Init commit
This commit is contained in:
53
CMakeLists.txt
Normal file
53
CMakeLists.txt
Normal file
@@ -0,0 +1,53 @@
|
||||
cmake_minimum_required(VERSION 3.13)
|
||||
project(concurrent_lib VERSION 1.0 LANGUAGES CXX)
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
get_directory_property(IS_SUBPROJECT PARENT_DIRECTORY)
|
||||
|
||||
option(CONCURRENT_TESTING "Enable build tests for concurrent lib" ON)
|
||||
option(CONCURRENT_EXAMPLES "Enable build examples for concurrent lib" ON)
|
||||
|
||||
add_compile_options(
|
||||
-Werror
|
||||
|
||||
-Wall
|
||||
|
||||
-Wcast-align
|
||||
-Wcast-qual
|
||||
-Wconversion
|
||||
-Wenum-compare
|
||||
-Wfloat-equal
|
||||
-Wnon-virtual-dtor
|
||||
-Wold-style-cast
|
||||
-Woverloaded-virtual
|
||||
-Wredundant-decls
|
||||
-Wsign-promo
|
||||
)
|
||||
|
||||
if(NOT CMAKE_CXX_EXTENSIONS)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
endif()
|
||||
|
||||
file(GLOB SOURCES src/*.cpp)
|
||||
add_library(concurrent ${SOURCES})
|
||||
target_include_directories(concurrent INTERFACE
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
|
||||
$<INSTALL_INTERFACE:include>
|
||||
)
|
||||
|
||||
install(DIRECTORY include DESTINATION ${CMAKE_INSTALL_PREFIX})
|
||||
install(TARGETS concurrent EXPORT ConcurrentConfig)
|
||||
install(EXPORT ConcurrentConfig DESTINATION lib/cmake/Concurrent)
|
||||
|
||||
if(NOT CONCURRENT_TESTING)
|
||||
message(STATUS "Concurrent tests is OFF")
|
||||
elseif(IS_SUBPROJECT)
|
||||
message(STATUS "Concurrent tests is OFF (lib is subproject)")
|
||||
else()
|
||||
add_subdirectory(test)
|
||||
if (TARGET concurrent_test)
|
||||
message(STATUS "Concurrent tests is ON")
|
||||
else()
|
||||
message(STATUS "Concurrent tests is OFF (GTest not found)")
|
||||
endif()
|
||||
endif()
|
||||
272
include/piblockingdequeue.h
Normal file
272
include/piblockingdequeue.h
Normal file
@@ -0,0 +1,272 @@
|
||||
/*
|
||||
PIP - Platform Independent Primitives
|
||||
|
||||
Stephan Fomenko
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef PIBLOCKINGDEQUEUE_H
|
||||
#define PIBLOCKINGDEQUEUE_H
|
||||
|
||||
#include <queue>
|
||||
#include <condition_variable>
|
||||
|
||||
/**
|
||||
* @brief A Queue that supports operations that wait for the queue to become non-empty when retrieving an element, and
|
||||
* wait for space to become available in the queue when storing an element.
|
||||
*/
|
||||
template <typename T, template<typename = T, typename...> class Queue_ = std::deque, typename ConditionVariable_ = std::condition_variable>
|
||||
class PIBlockingDequeue {
|
||||
public:
|
||||
typedef Queue_<T> QueueType;
|
||||
|
||||
/**
|
||||
* @brief Constructor
|
||||
*/
|
||||
explicit PIBlockingDequeue(size_t capacity = SIZE_MAX)
|
||||
: cond_var_add(new ConditionVariable_()), cond_var_rem(new ConditionVariable_()), max_size(capacity) { }
|
||||
|
||||
/**
|
||||
* @brief Copy constructor. Initialize queue with copy of other container elements. Not thread-safe for other queue.
|
||||
*/
|
||||
template<typename Iterable,
|
||||
typename std::enable_if<!std::is_arithmetic<Iterable>::value, int>::type = 0>
|
||||
explicit PIBlockingDequeue(const Iterable& other): PIBlockingDequeue() {
|
||||
mutex.lock();
|
||||
for (const T& t : other) data_queue.push_back(t);
|
||||
mutex.unlock();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Thread-safe copy constructor. Initialize queue with copy of other queue elements.
|
||||
*/
|
||||
explicit PIBlockingDequeue(PIBlockingDequeue<T>& other): PIBlockingDequeue() {
|
||||
other.mutex.lock();
|
||||
mutex.lock();
|
||||
max_size = other.max_size;
|
||||
data_queue = other.data_queue;
|
||||
mutex.unlock();
|
||||
other.mutex.unlock();
|
||||
}
|
||||
|
||||
~PIBlockingDequeue() {
|
||||
delete cond_var_add;
|
||||
delete cond_var_rem;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inserts the specified element into this queue, waiting if necessary for space to become available.
|
||||
*
|
||||
* @param v the element to add
|
||||
*/
|
||||
template<typename Type>
|
||||
void put(Type && v) {
|
||||
mutex.lock();
|
||||
cond_var_rem->wait(mutex, [&]() { return data_queue.size() < max_size; });
|
||||
data_queue.push_back(std::forward<Type>(v));
|
||||
mutex.unlock();
|
||||
cond_var_add->notify_one();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inserts the specified element at the end of this queue if it is possible to do so immediately without
|
||||
* exceeding the queue's capacity, returning true upon success and false if this queue is full.
|
||||
*
|
||||
* @param v the element to add
|
||||
* @return true if the element was added to this queue, else false
|
||||
*/
|
||||
template<typename Type>
|
||||
bool offer(Type && v) {
|
||||
mutex.lock();
|
||||
if (data_queue.size() >= max_size) {
|
||||
mutex.unlock();
|
||||
return false;
|
||||
}
|
||||
data_queue.push_back(std::forward<Type>(v));
|
||||
mutex.unlock();
|
||||
cond_var_add->notify_one();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inserts the specified element into this queue, waiting up to the specified wait time if necessary for
|
||||
* space to become available.
|
||||
*
|
||||
* @param v the element to add
|
||||
* @param timeoutMs how long to wait before giving up, in milliseconds
|
||||
* @return true if successful, or false if the specified waiting time elapses before space is available
|
||||
*/
|
||||
template<typename Type>
|
||||
bool offer(Type && v, int timeoutMs) {
|
||||
mutex.lock();
|
||||
bool isOk = cond_var_rem->wait_for(mutex, timeoutMs, [&]() { return data_queue.size() < max_size; } );
|
||||
if (isOk) data_queue.push_back(std::forward<Type>(v));
|
||||
mutex.unlock();
|
||||
if (isOk) cond_var_add->notify_one();
|
||||
return isOk;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Retrieves and removes the head of this queue, waiting if necessary until an element becomes available.
