Init commit

This commit is contained in:
10 changed files with 1388 additions and 0 deletions

53
CMakeLists.txt Normal file
View File

@@ -0,0 +1,53 @@
cmake_minimum_required(VERSION 3.13)
project(concurrent_lib VERSION 1.0 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
get_directory_property(IS_SUBPROJECT PARENT_DIRECTORY)
option(CONCURRENT_TESTING "Enable build tests for concurrent lib" ON)
option(CONCURRENT_EXAMPLES "Enable build examples for concurrent lib" ON)
add_compile_options(
-Werror
-Wall
-Wcast-align
-Wcast-qual
-Wconversion
-Wenum-compare
-Wfloat-equal
-Wnon-virtual-dtor
-Wold-style-cast
-Woverloaded-virtual
-Wredundant-decls
-Wsign-promo
)
if(NOT CMAKE_CXX_EXTENSIONS)
set(CMAKE_CXX_EXTENSIONS OFF)
endif()
file(GLOB SOURCES src/*.cpp)
add_library(concurrent ${SOURCES})
target_include_directories(concurrent INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>
)
install(DIRECTORY include DESTINATION ${CMAKE_INSTALL_PREFIX})
install(TARGETS concurrent EXPORT ConcurrentConfig)
install(EXPORT ConcurrentConfig DESTINATION lib/cmake/Concurrent)
if(NOT CONCURRENT_TESTING)
message(STATUS "Concurrent tests is OFF")
elseif(IS_SUBPROJECT)
message(STATUS "Concurrent tests is OFF (lib is subproject)")
else()
add_subdirectory(test)
if (TARGET concurrent_test)
message(STATUS "Concurrent tests is ON")
else()
message(STATUS "Concurrent tests is OFF (GTest not found)")
endif()
endif()

