixWithValue(PIMathMatrixT<rows, cols, double> matrix, double val)
TEST(PIMathMatrixT_Test, identity)
{
PIMathMatrixT<rows, cols, double> matr;
PIMathMatrixT<rows, cols, double> matrix;
double d;
double i = 1.0;
bool a;
bool output;
matrix = matr.identity();
d = matrix.determinant();
uint j;
for(j = 0; j < cols; j++)
{
if(matrix.at(i, i) == 1.0) a = true;
else
{
a = false;
break;
auto matrix = PIMathMatrixT<rows, cols, double>::identity();
for(int i = 0; i < 3; i++){
if(matrix[i][i] != 1.0){
ASSERT_TRUE(false);
}
}
if((i == d) && (a == true)){
output = true;
for(int i = 0; i < 3; i++){
for(int j = 0; j < 3; j++){
if(i != j){
if(matrix[i][j] != 0.0){
ASSERT_TRUE(false);
}
}
}
}
else{
output = false;
}
ASSERT_TRUE(output);
ASSERT_TRUE(true);
}
TEST(PIMathMatrixT_Test, at)