|
||||
*
|
||||
* @return the head of this queue
|
||||
*/
|
||||
T take() {
|
||||
mutex.lock();
|
||||
cond_var_add->wait(mutex, [&]() { return data_queue.size() != 0; });
|
||||
T t = std::move(data_queue.front());
|
||||
data_queue.pop_front();
|
||||
mutex.unlock();
|
||||
cond_var_rem->notify_one();
|
||||
return t;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Retrieves and removes the head of this queue, waiting up to the specified wait time if necessary for an
|
||||
* element to become available.
|
||||
*
|
||||
* @param timeoutMs how long to wait before giving up, in milliseconds
|
||||
* @param defaultVal value, which returns if the specified waiting time elapses before an element is available
|
||||
* @param isOk flag, which indicates result of method execution. It will be set to false if timeout, or true if
|
||||
* return value is retrieved value
|
||||
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
|
||||
*/
|
||||
template<typename Type = T>
|
||||
T poll(int timeoutMs, Type && defaultVal = Type(), bool * isOk = nullptr) {
|
||||
bool isNotEmpty;
|
||||
T t;
|
||||
{
|
||||
std::unique_lock<std::mutex> lc(mutex);
|
||||
isNotEmpty = cond_var_add->wait_for(lc, std::chrono::milliseconds(timeoutMs), [&]() { return data_queue.size() != 0; });
|
||||
|
||||
if (isNotEmpty) {
|
||||
t = std::move(data_queue.front());
|
||||
data_queue.pop_front();
|
||||
} else {
|
||||
t = std::forward<Type>(defaultVal);
|
||||
}
|
||||
}
|
||||
if (isNotEmpty) cond_var_rem->notify_one();
|
||||
if (isOk) *isOk = isNotEmpty;
|
||||
return t;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Retrieves and removes the head of this queue and return it if queue not empty, otherwise return defaultVal.
|
||||
* Do it immediately without waiting.
|
||||
*
|
||||
* @param defaultVal value, which returns if the specified waiting time elapses before an element is available
|
||||
* @param isOk flag, which indicates result of method execution. It will be set to false if timeout, or true if
|
||||
* return value is retrieved value
|
||||
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
|
||||
*/
|
||||
template<typename Type = T>
|
||||
T poll(Type && defaultVal = Type(), bool * isOk = nullptr) {
|
||||
T t;
|
||||
mutex.lock();
|
||||
bool isNotEmpty = data_queue.size() != 0;
|
||||
if (isNotEmpty) {
|
||||
t = std::move(data_queue.front());
|
||||
data_queue.pop_front();
|
||||
} else {
|
||||
t = std::forward<Type>(defaultVal);
|
||||
}
|
||||
mutex.unlock();
|
||||
if (isNotEmpty) cond_var_rem->notifyOne();
|
||||
if (isOk) *isOk = isNotEmpty;
|
||||
return t;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of elements that this queue can ideally (in the absence of memory or resource
|
||||
* constraints) contains. This is always equal to the initial capacity of this queue less the current size of this queue.
|
||||
*
|
||||
* @return the capacity
|
||||
*/
|
||||
size_t capacity() {
|
||||
size_t c;
|
||||
mutex.lock();
|
||||
c = max_size;
|
||||
mutex.unlock();
|
||||
return c;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of additional elements that this queue can ideally (in the absence of memory or resource
|
||||
* constraints) accept. This is always equal to the initial capacity of this queue less the current size of this queue.
|
||||
*
|
||||
* @return the remaining capacity
|
||||
*/
|
||||
size_t remainingCapacity() {
|
||||
mutex.lock();
|
||||
size_t c = max_size - data_queue.size();
|
||||
mutex.unlock();
|
||||
return c;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of elements in this collection.
|
||||
*/
|
||||
size_t size() {
|
||||
mutex.lock();
|
||||
size_t s = data_queue.size();
|
||||
mutex.unlock();
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Removes all available elements from this queue and adds them to other given queue.
|
||||
*/
|
||||
template<typename Appendable>
|
||||
size_t drainTo(Appendable& other, size_t maxCount = SIZE_MAX) {
|
||||
mutex.lock();
|
||||
size_t count = maxCount > data_queue.size() ? data_queue.size() : maxCount;
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
other.push_back(std::move(data_queue.front()));
|
||||
data_queue.pop_front();
|
||||
}
|
||||
mutex.unlock();
|
||||
return count;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Removes all available elements from this queue and adds them to other given queue.
|
||||
*/
|
||||
size_t drainTo(PIBlockingDequeue<T>& other, size_t maxCount = SIZE_MAX) {
|
||||
mutex.lock();
|
||||
other.mutex.lock();
|
||||
size_t count = maxCount > data_queue.size() ? data_queue.size() : maxCount;
|
||||
size_t otherRemainingCapacity = other.max_size - data_queue.size();
|
||||
if (count > otherRemainingCapacity) count = otherRemainingCapacity;
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
other.data_queue.push_back(std::move(data_queue.front()));
|
||||
data_queue.pop_front();
|
||||
}
|
||||
other.mutex.unlock();
|
||||
mutex.unlock();
|
||||
return count;
|
||||
}
|
||||
|
||||
protected:
|
||||
std::mutex mutex;
|
||||
// TODO change to type without point
|
||||
ConditionVariable_ *cond_var_add, *cond_var_rem;
|
||||
QueueType data_queue;
|
||||
size_t max_size;
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif // PIBLOCKINGDEQUEUE_H
|
||||
214
include/piexecutor.h
Normal file
214
include/piexecutor.h
Normal file
@@ -0,0 +1,214 @@
|
||||
/*
|
||||
PIP - Platform Independent Primitives
|
||||
|
||||
Stephan Fomenko
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef PIEXECUTOR_H
|
||||
#define PIEXECUTOR_H
|
||||
|
||||
#include "piblockingdequeue.h"
|
||||
#include <atomic>
|
||||
#include <future>
|
||||
|
||||
/**
|
||||
* @brief Wrapper for custom invoke operator available function types.