272
include/piblockingdequeue.h Normal file
View File

@@ -0,0 +1,272 @@
/*
PIP - Platform Independent Primitives
Stephan Fomenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIBLOCKINGDEQUEUE_H
#define PIBLOCKINGDEQUEUE_H
#include <queue>
#include <condition_variable>
/**
* @brief A Queue that supports operations that wait for the queue to become non-empty when retrieving an element, and
* wait for space to become available in the queue when storing an element.
*/
template <typename T, template<typename = T, typename...> class Queue_ = std::deque, typename ConditionVariable_ = std::condition_variable>
class PIBlockingDequeue {
public:
typedef Queue_<T> QueueType;
/**
* @brief Constructor
*/
explicit PIBlockingDequeue(size_t capacity = SIZE_MAX)
: cond_var_add(new ConditionVariable_()), cond_var_rem(new ConditionVariable_()), max_size(capacity) { }
/**
* @brief Copy constructor. Initialize queue with copy of other container elements. Not thread-safe for other queue.
*/
template<typename Iterable,
typename std::enable_if<!std::is_arithmetic<Iterable>::value, int>::type = 0>
explicit PIBlockingDequeue(const Iterable& other): PIBlockingDequeue() {
mutex.lock();
for (const T& t : other) data_queue.push_back(t);
mutex.unlock();
}
/**
* @brief Thread-safe copy constructor. Initialize queue with copy of other queue elements.
*/
explicit PIBlockingDequeue(PIBlockingDequeue<T>& other): PIBlockingDequeue() {
other.mutex.lock();
mutex.lock();
max_size = other.max_size;
data_queue = other.data_queue;
mutex.unlock();
other.mutex.unlock();
}
~PIBlockingDequeue() {
delete cond_var_add;
delete cond_var_rem;
}
/**
* @brief Inserts the specified element into this queue, waiting if necessary for space to become available.
*
* @param v the element to add
*/
template<typename Type>
void put(Type && v) {
mutex.lock();
cond_var_rem->wait(mutex, [&]() { return data_queue.size() < max_size; });
data_queue.push_back(std::forward<Type>(v));
mutex.unlock();
cond_var_add->notify_one();
}
/**
* @brief Inserts the specified element at the end of this queue if it is possible to do so immediately without
* exceeding the queue's capacity, returning true upon success and false if this queue is full.
*
* @param v the element to add
* @return true if the element was added to this queue, else false
*/
template<typename Type>
bool offer(Type && v) {
mutex.lock();
if (data_queue.size() >= max_size) {
mutex.unlock();
return false;
}
data_queue.push_back(std::forward<Type>(v));
mutex.unlock();
cond_var_add->notify_one();
return true;
}
/**
* @brief Inserts the specified element into this queue, waiting up to the specified wait time if necessary for
* space to become available.
*
* @param v the element to add
* @param timeoutMs how long to wait before giving up, in milliseconds
* @return true if successful, or false if the specified waiting time elapses before space is available
*/
template<typename Type>
bool offer(Type && v, int timeoutMs) {
mutex.lock();
bool isOk = cond_var_rem->wait_for(mutex, timeoutMs, [&]() { return data_queue.size() < max_size; } );
if (isOk) data_queue.push_back(std::forward<Type>(v));
mutex.unlock();
if (isOk) cond_var_add->notify_one();
return isOk;
}
/**
* @brief Retrieves and removes the head of this queue, waiting if necessary until an element becomes available.
*
* @return the head of this queue
*/
T take() {
mutex.lock();
cond_var_add->wait(mutex, [&]() { return data_queue.size() != 0; });
T t = std::move(data_queue.front());
data_queue.pop_front();
mutex.unlock();
cond_var_rem->notify_one();
return t;
}
/**
* @brief Retrieves and removes the head of this queue, waiting up to the specified wait time if necessary for an
* element to become available.
*
* @param timeoutMs how long to wait before giving up, in milliseconds
* @param defaultVal value, which returns if the specified waiting time elapses before an element is available
* @param isOk flag, which indicates result of method execution. It will be set to false if timeout, or true if
* return value is retrieved value
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
*/
template<typename Type = T>
T poll(int timeoutMs, Type && defaultVal = Type(), bool * isOk = nullptr) {
bool isNotEmpty;
T t;
{
std::unique_lock<std::mutex> lc(mutex);
isNotEmpty = cond_var_add->wait_for(lc, std::chrono::milliseconds(timeoutMs), [&]() { return data_queue.size() != 0; });
if (isNotEmpty) {
t = std::move(data_queue.front());
data_queue.pop_front();
} else {
t = std::forward<Type>(defaultVal);
}
}
if (isNotEmpty) cond_var_rem->notify_one();
if (isOk) *isOk = isNotEmpty;
return t;
}
/**
* @brief Retrieves and removes the head of this queue and return it if queue not empty, otherwise return defaultVal.
* Do it immediately without waiting.
*
* @param defaultVal value, which returns if the specified waiting time elapses before an element is available
* @param isOk flag, which indicates result of method execution. It will be set to false if timeout, or true if
* return value is retrieved value
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
*/
template<typename Type = T>
T poll(Type && defaultVal = Type(), bool * isOk = nullptr) {
T t;
mutex.lock();
bool isNotEmpty = data_queue.size() != 0;
if (isNotEmpty) {
t = std::move(data_queue.front());
data_queue.pop_front();
} else {
t = std::forward<Type>(defaultVal);
}
mutex.unlock();
if (isNotEmpty) cond_var_rem->notifyOne();
if (isOk) *isOk = isNotEmpty;
return t;
}
/**
* @brief Returns the number of elements that this queue can ideally (in the absence of memory or resource
* constraints) contains. This is always equal to the initial capacity of this queue less the current size of this queue.
*
* @return the capacity
*/
size_t capacity() {
size_t c;
mutex.lock();
c = max_size;
mutex.unlock();
return c;
}
/**
* @brief Returns the number of additional elements that this queue can ideally (in the absence of memory or resource
* constraints) accept. This is always equal to the initial capacity of this queue less the current size of this queue.
*
* @return the remaining capacity
*/
size_t remainingCapacity() {
mutex.lock();
size_t c = max_size - data_queue.size();
mutex.unlock();
return c;
}
/**
* @brief Returns the number of elements in this collection.
*/
size_t size() {
mutex.lock();
size_t s = data_queue.size();
mutex.unlock();
return s;
}
/**
* @brief Removes all available elements from this queue and adds them to other given queue.
*/
template<typename Appendable>
size_t drainTo(Appendable& other, size_t maxCount = SIZE_MAX) {
mutex.lock();
size_t count = maxCount > data_queue.size() ? data_queue.size() : maxCount;
for (size_t i = 0; i < count; ++i) {
other.push_back(std::move(data_queue.front()));
data_queue.pop_front();
}
mutex.unlock();
return count;
}
/**
* @brief Removes all available elements from this queue and adds them to other given queue.
*/
size_t drainTo(PIBlockingDequeue<T>& other, size_t maxCount = SIZE_MAX) {
mutex.lock();
other.mutex.lock();
size_t count = maxCount > data_queue.size() ? data_queue.size() : maxCount;
size_t otherRemainingCapacity = other.max_size - data_queue.size();
if (count > otherRemainingCapacity) count = otherRemainingCapacity;
for (size_t i = 0; i < count; ++i) {
other.data_queue.push_back(std::move(data_queue.front()));
data_queue.pop_front();
}
other.mutex.unlock();
mutex.unlock();
return count;
}
protected:
std::mutex mutex;
// TODO change to type without point
ConditionVariable_ *cond_var_add, *cond_var_rem;
QueueType data_queue;
size_t max_size;
};
#endif // PIBLOCKINGDEQUEUE_H

