Init commit

This commit is contained in:
10 changed files with 1388 additions and 0 deletions

17
test/CMakeLists.txt Normal file
View File

@@ -0,0 +1,17 @@
project(concurrent_test)
find_package(GTest 1.10.0 REQUIRED)
if (GTest_FOUND)
file(GLOB TEST_SOURCES src/*.cpp)
add_executable(concurrent_test ${TEST_SOURCES})
# Disable for GTest build
target_compile_options(concurrent_test PRIVATE -Wno-sign-compare)
target_include_directories(concurrent_test PUBLIC include)
target_link_libraries(concurrent_test GTest::gtest GTest::gtest_main GTest::gmock GTest::gmock concurrent)
add_test(test-1 concurrent_test)
add_custom_target(check ALL COMMAND concurrent_test)
endif()

76
test/include/testutil.h Normal file
View File

@@ -0,0 +1,76 @@
#ifndef AWRCANFLASHER_TESTUTIL_H
#define AWRCANFLASHER_TESTUTIL_H
#include <future>
#include <atomic>
template<typename T>
void print_type_info() {
std::cout << typeid(T).name() << " is a "
<< (std::is_const<typename std::remove_reference<T>::type>::value ? "const " : "")
<< (std::is_lvalue_reference<T>::value ? "lvalue" : "rvalue")
<< " reference" << std::endl;
}
/**
* Minimum wait thread start, switch context or another interthread communication action time. Increase it if tests
* write "Start thread timeout reach!" message. You can reduce it if you want increase test performance.
*/
const int WAIT_THREAD_TIME_MS = 30;
const int THREAD_COUNT = 2;
class TestUtil {
public:
double threadStartTime;
std::atomic_bool isRunning;
std::function<void()> adapterFunctionDefault;
TestUtil() : isRunning(false) {}
bool createThread(const std::function<void()>& fun = nullptr) {
std::function<void()> actualFun = fun == nullptr ? adapterFunctionDefault : fun;
std::promise<void> start_promise;
std::future<void> start_future = start_promise.get_future();
std::thread thread([this, &start_promise, actualFun](){
isRunning = true;
start_promise.set_value();
actualFun();
});
thread.detach();
auto status = start_future.wait_for(std::chrono::milliseconds(WAIT_THREAD_TIME_MS));
if (status == std::future_status::timeout) {
std::cout << "Start thread timeout reach!" << std::endl;
}
start_future.get();
return status == std::future_status::ready;
}
// bool waitThread(PIThread* thread_, bool runningStatus = true) {
// PITimeMeasurer measurer;
// bool isTimeout = !thread_->waitForStart(WAIT_THREAD_TIME_MS);
// while (!isRunning) {
// isTimeout = WAIT_THREAD_TIME_MS <= measurer.elapsed_m();
// if (isTimeout) break;
// piUSleep(100);
// }
//
// threadStartTime = measurer.elapsed_m();
//
// if (isTimeout) piCout << "Start thread timeout reach!";
//
// if (threadStartTime > 1) {
// piCout << "Start time" << threadStartTime << "ms";
// } else if (threadStartTime > 0.001) {
// piCout << "Start time" << threadStartTime * 1000 << "mcs";
// } else {
// piCout << "Start time" << threadStartTime * 1000 * 1000 << "ns";
// }
//
// return !isTimeout;
// }
};
#endif //AWRCANFLASHER_TESTUTIL_H