|
||||
* @note Source from: "Энтони Уильямс, Параллельное программирование на С++ в действии. Практика разработки многопоточных
|
||||
* программ. Пер. с англ. Слинкин А. А. - M.: ДМК Пресс, 2012 - 672c.: ил." (page 387)
|
||||
*/
|
||||
class FunctionWrapper {
|
||||
struct ImplBase {
|
||||
virtual void call() = 0;
|
||||
virtual ~ImplBase() = default;
|
||||
};
|
||||
|
||||
std::unique_ptr<ImplBase> impl;
|
||||
|
||||
template<typename F>
|
||||
struct ImplType: ImplBase {
|
||||
F f;
|
||||
explicit ImplType(F&& f): f(std::forward<F>(f)) {}
|
||||
void call() final { f(); }
|
||||
};
|
||||
public:
|
||||
template<typename F, typename = std::enable_if<!std::is_same<F, FunctionWrapper>::value> >
|
||||
explicit FunctionWrapper(F&& f): impl(new ImplType<F>(std::forward<F>(f))) {}
|
||||
|
||||
void operator()() { impl->call(); }
|
||||
|
||||
explicit operator bool() const noexcept { return static_cast<bool>(impl); }
|
||||
|
||||
FunctionWrapper() = default;
|
||||
FunctionWrapper(FunctionWrapper&& other) noexcept : impl(std::move(other.impl)) {}
|
||||
FunctionWrapper& operator=(FunctionWrapper&& other) noexcept {
|
||||
impl = std::move(other.impl);
|
||||
return *this;
|
||||
}
|
||||
|
||||
FunctionWrapper(const FunctionWrapper& other) = delete;
|
||||
FunctionWrapper& operator=(const FunctionWrapper&) = delete;
|
||||
};
|
||||
|
||||
template <typename Thread_ = std::thread, typename Dequeue_ = PIBlockingDequeue<FunctionWrapper>>
|
||||
class PIThreadPoolExecutorTemplate {
|
||||
protected:
|
||||
enum thread_command {
|
||||
run,
|
||||
shutdown_c,
|
||||
shutdown_now
|
||||
};
|
||||
|
||||
public:
|
||||
explicit PIThreadPoolExecutorTemplate(size_t corePoolSize = 1) : thread_command_(thread_command::run) { makePool(corePoolSize); }
|
||||
|
||||
virtual ~PIThreadPoolExecutorTemplate() {
|
||||
shutdownNow();
|
||||
awaitTermination(1000);
|
||||
while (threadPool.size() > 0) {
|
||||
auto thread = threadPool.back();
|
||||
threadPool.pop_back();
|
||||
delete thread;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename FunctionType>
|
||||
std::future<typename std::result_of<FunctionType()>::type> submit(FunctionType&& callable) {
|
||||
typedef typename std::result_of<FunctionType()>::type ResultType;
|
||||
|
||||
if (thread_command_ == thread_command::run) {
|
||||
std::packaged_task<ResultType()> callable_task(std::forward<FunctionType>(callable));
|
||||
auto future = callable_task.get_future();
|
||||
FunctionWrapper functionWrapper(callable_task);
|
||||
taskQueue.offer(std::move(functionWrapper));
|
||||
return future;
|
||||
} else {
|
||||
return std::future<ResultType>();
|
||||
}
|
||||
}
|
||||
|
||||
template<typename FunctionType>
|
||||
void execute(FunctionType&& runnable) {
|
||||
if (thread_command_ == thread_command::run) {
|
||||
FunctionWrapper function_wrapper(std::forward<FunctionType>(runnable));
|
||||
taskQueue.offer(std::move(function_wrapper));
|
||||
}
|
||||
}
|
||||
|
||||
void shutdown() {
|
||||
thread_command_ = thread_command::shutdown_c;
|
||||
}
|
||||
|
||||
void shutdownNow() {
|
||||
thread_command_ = thread_command::shutdown_now;
|
||||
}
|
||||
|
||||
bool isShutdown() const {
|
||||
return thread_command_;
|
||||
}
|
||||
|
||||
bool awaitTermination(int timeoutMs) {
|
||||
using namespace std::chrono;
|
||||
|
||||
auto start_time = high_resolution_clock::now();
|
||||
for (size_t i = 0; i < threadPool.size(); ++i) {
|
||||
int dif = timeoutMs - static_cast<int>(duration_cast<milliseconds>(high_resolution_clock::now() - start_time).count());
|
||||
if (dif < 0) return false;
|
||||
// TODO add wait with timeout
|
||||
threadPool[i]->join();
|
||||
// if (!threadPool[i]->waitFinish(dif)) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
std::atomic<thread_command> thread_command_;
|
||||
Dequeue_ taskQueue;
|
||||
std::vector<Thread_*> threadPool;
|
||||
|
||||
template<typename Function>
|
||||
PIThreadPoolExecutorTemplate(size_t corePoolSize, Function&& onBeforeStart) : thread_command_(thread_command::run) {
|
||||
makePool(corePoolSize, std::forward<Function>(onBeforeStart));
|
||||
}
|
||||
|
||||
void makePool(size_t corePoolSize, std::function<void(Thread_*)>&& onBeforeStart = [](Thread_*){}) {
|
||||
for (size_t i = 0; i < corePoolSize; ++i) {
|
||||
auto* thread = new Thread_([&, i](){
|
||||
do {
|
||||
auto runnable = taskQueue.poll(100);
|
||||
if (runnable) {
|
||||
runnable();
|
||||
}
|
||||
} while (!thread_command_ || taskQueue.size() != 0);
|
||||
});
|
||||
threadPool.push_back(thread);
|
||||
onBeforeStart(thread);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef PIThreadPoolExecutorTemplate<> PIThreadPoolExecutor;
|
||||
|
||||
#ifdef DOXYGEN
|
||||
/**
|
||||
* @brief Thread pools address two different problems: they usually provide improved performance when executing large
|
||||
* numbers of asynchronous tasks, due to reduced per-task invocation overhead, and they provide a means of bounding and
|
||||
* managing the resources, including threads, consumed when executing a collection of tasks.
|
||||
*/
|
||||
class PIThreadPoolExecutor {
|
||||
public:
|
||||
explicit PIThreadPoolExecutor(size_t corePoolSize);
|
||||
|
||||
virtual ~PIThreadPoolExecutor();
|
||||
|
||||
/**
|
||||
* @brief Submits a Runnable task for execution and returns a Future representing that task. The Future's get method
|
||||
* will return null upon successful completion.
|
||||
*
|
||||
* @tparam FunctionType - custom type of function with operator() and return type
|
||||
* @tparam R - derived from FunctionType return type
|
||||
*
|
||||
* @param callable - the task to submit
|
||||
* @return a future representing pending completion of the task
|
||||
*/
|
||||
std::future<R> submit(FunctionType&& callable);
|
||||
|
||||
/**
|
||||
* @brief Executes the given task sometime in the future. The task execute in an existing pooled thread. If the task
|
||||
* cannot be submitted for execution, either because this executor has been shutdown or because its capacity has been
|
||||
* reached.