214
include/piexecutor.h Normal file
View File

@@ -0,0 +1,214 @@
/*
PIP - Platform Independent Primitives
Stephan Fomenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIEXECUTOR_H
#define PIEXECUTOR_H
#include "piblockingdequeue.h"
#include <atomic>
#include <future>
/**
* @brief Wrapper for custom invoke operator available function types.
* @note Source from: "Энтони Уильямс, Параллельное программирование на С++ в действии. Практика разработки многопоточных
* программ. Пер. с англ. Слинкин А. А. - M.: ДМК Пресс, 2012 - 672c.: ил." (page 387)
*/
class FunctionWrapper {
struct ImplBase {
virtual void call() = 0;
virtual ~ImplBase() = default;
};
std::unique_ptr<ImplBase> impl;
template<typename F>
struct ImplType: ImplBase {
F f;
explicit ImplType(F&& f): f(std::forward<F>(f)) {}
void call() final { f(); }
};
public:
template<typename F, typename = std::enable_if<!std::is_same<F, FunctionWrapper>::value> >
explicit FunctionWrapper(F&& f): impl(new ImplType<F>(std::forward<F>(f))) {}
void operator()() { impl->call(); }
explicit operator bool() const noexcept { return static_cast<bool>(impl); }
FunctionWrapper() = default;
FunctionWrapper(FunctionWrapper&& other) noexcept : impl(std::move(other.impl)) {}
FunctionWrapper& operator=(FunctionWrapper&& other) noexcept {
impl = std::move(other.impl);
return *this;
}
FunctionWrapper(const FunctionWrapper& other) = delete;
FunctionWrapper& operator=(const FunctionWrapper&) = delete;
};
template <typename Thread_ = std::thread, typename Dequeue_ = PIBlockingDequeue<FunctionWrapper>>
class PIThreadPoolExecutorTemplate {
protected:
enum thread_command {
run,
shutdown_c,
shutdown_now
};
public:
explicit PIThreadPoolExecutorTemplate(size_t corePoolSize = 1) : thread_command_(thread_command::run) { makePool(corePoolSize); }
virtual ~PIThreadPoolExecutorTemplate() {
shutdownNow();
awaitTermination(1000);
while (threadPool.size() > 0) {
auto thread = threadPool.back();
threadPool.pop_back();
delete thread;
}
}
template<typename FunctionType>
std::future<typename std::result_of<FunctionType()>::type> submit(FunctionType&& callable) {
typedef typename std::result_of<FunctionType()>::type ResultType;
if (thread_command_ == thread_command::run) {
std::packaged_task<ResultType()> callable_task(std::forward<FunctionType>(callable));
auto future = callable_task.get_future();
FunctionWrapper functionWrapper(callable_task);
taskQueue.offer(std::move(functionWrapper));
return future;
} else {
return std::future<ResultType>();
}
}
template<typename FunctionType>
void execute(FunctionType&& runnable) {
if (thread_command_ == thread_command::run) {
FunctionWrapper function_wrapper(std::forward<FunctionType>(runnable));
taskQueue.offer(std::move(function_wrapper));
}
}
void shutdown() {
thread_command_ = thread_command::shutdown_c;
}
void shutdownNow() {
thread_command_ = thread_command::shutdown_now;
}
bool isShutdown() const {
return thread_command_;
}
bool awaitTermination(int timeoutMs) {
using namespace std::chrono;
auto start_time = high_resolution_clock::now();
for (size_t i = 0; i < threadPool.size(); ++i) {
int dif = timeoutMs - static_cast<int>(duration_cast<milliseconds>(high_resolution_clock::now() - start_time).count());
if (dif < 0) return false;
// TODO add wait with timeout
threadPool[i]->join();
// if (!threadPool[i]->waitFinish(dif)) return false;
}
return true;
}
protected:
std::atomic<thread_command> thread_command_;
Dequeue_ taskQueue;
std::vector<Thread_*> threadPool;
template<typename Function>
PIThreadPoolExecutorTemplate(size_t corePoolSize, Function&& onBeforeStart) : thread_command_(thread_command::run) {
makePool(corePoolSize, std::forward<Function>(onBeforeStart));
}
void makePool(size_t corePoolSize, std::function<void(Thread_*)>&& onBeforeStart = [](Thread_*){}) {
for (size_t i = 0; i < corePoolSize; ++i) {
auto* thread = new Thread_([&, i](){
do {
auto runnable = taskQueue.poll(100);
if (runnable) {
runnable();
}
} while (!thread_command_ || taskQueue.size() != 0);
});
threadPool.push_back(thread);
onBeforeStart(thread);
}
}
};
typedef PIThreadPoolExecutorTemplate<> PIThreadPoolExecutor;
#ifdef DOXYGEN
/**
* @brief Thread pools address two different problems: they usually provide improved performance when executing large
* numbers of asynchronous tasks, due to reduced per-task invocation overhead, and they provide a means of bounding and
* managing the resources, including threads, consumed when executing a collection of tasks.
*/
class PIThreadPoolExecutor {
public:
explicit PIThreadPoolExecutor(size_t corePoolSize);
virtual ~PIThreadPoolExecutor();
/**
* @brief Submits a Runnable task for execution and returns a Future representing that task. The Future's get method
* will return null upon successful completion.
*
* @tparam FunctionType - custom type of function with operator() and return type
* @tparam R - derived from FunctionType return type
*
* @param callable - the task to submit
* @return a future representing pending completion of the task
*/
std::future<R> submit(FunctionType&& callable);
/**
* @brief Executes the given task sometime in the future. The task execute in an existing pooled thread. If the task
* cannot be submitted for execution, either because this executor has been shutdown or because its capacity has been
* reached.
*
* @tparam FunctionType - custom type of function with operator() and return type
*
* @param runnable not empty function for thread pool execution
*/
void execute(FunctionType&& runnable);
/**
* @brief Initiates an orderly shutdown in which previously submitted tasks are executed, but no new tasks will be
* accepted. Invocation has no additional effect if already shut down. This method does not wait for previously
* submitted tasks to complete execution. Use awaitTermination to do that.
*/
void shutdown();
void shutdownNow();
bool isShutdown() const;
bool awaitTermination(int timeoutMs);
};
#endif //DOXYGEN
#endif //PIEXECUTOR_H