View File

@@ -0,0 +1,510 @@
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "testutil.h"
#include "piblockingdequeue.h"
using ::testing::_;
using ::testing::Return;
using ::testing::Eq;
using ::testing::Ne;
using ::testing::Matcher;
using ::testing::Expectation;
using ::testing::Sequence;
using ::testing::NiceMock;
class MockConditionVar {
public:
bool isWaitCalled = false;
bool isWaitForCalled = false;
bool isTrueCondition = false;
int timeout = -1;
MOCK_METHOD1(wait, void(std::mutex&));
MOCK_METHOD2(wait, void(std::mutex&, const std::function<bool()>&));
MOCK_METHOD2(wait_for, bool(std::mutex&, int));
MOCK_METHOD3(wait_for, bool(std::mutex&, int, const std::function<bool()>&));
MOCK_METHOD0(notify_one, void());
};
struct QueueElement {
bool is_empty;
int value;
int copy_count;
QueueElement(): is_empty(true), value(0), copy_count(0) { }
explicit QueueElement(int value): is_empty(false), value(value), copy_count(0) { }
QueueElement(const QueueElement& other) {
this->is_empty = other.is_empty;
this->value = other.value;
this->copy_count = 0;
const_cast<int&>(other.copy_count)++;
}
QueueElement(QueueElement&& other) noexcept : QueueElement() {
std::swap(is_empty, other.is_empty);
std::swap(value, other.value);
std::swap(copy_count, other.copy_count);
}
bool operator==(const QueueElement &rhs) const {
return is_empty == rhs.is_empty &&
value == rhs.value;
}
bool operator!=(const QueueElement &rhs) const {
return !(rhs == *this);
}
friend std::ostream& operator<<(std::ostream& os, const QueueElement& el) {
return os << "{ is_empty:" << el.is_empty << ", value:" << el.value << ", copy_count:" << el.copy_count << " }";
}
};
template<typename T>
class MockDequeBase {
public:
MOCK_METHOD1_T(push_back_rval, void(T));
MOCK_METHOD1_T(push_back, void(const T&));
MOCK_METHOD0(size, size_t());
MOCK_METHOD0_T(front, T());
MOCK_METHOD0(pop_front, void());
void push_back(T&& t) {
push_back_rval(t);
}
};
template<typename T>
class MockDeque: public NiceMock<MockDequeBase<T>> {};
class PIBlockingDequeuePrepare: public PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> {
public:
typedef PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> SuperClass;
explicit PIBlockingDequeuePrepare(size_t capacity = SIZE_MAX): SuperClass(capacity) { }
template<typename Iterable,
typename std::enable_if<!std::is_arithmetic<Iterable>::value, int>::type = 0>
explicit PIBlockingDequeuePrepare(const Iterable& other): SuperClass(other) { }
MockConditionVar* getCondVarAdd() { return this->cond_var_add; }
MockConditionVar* getCondVarRem() { return this->cond_var_rem; }
MockDeque<QueueElement>& getQueue() { return this->data_queue; }
size_t getMaxSize() { return max_size; }
};
class BlockingDequeueUnitTest: public ::testing::Test {
public:
int timeout = 100;
size_t capacity;
PIBlockingDequeuePrepare dequeue;
QueueElement element;
BlockingDequeueUnitTest(): capacity(1), dequeue(capacity), element(11) {}
void offer2_is_wait_predicate(bool isCapacityReach);
void put_is_wait_predicate(bool isCapacityReach);
void take_is_wait_predicate(bool isEmpty);
};
TEST_F(BlockingDequeueUnitTest, construct_default_is_max_size_eq_size_max) {
PIBlockingDequeuePrepare dequeue;
ASSERT_EQ(dequeue.getMaxSize(), SIZE_MAX);
}
TEST_F(BlockingDequeueUnitTest, construct_from_constant_is_max_size_eq_capacity) {
PIBlockingDequeuePrepare dequeue(2);
ASSERT_EQ(dequeue.getMaxSize(), 2);
}
TEST_F(BlockingDequeueUnitTest, construct_from_capacity_is_max_size_eq_capacity) {
ASSERT_EQ(dequeue.getMaxSize(), capacity);
}
TEST_F(BlockingDequeueUnitTest, construct_from_iterable) {
std::vector<QueueElement> iterable;
iterable.emplace_back(11);
iterable.emplace_back(22);
PIBlockingDequeuePrepare dequeue(iterable);
}
void BlockingDequeueUnitTest::put_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), wait(_, _))
.WillOnce([&](std::mutex& m, const std::function<bool()>& predicate){ conditionVarPredicate = predicate; });
dequeue.put(element);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_true) {
put_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_false_when_capacity_reach) {
put_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_copy) {
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.put(element);
}
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.put(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, put_is_notify_about_insert) {
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.WillOnce(Return());
dequeue.put(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_copy) {
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_insert_when_capacity_reach) {
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_true_when_insert) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
ASSERT_TRUE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_false_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
ASSERT_FALSE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_notify_about_insert) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.WillOnce(Return());
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_notify_about_insert_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.Times(0);
dequeue.offer(element);
}
void BlockingDequeueUnitTest::offer2_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce([&](std::mutex& m, int timeout_, const std::function<bool()>& predicate) {
conditionVarPredicate = predicate;
return isCapacityReach;
});
dequeue.offer(element, timeout);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_true) {
offer2_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_false_when_capacity_reach) {