|
||||
*
|
||||
* @tparam FunctionType - custom type of function with operator() and return type
|
||||
*
|
||||
* @param runnable not empty function for thread pool execution
|
||||
*/
|
||||
void execute(FunctionType&& runnable);
|
||||
|
||||
/**
|
||||
* @brief Initiates an orderly shutdown in which previously submitted tasks are executed, but no new tasks will be
|
||||
* accepted. Invocation has no additional effect if already shut down. This method does not wait for previously
|
||||
* submitted tasks to complete execution. Use awaitTermination to do that.
|
||||
*/
|
||||
void shutdown();
|
||||
|
||||
void shutdownNow();
|
||||
|
||||
bool isShutdown() const;
|
||||
|
||||
bool awaitTermination(int timeoutMs);
|
||||
};
|
||||
#endif //DOXYGEN
|
||||
|
||||
#endif //PIEXECUTOR_H
|
||||
56
readme.md
Normal file
56
readme.md
Normal file
@@ -0,0 +1,56 @@
|
||||
# Concurrent library
|
||||
|
||||
## Requirements
|
||||
|
||||
[GTest v1.10.0](https://github.com/google/googletest/tree/v1.10.x) - "googletest is a testing framework developed by the
|
||||
Testing Technology team with Google's specific requirements and constraints in mind".
|
||||
|
||||
## Options
|
||||
|
||||
- `CONCURRENT_TESTING` - enable build tests
|
||||
- `CONCURRENT_EXAMPLES`- enable build examples
|
||||
|
||||
## Use from another project
|
||||
|
||||
1 Clone project:
|
||||
|
||||
```cmd
|
||||
git clone https://git.shs.tools/zzuummaa/concurrent_lib.git
|
||||
```
|
||||
|
||||
2 Generate cmake files:
|
||||
|
||||
```cmd
|
||||
cd concurrent
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DCMAKE_BUILD_TYPE=Release ..
|
||||
```
|
||||
|
||||
3 Build and install library (use shell with administrative privileges or sudo):
|
||||
|
||||
```cmd
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
## Build tests
|
||||
|
||||
1 Clone GTest:
|
||||
|
||||
```cmd
|
||||
git clone --branch v1.10.x https://github.com/google/googletest.git
|
||||
```
|
||||
|
||||
2 Generate cmake files:
|
||||
|
||||
```cmd
|
||||
cd concurrent
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DCMAKE_BUILD_TYPE=Release ..
|
||||
```
|
||||
3 Build and install library (use shell with administrative privileges or sudo):
|
||||
|
||||
```cmd
|
||||
cmake --build . --target install
|
||||
```
|
||||
0
src/dummy.cpp
Normal file
0
src/dummy.cpp
Normal file
17
test/CMakeLists.txt
Normal file
17
test/CMakeLists.txt
Normal file
@@ -0,0 +1,17 @@
|
||||
project(concurrent_test)
|
||||
|
||||
find_package(GTest 1.10.0 REQUIRED)
|
||||
|
||||
if (GTest_FOUND)
|
||||
file(GLOB TEST_SOURCES src/*.cpp)
|
||||
add_executable(concurrent_test ${TEST_SOURCES})
|
||||
|
||||
# Disable for GTest build
|
||||
target_compile_options(concurrent_test PRIVATE -Wno-sign-compare)
|
||||
|
||||
target_include_directories(concurrent_test PUBLIC include)
|
||||
target_link_libraries(concurrent_test GTest::gtest GTest::gtest_main GTest::gmock GTest::gmock concurrent)
|
||||
add_test(test-1 concurrent_test)
|
||||
|
||||
add_custom_target(check ALL COMMAND concurrent_test)
|
||||
endif()
|
||||
76
test/include/testutil.h
Normal file
76
test/include/testutil.h
Normal file
@@ -0,0 +1,76 @@
|
||||
#ifndef AWRCANFLASHER_TESTUTIL_H
|
||||
#define AWRCANFLASHER_TESTUTIL_H
|
||||
|
||||
#include <future>
|
||||
#include <atomic>
|
||||
|
||||
template<typename T>
|
||||
void print_type_info() {
|
||||
std::cout << typeid(T).name() << " is a "
|
||||
<< (std::is_const<typename std::remove_reference<T>::type>::value ? "const " : "")
|
||||
<< (std::is_lvalue_reference<T>::value ? "lvalue" : "rvalue")
|
||||
<< " reference" << std::endl;
|
||||
}
|
||||
|
||||
/**
|
||||
* Minimum wait thread start, switch context or another interthread communication action time. Increase it if tests
|
||||
* write "Start thread timeout reach!" message. You can reduce it if you want increase test performance.