56
readme.md Normal file
View File

@@ -0,0 +1,56 @@
# Concurrent library
## Requirements
[GTest v1.10.0](https://github.com/google/googletest/tree/v1.10.x) - "googletest is a testing framework developed by the
Testing Technology team with Google's specific requirements and constraints in mind".
## Options
- `CONCURRENT_TESTING` - enable build tests
- `CONCURRENT_EXAMPLES`- enable build examples
## Use from another project
1 Clone project:
```cmd
git clone https://git.shs.tools/zzuummaa/concurrent_lib.git
```
2 Generate cmake files:
```cmd
cd concurrent
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
```
3 Build and install library (use shell with administrative privileges or sudo):
```cmd
cmake --build . --target install
```
## Build tests
1 Clone GTest:
```cmd
git clone --branch v1.10.x https://github.com/google/googletest.git
```
2 Generate cmake files:
```cmd
cd concurrent
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
```
3 Build and install library (use shell with administrative privileges or sudo):
```cmd
cmake --build . --target install
```

0
src/dummy.cpp Normal file
View File

17
test/CMakeLists.txt Normal file
View File

@@ -0,0 +1,17 @@
project(concurrent_test)
find_package(GTest 1.10.0 REQUIRED)
if (GTest_FOUND)
file(GLOB TEST_SOURCES src/*.cpp)
add_executable(concurrent_test ${TEST_SOURCES})
# Disable for GTest build
target_compile_options(concurrent_test PRIVATE -Wno-sign-compare)
target_include_directories(concurrent_test PUBLIC include)
target_link_libraries(concurrent_test GTest::gtest GTest::gtest_main GTest::gmock GTest::gmock concurrent)
add_test(test-1 concurrent_test)
add_custom_target(check ALL COMMAND concurrent_test)
endif()