offer2_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_copy) {
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.offer(std::move(copyElement), timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_insert_when_timeout) {
EXPECT_CALL(*dequeue.getCondVarRem(), wait_for(_, Eq(timeout), _))
.WillOnce(Return(false));
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_true_when_insert) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(true));
ASSERT_TRUE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_false_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(false));
ASSERT_FALSE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_notify_about_insert) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_notify_about_insert_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), wait_for(_, _, _))
.WillByDefault(Return(false));
EXPECT_CALL(*dequeue.getCondVarAdd(), notify_one)
.Times(0);
dequeue.offer(element, timeout);
}
void BlockingDequeueUnitTest::take_is_wait_predicate(bool isEmpty) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarAdd(), wait(_, _))
.WillOnce([&](std::mutex& m, const std::function<bool()>& predicate) { conditionVarPredicate = predicate; });
dequeue.take();
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isEmpty ? 0 : 1));
ASSERT_EQ(conditionVarPredicate(), !isEmpty);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_true) {
take_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_false_when_queue_empty) {
take_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, take_is_get_and_remove) {
Expectation front = EXPECT_CALL(dequeue.getQueue(), front())
.WillOnce(Return(element));
EXPECT_CALL(dequeue.getQueue(), pop_front())
.After(front)
.WillOnce(Return());
QueueElement takenElement = dequeue.take();
ASSERT_EQ(element, takenElement);
}
TEST_F(BlockingDequeueUnitTest, take_is_notify_about_remove) {
EXPECT_CALL(*dequeue.getCondVarRem(), notify_one)
.WillOnce(Return());
dequeue.take();
}
/*
// TODO change take_is_block_when_empty to prevent segfault
TEST(DISABLED_BlockingDequeueUnitTest, take_is_block_when_empty) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
// May cause segfault because take front of empty queue
dequeue.take();
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, take_is_not_block_when_not_empty) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.take();
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, take_is_value_eq_to_offer_value) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.take(), 111);
}
TEST(BlockingDequeueUnitTest, take_is_last) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
EXPECT_TRUE(dequeue.offer(111));
EXPECT_TRUE(dequeue.offer(222));
ASSERT_EQ(dequeue.take(), 111);
ASSERT_EQ(dequeue.take(), 222);
}
TEST(BlockingDequeueUnitTest, poll_is_not_block_when_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.poll(111, &isOk);
EXPECT_FALSE(dequeue.getCondVarAdd()->isWaitForCalled);
}
TEST(BlockingDequeueUnitTest, poll_is_default_value_when_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.poll(111, &isOk), 111);
}
TEST(BlockingDequeueUnitTest, poll_is_offer_value_when_not_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.poll(-1, &isOk), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_block_when_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.poll(timeout, 111);
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
EXPECT_EQ(timeout, dequeue.getCondVarAdd()->timeout);
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_default_value_when_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.poll(timeout, 111), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_not_block_when_not_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.poll(timeout, -1);
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_offer_value_when_not_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.poll(timeout, -1), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_last) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(222);
ASSERT_EQ(dequeue.poll(10, -1), 111);
ASSERT_EQ(dequeue.poll(10, -1), 222);
}
TEST(BlockingDequeueUnitTest, capacity_is_eq_constructor_capacity) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.capacity(), capacity);
}
TEST(BlockingDequeueUnitTest, remainingCapacity_is_dif_of_capacity_and_size) {
size_t capacity = 2;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.remainingCapacity(), capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.remainingCapacity(), capacity - 1);
}
TEST(BlockingDequeueUnitTest, remainingCapacity_is_zero_when_capacity_reach) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(111);
ASSERT_EQ(dequeue.remainingCapacity(), 0);
}
TEST(BlockingDequeueUnitTest, size_is_eq_to_num_of_elements) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.size(), 0);
dequeue.offer(111);
ASSERT_EQ(dequeue.size(), 1);
}
TEST(BlockingDequeueUnitTest, size_is_eq_to_capacity_when_capacity_reach) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(111);
ASSERT_EQ(dequeue.size(), capacity);
}
TEST(BlockingDequeueUnitTest, drainTo_is_elements_moved) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
blockingDequeue.drainTo(deque);
ASSERT_EQ(blockingDequeue.size(), 0);
// FIXME
// ASSERT_TRUE(deque == refDeque);
}
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_size_when_all_moved) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque), refDeque.size());
}
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_maxCount) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque, refDeque.size() - 1), refDeque.size() - 1);
}
*/