|
||||
*/
|
||||
const int WAIT_THREAD_TIME_MS = 30;
|
||||
|
||||
const int THREAD_COUNT = 2;
|
||||
|
||||
class TestUtil {
|
||||
public:
|
||||
double threadStartTime;
|
||||
std::atomic_bool isRunning;
|
||||
std::function<void()> adapterFunctionDefault;
|
||||
|
||||
TestUtil() : isRunning(false) {}
|
||||
|
||||
bool createThread(const std::function<void()>& fun = nullptr) {
|
||||
std::function<void()> actualFun = fun == nullptr ? adapterFunctionDefault : fun;
|
||||
|
||||
std::promise<void> start_promise;
|
||||
std::future<void> start_future = start_promise.get_future();
|
||||
std::thread thread([this, &start_promise, actualFun](){
|
||||
isRunning = true;
|
||||
start_promise.set_value();
|
||||
actualFun();
|
||||
});
|
||||
thread.detach();
|
||||
|
||||
auto status = start_future.wait_for(std::chrono::milliseconds(WAIT_THREAD_TIME_MS));
|
||||
if (status == std::future_status::timeout) {
|
||||
std::cout << "Start thread timeout reach!" << std::endl;
|
||||
}
|
||||
start_future.get();
|
||||
return status == std::future_status::ready;
|
||||
}
|
||||
|
||||
// bool waitThread(PIThread* thread_, bool runningStatus = true) {
|
||||
// PITimeMeasurer measurer;
|
||||
// bool isTimeout = !thread_->waitForStart(WAIT_THREAD_TIME_MS);
|
||||
// while (!isRunning) {
|
||||
// isTimeout = WAIT_THREAD_TIME_MS <= measurer.elapsed_m();
|
||||
// if (isTimeout) break;
|
||||
// piUSleep(100);
|
||||
// }
|
||||
//
|
||||
// threadStartTime = measurer.elapsed_m();
|
||||
//
|
||||
// if (isTimeout) piCout << "Start thread timeout reach!";
|
||||
//
|
||||
// if (threadStartTime > 1) {
|
||||
// piCout << "Start time" << threadStartTime << "ms";
|
||||
// } else if (threadStartTime > 0.001) {
|
||||
// piCout << "Start time" << threadStartTime * 1000 << "mcs";
|
||||
// } else {
|
||||
// piCout << "Start time" << threadStartTime * 1000 * 1000 << "ns";
|
||||
// }
|
||||
//
|
||||
// return !isTimeout;
|
||||
// }
|
||||
};
|
||||
|
||||
#endif //AWRCANFLASHER_TESTUTIL_H
|
||||
510
test/src/BlockingDequeueUnitTest.cpp
Normal file
510
test/src/BlockingDequeueUnitTest.cpp
Normal file
@@ -0,0 +1,510 @@
|
||||
#include "gtest/gtest.h"
|
||||
#include "gmock/gmock.h"
|
||||
#include "testutil.h"
|
||||
#include "piblockingdequeue.h"
|
||||
|
||||
using ::testing::_;
|
||||
using ::testing::Return;
|
||||
using ::testing::Eq;
|
||||
using ::testing::Ne;
|
||||
using ::testing::Matcher;
|
||||
using ::testing::Expectation;
|
||||
using ::testing::Sequence;
|
||||
using ::testing::NiceMock;
|
||||
|
||||
class MockConditionVar {
|
||||
public:
|
||||
bool isWaitCalled = false;
|
||||
bool isWaitForCalled = false;
|
||||
bool isTrueCondition = false;
|
||||
int timeout = -1;
|
||||
|
||||
MOCK_METHOD1(wait, void(std::mutex&));
|
||||
MOCK_METHOD2(wait, void(std::mutex&, const std::function<bool()>&));
|
||||
MOCK_METHOD2(wait_for, bool(std::mutex&, int));
|
||||
MOCK_METHOD3(wait_for, bool(std::mutex&, int, const std::function<bool()>&));
|
||||
MOCK_METHOD0(notify_one, void());
|
||||
};
|
||||
|
||||
struct QueueElement {
|
||||
bool is_empty;
|
||||
int value;
|
||||
int copy_count;
|
||||
|
||||
QueueElement(): is_empty(true), value(0), copy_count(0) { }
|
||||
explicit QueueElement(int value): is_empty(false), value(value), copy_count(0) { }
|
||||
|
||||
QueueElement(const QueueElement& other) {
|
||||
this->is_empty = other.is_empty;
|
||||
this->value = other.value;
|
||||
this->copy_count = 0;
|
||||
const_cast<int&>(other.copy_count)++;
|
||||
}
|
||||
QueueElement(QueueElement&& other) noexcept : QueueElement() {
|
||||
std::swap(is_empty, other.is_empty);
|
||||
std::swap(value, other.value);
|
||||
std::swap(copy_count, other.copy_count);
|
||||
}
|
||||
|
||||
bool operator==(const QueueElement &rhs) const {
|
||||
return is_empty == rhs.is_empty &&
|
||||
value == rhs.value;
|
||||
}
|
||||
|
||||
bool operator!=(const QueueElement &rhs) const {
|
||||
return !(rhs == *this);
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const QueueElement& el) {
|
||||
return os << "{ is_empty:" << el.is_empty << ", value:" << el.value << ", copy_count:" << el.copy_count << " }";
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class MockDequeBase {
|
||||
public:
|
||||
MOCK_METHOD1_T(push_back_rval, void(T));
|
||||
MOCK_METHOD1_T(push_back, void(const T&));
|
||||
MOCK_METHOD0(size, size_t());
|
||||
MOCK_METHOD0_T(front, T());
|
||||
MOCK_METHOD0(pop_front, void());
|
||||
|
||||
void push_back(T&& t) {
|
||||
push_back_rval(t);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class MockDeque: public NiceMock<MockDequeBase<T>> {};
|
||||
|
||||
class PIBlockingDequeuePrepare: public PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> {
|
||||
public:
|
||||
typedef PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> SuperClass;
|
||||
|
||||
explicit PIBlockingDequeuePrepare(size_t capacity = SIZE_MAX): SuperClass(capacity) { }
|
||||
|
||||
template<typename Iterable,
|
||||
typename std::enable_if<!std::is_arithmetic<Iterable>::value, int>::type = 0>
|
||||
explicit PIBlockingDequeuePrepare(const Iterable& other): SuperClass(other) { }
|
||||
|
||||
MockConditionVar* getCondVarAdd() { return this->cond_var_add; }
|
||||
MockConditionVar* getCondVarRem() { return this->cond_var_rem; }
|
||||
MockDeque<QueueElement>& getQueue() { return this->data_queue; }
|
||||
size_t getMaxSize() { return max_size; }
|
||||
};
|
||||
|
||||
class BlockingDequeueUnitTest: public ::testing::Test {
|
||||
public:
|
||||
int timeout = 100;
|
||||
size_t capacity;
|
||||
PIBlockingDequeuePrepare dequeue;
|
||||
QueueElement element;
|
||||
|
||||
BlockingDequeueUnitTest(): capacity(1), dequeue(capacity), element(11) {}
|
||||
|
||||
void offer2_is_wait_predicate(bool isCapacityReach);
|
||||
void put_is_wait_predicate(bool isCapacityReach);
|
||||
void take_is_wait_predicate(bool isEmpty);
|
||||
};
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, construct_default_is_max_size_eq_size_max) {
|
||||
PIBlockingDequeuePrepare dequeue;
|
||||
ASSERT_EQ(dequeue.getMaxSize(), SIZE_MAX);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, construct_from_constant_is_max_size_eq_capacity) {
|
||||
PIBlockingDequeuePrepare dequeue(2);
|
||||
ASSERT_EQ(dequeue.getMaxSize(), 2);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, construct_from_capacity_is_max_size_eq_capacity) {
|
||||
ASSERT_EQ(dequeue.getMaxSize(), capacity);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, construct_from_iterable) {
|
||||
std::vector<QueueElement> iterable;
|
||||
iterable.emplace_back(11);
|
||||
iterable.emplace_back(22);
|
||||
PIBlockingDequeuePrepare dequeue(iterable);
|
||||
}
|
||||
|
||||