76
test/include/testutil.h Normal file
View File

@@ -0,0 +1,76 @@
#ifndef AWRCANFLASHER_TESTUTIL_H
#define AWRCANFLASHER_TESTUTIL_H
#include <future>
#include <atomic>
template<typename T>
void print_type_info() {
std::cout << typeid(T).name() << " is a "
<< (std::is_const<typename std::remove_reference<T>::type>::value ? "const " : "")
<< (std::is_lvalue_reference<T>::value ? "lvalue" : "rvalue")
<< " reference" << std::endl;
}
/**
* Minimum wait thread start, switch context or another interthread communication action time. Increase it if tests
* write "Start thread timeout reach!" message. You can reduce it if you want increase test performance.
*/
const int WAIT_THREAD_TIME_MS = 30;
const int THREAD_COUNT = 2;
class TestUtil {
public:
double threadStartTime;
std::atomic_bool isRunning;
std::function<void()> adapterFunctionDefault;
TestUtil() : isRunning(false) {}
bool createThread(const std::function<void()>& fun = nullptr) {
std::function<void()> actualFun = fun == nullptr ? adapterFunctionDefault : fun;
std::promise<void> start_promise;
std::future<void> start_future = start_promise.get_future();
std::thread thread([this, &start_promise, actualFun](){
isRunning = true;
start_promise.set_value();
actualFun();
});
thread.detach();
auto status = start_future.wait_for(std::chrono::milliseconds(WAIT_THREAD_TIME_MS));
if (status == std::future_status::timeout) {
std::cout << "Start thread timeout reach!" << std::endl;
}
start_future.get();
return status == std::future_status::ready;
}
// bool waitThread(PIThread* thread_, bool runningStatus = true) {
// PITimeMeasurer measurer;
// bool isTimeout = !thread_->waitForStart(WAIT_THREAD_TIME_MS);
// while (!isRunning) {
// isTimeout = WAIT_THREAD_TIME_MS <= measurer.elapsed_m();
// if (isTimeout) break;
// piUSleep(100);
// }
//
// threadStartTime = measurer.elapsed_m();
//
// if (isTimeout) piCout << "Start thread timeout reach!";
//
// if (threadStartTime > 1) {
// piCout << "Start time" << threadStartTime << "ms";
// } else if (threadStartTime > 0.001) {
// piCout << "Start time" << threadStartTime * 1000 << "mcs";
// } else {
// piCout << "Start time" << threadStartTime * 1000 * 1000 << "ns";
// }
//
// return !isTimeout;
// }
};
#endif //AWRCANFLASHER_TESTUTIL_H

View File

@@ -0,0 +1,510 @@
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "testutil.h"
#include "piblockingdequeue.h"
using ::testing::_;
using ::testing::Return;
using ::testing::Eq;
using ::testing::Ne;
using ::testing::Matcher;
using ::testing::Expectation;
using ::testing::Sequence;
using ::testing::NiceMock;
class MockConditionVar {
public:
bool isWaitCalled = false;
bool isWaitForCalled = false;
bool isTrueCondition = false;
int timeout = -1;
MOCK_METHOD1(wait, void(std::mutex&));
MOCK_METHOD2(wait, void(std::mutex&, const std::function<bool()>&));
MOCK_METHOD2(wait_for, bool(std::mutex&, int));
MOCK_METHOD3(wait_for, bool(std::mutex&, int, const std::function<bool()>&));
MOCK_METHOD0(notify_one, void());
};
struct QueueElement {
bool is_empty;
int value;
int copy_count;
QueueElement(): is_empty(true), value(0), copy_count(0) { }
explicit QueueElement(int value): is_empty(false), value(value), copy_count(0) { }
QueueElement(const QueueElement& other) {
this->is_empty = other.is_empty;
this->value = other.value;
this->copy_count = 0;
const_cast<int&>(other.copy_count)++;
}
QueueElement(QueueElement&& other) noexcept : QueueElement() {
std::swap(is_empty, other.is_empty);
std::swap(value, other.value);
std::swap(copy_count, other.copy_count);
}
bool operator==(const QueueElement &rhs) const {
return is_empty == rhs.is_empty &&
value == rhs.value;
}
bool operator!=(const QueueElement &rhs) const {
return !(rhs == *this);
}
friend std::ostream& operator<<(std::ostream& os, const QueueElement& el) {
return os << "{ is_empty:" << el.is_empty << ", value:" << el.value << ", copy_count:" << el.copy_count << " }";
}
};
template<typename T>
class MockDequeBase {
public:
MOCK_METHOD1_T(push_back_rval, void(T));
MOCK_METHOD1_T(push_back, void(const T&));
MOCK_METHOD0(size, size_t());
MOCK_METHOD0_T(front, T());
MOCK_METHOD0(pop_front, void());
void push_back(T&& t) {
push_back_rval(t);
}
};
template<typename T>
class MockDeque: public NiceMock<MockDequeBase<T>> {};
class PIBlockingDequeuePrepare: public PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> {
public:
typedef PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> SuperClass;
explicit PIBlockingDequeuePrepare(size_t capacity = SIZE_MAX): SuperClass(capacity) { }
template<typename Iterable,
typename std::enable_if<!std::is_arithmetic<Iterable>::value, int>::type = 0>
explicit PIBlockingDequeuePrepare(const Iterable& other): SuperClass(other) { }
MockConditionVar* getCondVarAdd() { return this->cond_var_add; }
MockConditionVar* getCondVarRem() { return this->cond_var_rem; }
MockDeque<QueueElement>& getQueue() { return this->data_queue; }
size_t getMaxSize() { return max_size; }
};
class BlockingDequeueUnitTest: public ::testing::Test {
public:
int timeout = 100;
size_t capacity;
PIBlockingDequeuePrepare dequeue;
QueueElement element;
BlockingDequeueUnitTest(): capacity(1), dequeue(capacity), element(11) {}
void offer2_is_wait_predicate(bool isCapacityReach);
void put_is_wait_predicate(bool isCapacityReach);
void take_is_wait_predicate(bool isEmpty);
};
TEST_F(BlockingDequeueUnitTest, construct_default_is_max_size_eq_size_max) {
PIBlockingDequeuePrepare dequeue;
ASSERT_EQ(dequeue.getMaxSize(), SIZE_MAX);
}
TEST_F(BlockingDequeueUnitTest, construct_from_constant_is_max_size_eq_capacity) {
PIBlockingDequeuePrepare dequeue(2);
ASSERT_EQ(dequeue.getMaxSize(), 2);
}
TEST_F(BlockingDequeueUnitTest, construct_from_capacity_is_max_size_eq_capacity) {
ASSERT_EQ(dequeue.getMaxSize(), capacity);
}
TEST_F(BlockingDequeueUnitTest, construct_from_iterable) {
std::vector<QueueElement> iterable;
iterable.emplace_back(11);
iterable.emplace_back(22);
PIBlockingDequeuePrepare dequeue(iterable);
}
void BlockingDequeueUnitTest::put_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), wait(_, _))
.WillOnce([&](std::mutex& m, const std::function<bool()>& predicate){ conditionVarPredicate = predicate; });
dequeue.put(element);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_true) {
put_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_false_when_capacity_reach) {
put_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_copy) {
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.put(element);
}
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.put(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, put_is_notify_about_insert) {
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.WillOnce(Return());
dequeue.put(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_copy) {
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_insert_when_capacity_reach) {
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_true_when_insert) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
ASSERT_TRUE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_false_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
ASSERT_FALSE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_notify_about_insert) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.WillOnce(Return());
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_notify_about_insert_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.Times(0);
dequeue.offer(element);
}
void BlockingDequeueUnitTest::offer2_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce([&](std::mutex& m, int timeout_, const std::function<bool()>& predicate) {
conditionVarPredicate = predicate;
return isCapacityReach;
});
dequeue.offer(element, timeout);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_true) {
offer2_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_false_when_capacity_reach) {
offer2_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_copy) {
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.offer(std::move(copyElement), timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_insert_when_timeout) {
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce(Return(false));
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_true_when_insert) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(true));
ASSERT_TRUE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_false_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(false));
ASSERT_FALSE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_notify_about_insert) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_notify_about_insert_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(false));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.Times(0);
dequeue.offer(element, timeout);
}
void BlockingDequeueUnitTest::take_is_wait_predicate(bool isEmpty) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarAdd(), wait(_, _))
.WillOnce([&](std::mutex& m, const std::function<bool()>& predicate) { conditionVarPredicate = predicate; });
dequeue.take();
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isEmpty ? 0 : 1));
ASSERT_EQ(conditionVarPredicate(), !isEmpty);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_true) {
take_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_false_when_queue_empty) {
take_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, take_is_get_and_remove) {
Expectation front = EXPECT_CALL(dequeue.getQueue(), front())
.WillOnce(Return(element));
EXPECT_CALL(dequeue.getQueue(), pop_front())
.After(front)
.WillOnce(Return());
QueueElement takenElement = dequeue.take();
ASSERT_EQ(element, takenElement);
}
TEST_F(BlockingDequeueUnitTest, take_is_notify_about_remove) {
EXPECT_CALL(*dequeue.getCondVarRem(), notify_one)
.WillOnce(Return());
dequeue.take();
}
/*
// TODO change take_is_block_when_empty to prevent segfault
TEST(DISABLED_BlockingDequeueUnitTest, take_is_block_when_empty) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
// May cause segfault because take front of empty queue
dequeue.take();
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, take_is_not_block_when_not_empty) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.take();
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, take_is_value_eq_to_offer_value) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.take(), 111);
}
TEST(BlockingDequeueUnitTest, take_is_last) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
EXPECT_TRUE(dequeue.offer(111));
EXPECT_TRUE(dequeue.offer(222));
ASSERT_EQ(dequeue.take(), 111);
ASSERT_EQ(dequeue.take(), 222);
}
TEST(BlockingDequeueUnitTest, poll_is_not_block_when_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.poll(111, &isOk);
EXPECT_FALSE(dequeue.getCondVarAdd()->isWaitForCalled);
}
TEST(BlockingDequeueUnitTest, poll_is_default_value_when_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.poll(111, &isOk), 111);
}
TEST(BlockingDequeueUnitTest, poll_is_offer_value_when_not_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.poll(-1, &isOk), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_block_when_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.poll(timeout, 111);
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
EXPECT_EQ(timeout, dequeue.getCondVarAdd()->timeout);
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_default_value_when_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.poll(timeout, 111), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_not_block_when_not_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.poll(timeout, -1);
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_offer_value_when_not_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.poll(timeout, -1), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_last) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(222);
ASSERT_EQ(dequeue.poll(10, -1), 111);
ASSERT_EQ(dequeue.poll(10, -1), 222);
}
TEST(BlockingDequeueUnitTest, capacity_is_eq_constructor_capacity) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.capacity(), capacity);
}
TEST(BlockingDequeueUnitTest, remainingCapacity_is_dif_of_capacity_and_size) {
size_t capacity = 2;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.remainingCapacity(), capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.remainingCapacity(), capacity - 1);
}
TEST(BlockingDequeueUnitTest, remainingCapacity_is_zero_when_capacity_reach) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(111);
ASSERT_EQ(dequeue.remainingCapacity(), 0);
}
TEST(BlockingDequeueUnitTest, size_is_eq_to_num_of_elements) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.size(), 0);
dequeue.offer(111);
ASSERT_EQ(dequeue.size(), 1);
}
TEST(BlockingDequeueUnitTest, size_is_eq_to_capacity_when_capacity_reach) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(111);
ASSERT_EQ(dequeue.size(), capacity);
}
TEST(BlockingDequeueUnitTest, drainTo_is_elements_moved) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
blockingDequeue.drainTo(deque);
ASSERT_EQ(blockingDequeue.size(), 0);
// FIXME
// ASSERT_TRUE(deque == refDeque);
}
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_size_when_all_moved) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque), refDeque.size());
}
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_maxCount) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque, refDeque.size() - 1), refDeque.size() - 1);
}
*/