void BlockingDequeueUnitTest::put_is_wait_predicate(bool isCapacityReach) {
|
||||
std::function<bool()> conditionVarPredicate;
|
||||
EXPECT_CALL(*dequeue.getCondVarRem(), wait(_, _))
|
||||
.WillOnce([&](std::mutex& m, const std::function<bool()>& predicate){ conditionVarPredicate = predicate; });
|
||||
dequeue.put(element);
|
||||
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
|
||||
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_true) {
|
||||
put_is_wait_predicate(false);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_false_when_capacity_reach) {
|
||||
put_is_wait_predicate(true);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_copy) {
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
|
||||
.WillOnce(Return());
|
||||
dequeue.put(element);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_move) {
|
||||
QueueElement copyElement = element;
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
|
||||
.WillOnce(Return());
|
||||
dequeue.put(std::move(copyElement));
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, put_is_notify_about_insert) {
|
||||
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
|
||||
.WillOnce(Return());
|
||||
dequeue.put(element);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_copy) {
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
|
||||
.WillOnce(Return());
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity - 1));
|
||||
dequeue.offer(element);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_move) {
|
||||
QueueElement copyElement = element;
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
|
||||
.WillOnce(Return());
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity - 1));
|
||||
dequeue.offer(std::move(copyElement));
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_not_insert_when_capacity_reach) {
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back(_))
|
||||
.Times(0);
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity));
|
||||
dequeue.offer(element);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_true_when_insert) {
|
||||
ON_CALL(dequeue.getQueue(), push_back(_))
|
||||
.WillByDefault(Return());
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity - 1));
|
||||
ASSERT_TRUE(dequeue.offer(element));
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_false_when_capacity_reach) {
|
||||
ON_CALL(dequeue.getQueue(), push_back(_))
|
||||
.WillByDefault(Return());
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity));
|
||||
ASSERT_FALSE(dequeue.offer(element));
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_notify_about_insert) {
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity - 1));
|
||||
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
|
||||
.WillOnce(Return());
|
||||
dequeue.offer(element);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer1_is_not_notify_about_insert_when_capacity_reach) {
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(capacity));
|
||||
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
|
||||
.Times(0);
|
||||
dequeue.offer(element);
|
||||
}
|
||||
|
||||
void BlockingDequeueUnitTest::offer2_is_wait_predicate(bool isCapacityReach) {
|
||||
std::function<bool()> conditionVarPredicate;
|
||||
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
|
||||
.WillOnce([&](std::mutex& m, int timeout_, const std::function<bool()>& predicate) {
|
||||
conditionVarPredicate = predicate;
|
||||
return isCapacityReach;
|
||||
});
|
||||
dequeue.offer(element, timeout);
|
||||
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
|
||||
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_true) {
|
||||
offer2_is_wait_predicate(false);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_false_when_capacity_reach) {
|
||||
offer2_is_wait_predicate(true);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_copy) {
|
||||
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
|
||||
.WillOnce(Return(true));
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
|
||||
.WillOnce(Return());
|
||||
dequeue.offer(element, timeout);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_move) {
|
||||
QueueElement copyElement = element;
|
||||
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
|
||||
.WillOnce(Return(true));
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
|
||||
.WillOnce(Return());
|
||||
dequeue.offer(std::move(copyElement), timeout);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_not_insert_when_timeout) {
|
||||
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
|
||||
.WillOnce(Return(false));
|
||||
EXPECT_CALL(dequeue.getQueue(), push_back(_))
|
||||
.Times(0);
|
||||
dequeue.offer(element, timeout);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_true_when_insert) {
|
||||
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
|
||||
.WillByDefault(Return(true));
|
||||
ASSERT_TRUE(dequeue.offer(element, timeout));
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_false_when_timeout) {
|
||||
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
|
||||
.WillByDefault(Return(false));
|
||||
ASSERT_FALSE(dequeue.offer(element, timeout));
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_notify_about_insert) {
|
||||
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
|
||||
.WillByDefault(Return(true));
|
||||
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
|
||||
.WillOnce(Return());
|
||||
dequeue.offer(element, timeout);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, offer2_is_not_notify_about_insert_when_timeout) {
|
||||
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
|
||||
.WillByDefault(Return(false));
|
||||
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
|
||||
.Times(0);
|
||||
dequeue.offer(element, timeout);
|
||||
}
|
||||
|
||||
void BlockingDequeueUnitTest::take_is_wait_predicate(bool isEmpty) {
|
||||
std::function<bool()> conditionVarPredicate;
|
||||
EXPECT_CALL(*dequeue.getCondVarAdd(), wait(_, _))
|
||||
.WillOnce([&](std::mutex& m, const std::function<bool()>& predicate) { conditionVarPredicate = predicate; });
|
||||
dequeue.take();
|
||||
|
||||
ON_CALL(dequeue.getQueue(), size)
|
||||
.WillByDefault(Return(isEmpty ? 0 : 1));
|
||||
ASSERT_EQ(conditionVarPredicate(), !isEmpty);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_true) {
|
||||
take_is_wait_predicate(false);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_false_when_queue_empty) {
|
||||
take_is_wait_predicate(true);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, take_is_get_and_remove) {
|
||||
Expectation front = EXPECT_CALL(dequeue.getQueue(), front())
|
||||
.WillOnce(Return(element));
|
||||
EXPECT_CALL(dequeue.getQueue(), pop_front())
|
||||
.After(front)
|
||||