View File

@@ -0,0 +1,58 @@
#include "gtest/gtest.h"
#include "testutil.h"
#include "piexecutor.h"
using namespace std;
using namespace chrono;
TEST(ExcutorIntegrationTest, execute_is_runnable_invoke) {
std::mutex m;
int invokedRunnables = 0;
PIThreadPoolExecutor executorService(1);
executorService.execute([&]() {
m.lock();
invokedRunnables++;
m.unlock();
});
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
m.lock();
ASSERT_EQ(invokedRunnables, 1);
m.unlock();
}
TEST(ExcutorIntegrationTest, execute_is_not_execute_after_shutdown) {
volatile bool isRunnableInvoke = false;
PIThreadPoolExecutor executorService(1);
executorService.shutdown();
executorService.execute([&]() {
isRunnableInvoke = true;
});
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
ASSERT_FALSE(isRunnableInvoke);
}
TEST(ExcutorIntegrationTest, execute_is_execute_before_shutdown) {
volatile bool isRunnableInvoke = false;
PIThreadPoolExecutor executorService(1);
executorService.execute([&]() {
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
isRunnableInvoke = true;
});
executorService.shutdown();
this_thread::sleep_for(milliseconds(2 * WAIT_THREAD_TIME_MS));
ASSERT_TRUE(isRunnableInvoke);
}
// FIXME
TEST(DISABLED_ExcutorIntegrationTest, execute_is_awaitTermination_wait) {
PIThreadPoolExecutor executorService(1);
executorService.execute([&]() {
this_thread::sleep_for(milliseconds(2 * WAIT_THREAD_TIME_MS));
});
executorService.shutdown();
auto start_time = high_resolution_clock::now();
ASSERT_TRUE(executorService.awaitTermination(3 * WAIT_THREAD_TIME_MS));
double wait_time = static_cast<double>(duration_cast<microseconds>(high_resolution_clock::now() - start_time).count()) / 1000.;
ASSERT_GE(wait_time, WAIT_THREAD_TIME_MS);
ASSERT_LE(wait_time, 4 * WAIT_THREAD_TIME_MS);
}