.WillOnce(Return());
|
||||
|
||||
QueueElement takenElement = dequeue.take();
|
||||
ASSERT_EQ(element, takenElement);
|
||||
}
|
||||
|
||||
TEST_F(BlockingDequeueUnitTest, take_is_notify_about_remove) {
|
||||
EXPECT_CALL(*dequeue.getCondVarRem(), notify_one)
|
||||
.WillOnce(Return());
|
||||
dequeue.take();
|
||||
}
|
||||
|
||||
/*
|
||||
// TODO change take_is_block_when_empty to prevent segfault
|
||||
TEST(DISABLED_BlockingDequeueUnitTest, take_is_block_when_empty) {
|
||||
size_t capacity = 1;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
// May cause segfault because take front of empty queue
|
||||
dequeue.take();
|
||||
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
|
||||
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, take_is_not_block_when_not_empty) {
|
||||
size_t capacity = 1;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
dequeue.take();
|
||||
|
||||
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
|
||||
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, take_is_value_eq_to_offer_value) {
|
||||
size_t capacity = 1;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.take(), 111);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, take_is_last) {
|
||||
size_t capacity = 10;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
EXPECT_TRUE(dequeue.offer(111));
|
||||
EXPECT_TRUE(dequeue.offer(222));
|
||||
ASSERT_EQ(dequeue.take(), 111);
|
||||
ASSERT_EQ(dequeue.take(), 222);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_is_not_block_when_empty) {
|
||||
size_t capacity = 1;
|
||||
bool isOk;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.poll(111, &isOk);
|
||||
EXPECT_FALSE(dequeue.getCondVarAdd()->isWaitForCalled);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_is_default_value_when_empty) {
|
||||
size_t capacity = 1;
|
||||
bool isOk;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
ASSERT_EQ(dequeue.poll(111, &isOk), 111);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_is_offer_value_when_not_empty) {
|
||||
size_t capacity = 1;
|
||||
bool isOk;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.poll(-1, &isOk), 111);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_timeouted_is_block_when_empty) {
|
||||
size_t capacity = 1;
|
||||
int timeout = 11;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.poll(timeout, 111);
|
||||
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
|
||||
EXPECT_EQ(timeout, dequeue.getCondVarAdd()->timeout);
|
||||
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_timeouted_is_default_value_when_empty) {
|
||||
size_t capacity = 1;
|
||||
int timeout = 11;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
ASSERT_EQ(dequeue.poll(timeout, 111), 111);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_timeouted_is_not_block_when_not_empty) {
|
||||
size_t capacity = 1;
|
||||
int timeout = 11;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
dequeue.poll(timeout, -1);
|
||||
|
||||
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
|
||||
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_timeouted_is_offer_value_when_not_empty) {
|
||||
size_t capacity = 1;
|
||||
int timeout = 11;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.poll(timeout, -1), 111);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, poll_timeouted_is_last) {
|
||||
size_t capacity = 10;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
dequeue.offer(222);
|
||||
ASSERT_EQ(dequeue.poll(10, -1), 111);
|
||||
ASSERT_EQ(dequeue.poll(10, -1), 222);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, capacity_is_eq_constructor_capacity) {
|
||||
size_t capacity = 10;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
ASSERT_EQ(dequeue.capacity(), capacity);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, remainingCapacity_is_dif_of_capacity_and_size) {
|
||||
size_t capacity = 2;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
ASSERT_EQ(dequeue.remainingCapacity(), capacity);
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.remainingCapacity(), capacity - 1);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, remainingCapacity_is_zero_when_capacity_reach) {
|
||||
size_t capacity = 1;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.remainingCapacity(), 0);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, size_is_eq_to_num_of_elements) {
|
||||
size_t capacity = 1;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
ASSERT_EQ(dequeue.size(), 0);
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.size(), 1);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, size_is_eq_to_capacity_when_capacity_reach) {
|
||||
size_t capacity = 1;
|
||||
PIBlockingDequeuePrepare<int> dequeue(capacity);
|
||||
dequeue.offer(111);
|
||||
dequeue.offer(111);
|
||||
ASSERT_EQ(dequeue.size(), capacity);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, drainTo_is_elements_moved) {
|
||||
size_t capacity = 10;
|
||||
std::deque<int> refDeque;
|
||||
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
|
||||
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
|
||||
PIBlockingDequeuePrepare<int>::QueueType deque;
|
||||
blockingDequeue.drainTo(deque);
|
||||
ASSERT_EQ(blockingDequeue.size(), 0);
|
||||
// FIXME
|
||||
// ASSERT_TRUE(deque == refDeque);
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_size_when_all_moved) {
|
||||
size_t capacity = 10;
|
||||
std::deque<int> refDeque;
|
||||
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
|
||||
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
|
||||
PIBlockingDequeuePrepare<int>::QueueType deque;
|
||||
ASSERT_EQ(blockingDequeue.drainTo(deque), refDeque.size());
|
||||
}
|
||||
|
||||
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_maxCount) {
|
||||
size_t capacity = 10;
|
||||
std::deque<int> refDeque;
|
||||
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
|
||||
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
|
||||
PIBlockingDequeuePrepare<int>::QueueType deque;
|
||||
ASSERT_EQ(blockingDequeue.drainTo(deque, refDeque.size() - 1), refDeque.size() - 1);
|
||||
}
|
||||
*/
|
||||
58
test/src/ExecutorIntegrationTest.cpp
Normal file
58
test/src/ExecutorIntegrationTest.cpp
Normal file
@@ -0,0 +1,58 @@
|
||||
#include "gtest/gtest.h"
|
||||
#include "testutil.h"
|
||||
#include "piexecutor.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace chrono;
|
||||
|
||||
TEST(ExcutorIntegrationTest, execute_is_runnable_invoke) {
|
||||
std::mutex m;
|
||||
int invokedRunnables = 0;
|
||||
PIThreadPoolExecutor executorService(1);
|
||||
executorService.execute([&]() {
|
||||
m.lock();
|
||||
invokedRunnables++;
|
||||
m.unlock();
|
||||
});
|
||||
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
|
||||
m.lock();
|
||||
ASSERT_EQ(invokedRunnables, 1);
|
||||
m.unlock();
|
||||
}
|
||||
|
||||
TEST(ExcutorIntegrationTest, execute_is_not_execute_after_shutdown) {
|
||||
volatile bool isRunnableInvoke = false;
|
||||
PIThreadPoolExecutor executorService(1);
|
||||
executorService.shutdown();
|
||||
executorService.execute([&]() {
|
||||
isRunnableInvoke = true;
|
||||
});
|
||||
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
|
||||
ASSERT_FALSE(isRunnableInvoke);
|
||||
}
|
||||
|
||||
TEST(ExcutorIntegrationTest, execute_is_execute_before_shutdown) {
|
||||
volatile bool isRunnableInvoke = false;
|
||||
PIThreadPoolExecutor executorService(1);
|
||||
executorService.execute([&]() {
|
||||
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
|
||||
isRunnableInvoke = true;
|
||||
});
|
||||
executorService.shutdown();
|
||||
this_thread::sleep_for(milliseconds(2 * WAIT_THREAD_TIME_MS));
|
||||
ASSERT_TRUE(isRunnableInvoke);
|
||||
}
|
||||
|
||||
// FIXME
|
||||
TEST(DISABLED_ExcutorIntegrationTest, execute_is_awaitTermination_wait) {
|
||||
PIThreadPoolExecutor executorService(1);
|
||||
executorService.execute([&]() {
|
||||
this_thread::sleep_for(milliseconds(2 * WAIT_THREAD_TIME_MS));
|
||||
});
|
||||
executorService.shutdown();
|
||||
auto start_time = high_resolution_clock::now();
|
||||
ASSERT_TRUE(executorService.awaitTermination(3 * WAIT_THREAD_TIME_MS));
|
||||
double wait_time = static_cast<double>(duration_cast<microseconds>(high_resolution_clock::now() - start_time).count()) / 1000.;
|
||||
ASSERT_GE(wait_time, WAIT_THREAD_TIME_MS);
|
||||
ASSERT_LE(wait_time, 4 * WAIT_THREAD_TIME_MS);
|
||||
}
|
||||
132
test/src/ExecutorUnitTest.cpp
Normal file
132
test/src/ExecutorUnitTest.cpp
Normal file
@@ -0,0 +1,132 @@
|
||||
#include <utility>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "gmock/gmock.h"
|
||||
#include "testutil.h"
|
||||
#include "piexecutor.h"
|
||||
|
||||
using ::testing::_;
|
||||
using ::testing::SetArgReferee;
|
||||
using ::testing::DoAll;
|
||||
using ::testing::DeleteArg;
|
||||
using ::testing::Return;
|
||||
using ::testing::ByMove;
|
||||
using ::testing::AtLeast;
|
||||
using ::testing::ByRef;
|
||||
using ::testing::Eq;
|
||||
using ::testing::Ge;
|
||||
using ::testing::Pointee;
|
||||
using ::testing::IsNull;
|
||||
using ::testing::NiceMock;
|
||||
|
||||
typedef std::function<void()> VoidFunc;
|
||||
|
||||
namespace std {
|
||||
inline bool operator ==(const VoidFunc& s, const VoidFunc& v) {
|
||||
// TODO VoidFunc operator ==
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
class MockThread {
|
||||
public:
|
||||
bool is_executed;
|
||||
VoidFunc runnnable;
|
||||
|
||||
explicit MockThread(VoidFunc runnnable) : is_executed(true), runnnable(std::move(runnnable)) { }
|
||||
|
||||
// MOCK_METHOD0(stop, void());
|
||||
// MOCK_METHOD1(waitForStart, bool(int timeout_msecs));
|
||||
MOCK_METHOD0(join, void());
|
||||
};
|
||||
|
||||
class MockDeque : public PIBlockingDequeue<FunctionWrapper> {
|
||||
public:
|
||||
MOCK_METHOD1(offer, bool(const FunctionWrapper&));
|
||||
MOCK_METHOD0(take, FunctionWrapper());
|
||||
MOCK_METHOD1(poll, FunctionWrapper(int));
|
||||
MOCK_METHOD0(capacity, size_t());
|
||||
MOCK_METHOD0(remainingCapacity, size_t());
|
||||
};
|
||||
|
||||
typedef PIThreadPoolExecutorTemplate<NiceMock<MockThread>, MockDeque> PIThreadPoolExecutorMoc_t;
|
||||
|
||||
class PIThreadPoolExecutorMoc : public PIThreadPoolExecutorMoc_t {
|
||||
public:
|
||||
explicit PIThreadPoolExecutorMoc(size_t corePoolSize) : PIThreadPoolExecutorMoc_t(corePoolSize) { }
|
||||
|
||||
template<typename Function>
|
||||
explicit PIThreadPoolExecutorMoc(size_t corePoolSize, Function onBeforeStart) : PIThreadPoolExecutorMoc_t(corePoolSize, onBeforeStart) { }
|
||||
|
||||
std::vector<testing::NiceMock<MockThread>*>* getThreadPool() { return &threadPool; }
|
||||
bool isShutdown() { return thread_command_ != thread_command::run; }
|
||||
MockDeque* getTaskQueue() { return &taskQueue; }
|
||||
};
|
||||
|
||||
TEST(ExecutorUnitTest, is_corePool_created) {
|
||||
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
|
||||
ASSERT_EQ(THREAD_COUNT, executor.getThreadPool()->size());
|
||||
}
|
||||
|
||||
TEST(ExecutorUnitTest, is_corePool_started) {
|
||||
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
|
||||
for (auto* thread : *executor.getThreadPool()) ASSERT_TRUE(thread->is_executed);
|
||||
}
|
||||
|
||||
TEST(ExecutorUnitTest, submit_is_added_to_taskQueue) {
|
||||
VoidFunc voidFunc = [](){};
|
||||
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
|
||||
// TODO add check of offered
|
||||
EXPECT_CALL(*executor.getTaskQueue(), offer)
|
||||
.WillOnce(Return(true));
|
||||
executor.submit(voidFunc);
|
||||
}
|
||||
|
||||
TEST(ExecutorUnitTest, submit_is_return_valid_future) {
|
||||
VoidFunc voidFunc = [](){};
|
||||
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
|
||||
// TODO add check of offered
|
||||
EXPECT_CALL(*executor.getTaskQueue(), offer)
|
||||
.WillOnce(Return(true));
|
||||
auto future = executor.submit(voidFunc);
|
||||
EXPECT_TRUE(future.valid());
|
||||
}
|
||||
|
||||
TEST(ExecutorUnitTest, execute_is_added_to_taskQueue) {
|
||||
VoidFunc voidFunc = [](){};
|
||||
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
|
||||
// TODO add check of offered
|
||||
EXPECT_CALL(*executor.getTaskQueue(), offer)
|
||||
.WillOnce(Return(true));
|
||||
executor.execute(voidFunc);
|
||||
}
|
||||
|
||||
// TODO fix
|
||||
TEST(DISABLED_ExecutorUnitTest, is_corePool_execute_queue_elements) {
|
||||
bool is_executed = false;
|
||||
PIThreadPoolExecutorMoc executor(1);
|
||||
EXPECT_EQ(executor.getThreadPool()->size(), 1);
|
||||
EXPECT_CALL(*executor.getTaskQueue(), poll(Ge(0)))
|
||||
.WillOnce([&is_executed](int){
|
||||
return FunctionWrapper([&is_executed](){ is_executed = true; });
|
||||
});
|
||||
executor.getThreadPool()->at(0)->runnnable();
|
||||
ASSERT_TRUE(is_executed);
|
||||
}
|
||||
|
||||
// FIXME
|
||||
TEST(DISABLED_ExecutorUnitTest, shutdown_is_stop_threads) {
|
||||
// Exclude stop calls when executor deleting
|
||||
auto* executor = new PIThreadPoolExecutorMoc(THREAD_COUNT, [](MockThread* thread){
|
||||
testing::Mock::AllowLeak(thread);
|
||||
EXPECT_CALL(*thread, join())
|
||||
.WillOnce(Return());
|
||||
});
|
||||
testing::Mock::AllowLeak(executor);
|
||||
testing::Mock::AllowLeak(executor->getTaskQueue());
|
||||
|
||||
EXPECT_CALL(*executor->getTaskQueue(), poll(Ge(0)))
|
||||
.WillRepeatedly([](int){ return FunctionWrapper(); });
|
||||
executor->shutdown();
|
||||
for (auto* thread : *executor->getThreadPool()) thread->runnnable();
|
||||
}
|
||||
Reference in New Issue
Block a user