View File

@@ -0,0 +1,132 @@
#include <utility>
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "testutil.h"
#include "piexecutor.h"
using ::testing::_;
using ::testing::SetArgReferee;
using ::testing::DoAll;
using ::testing::DeleteArg;
using ::testing::Return;
using ::testing::ByMove;
using ::testing::AtLeast;
using ::testing::ByRef;
using ::testing::Eq;
using ::testing::Ge;
using ::testing::Pointee;
using ::testing::IsNull;
using ::testing::NiceMock;
typedef std::function<void()> VoidFunc;
namespace std {
inline bool operator ==(const VoidFunc& s, const VoidFunc& v) {
// TODO VoidFunc operator ==
return true;
}
}
class MockThread {
public:
bool is_executed;
VoidFunc runnnable;
explicit MockThread(VoidFunc runnnable) : is_executed(true), runnnable(std::move(runnnable)) { }
// MOCK_METHOD0(stop, void());
// MOCK_METHOD1(waitForStart, bool(int timeout_msecs));
MOCK_METHOD0(join, void());
};
class MockDeque : public PIBlockingDequeue<FunctionWrapper> {
public:
MOCK_METHOD1(offer, bool(const FunctionWrapper&));
MOCK_METHOD0(take, FunctionWrapper());
MOCK_METHOD1(poll, FunctionWrapper(int));
MOCK_METHOD0(capacity, size_t());
MOCK_METHOD0(remainingCapacity, size_t());
};
typedef PIThreadPoolExecutorTemplate<NiceMock<MockThread>, MockDeque> PIThreadPoolExecutorMoc_t;
class PIThreadPoolExecutorMoc : public PIThreadPoolExecutorMoc_t {
public:
explicit PIThreadPoolExecutorMoc(size_t corePoolSize) : PIThreadPoolExecutorMoc_t(corePoolSize) { }
template<typename Function>
explicit PIThreadPoolExecutorMoc(size_t corePoolSize, Function onBeforeStart) : PIThreadPoolExecutorMoc_t(corePoolSize, onBeforeStart) { }
std::vector<testing::NiceMock<MockThread>*>* getThreadPool() { return &threadPool; }
bool isShutdown() { return thread_command_ != thread_command::run; }
MockDeque* getTaskQueue() { return &taskQueue; }
};
TEST(ExecutorUnitTest, is_corePool_created) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
ASSERT_EQ(THREAD_COUNT, executor.getThreadPool()->size());
}
TEST(ExecutorUnitTest, is_corePool_started) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
for (auto* thread : *executor.getThreadPool()) ASSERT_TRUE(thread->is_executed);
}
TEST(ExecutorUnitTest, submit_is_added_to_taskQueue) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
// TODO add check of offered
EXPECT_CALL(*executor.getTaskQueue(), offer)
.WillOnce(Return(true));
executor.submit(voidFunc);
}
TEST(ExecutorUnitTest, submit_is_return_valid_future) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
// TODO add check of offered
EXPECT_CALL(*executor.getTaskQueue(), offer)
.WillOnce(Return(true));
auto future = executor.submit(voidFunc);
EXPECT_TRUE(future.valid());
}
TEST(ExecutorUnitTest, execute_is_added_to_taskQueue) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
// TODO add check of offered
EXPECT_CALL(*executor.getTaskQueue(), offer)
.WillOnce(Return(true));
executor.execute(voidFunc);
}
// TODO fix
TEST(DISABLED_ExecutorUnitTest, is_corePool_execute_queue_elements) {
bool is_executed = false;
PIThreadPoolExecutorMoc executor(1);
EXPECT_EQ(executor.getThreadPool()->size(), 1);
EXPECT_CALL(*executor.getTaskQueue(), poll(Ge(0)))
.WillOnce([&is_executed](int){
return FunctionWrapper([&is_executed](){ is_executed = true; });
});
executor.getThreadPool()->at(0)->runnnable();
ASSERT_TRUE(is_executed);
}
// FIXME
TEST(DISABLED_ExecutorUnitTest, shutdown_is_stop_threads) {
// Exclude stop calls when executor deleting
auto* executor = new PIThreadPoolExecutorMoc(THREAD_COUNT, [](MockThread* thread){
testing::Mock::AllowLeak(thread);
EXPECT_CALL(*thread, join())
.WillOnce(Return());
});
testing::Mock::AllowLeak(executor);
testing::Mock::AllowLeak(executor->getTaskQueue());
EXPECT_CALL(*executor->getTaskQueue(), poll(Ge(0)))
.WillRepeatedly([](int){ return FunctionWrapper(); });
executor->shutdown();
for (auto* thread : *executor->getThreadPool()) thread->runnnable();
}