View File

@@ -0,0 +1,58 @@
#include "gtest/gtest.h"
#include "testutil.h"
#include "piexecutor.h"
using namespace std;
using namespace chrono;
TEST(ExcutorIntegrationTest, execute_is_runnable_invoke) {
std::mutex m;
int invokedRunnables = 0;
PIThreadPoolExecutor executorService(1);
executorService.execute([&]() {
m.lock();
invokedRunnables++;
m.unlock();
});
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
m.lock();
ASSERT_EQ(invokedRunnables, 1);
m.unlock();
}
TEST(ExcutorIntegrationTest, execute_is_not_execute_after_shutdown) {
volatile bool isRunnableInvoke = false;
PIThreadPoolExecutor executorService(1);
executorService.shutdown();
executorService.execute([&]() {
isRunnableInvoke = true;
});
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
ASSERT_FALSE(isRunnableInvoke);
}
TEST(ExcutorIntegrationTest, execute_is_execute_before_shutdown) {
volatile bool isRunnableInvoke = false;
PIThreadPoolExecutor executorService(1);
executorService.execute([&]() {
this_thread::sleep_for(milliseconds(WAIT_THREAD_TIME_MS));
isRunnableInvoke = true;
});
executorService.shutdown();
this_thread::sleep_for(milliseconds(2 * WAIT_THREAD_TIME_MS));
ASSERT_TRUE(isRunnableInvoke);
}
// FIXME
TEST(DISABLED_ExcutorIntegrationTest, execute_is_awaitTermination_wait) {
PIThreadPoolExecutor executorService(1);
executorService.execute([&]() {
this_thread::sleep_for(milliseconds(2 * WAIT_THREAD_TIME_MS));
});
executorService.shutdown();
auto start_time = high_resolution_clock::now();
ASSERT_TRUE(executorService.awaitTermination(3 * WAIT_THREAD_TIME_MS));
double wait_time = static_cast<double>(duration_cast<microseconds>(high_resolution_clock::now() - start_time).count()) / 1000.;
ASSERT_GE(wait_time, WAIT_THREAD_TIME_MS);
ASSERT_LE(wait_time, 4 * WAIT_THREAD_TIME_MS);
}

View File

@@ -0,0 +1,132 @@
#include <utility>
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "testutil.h"
#include "piexecutor.h"
using ::testing::_;
using ::testing::SetArgReferee;
using ::testing::DoAll;
using ::testing::DeleteArg;
using ::testing::Return;
using ::testing::ByMove;
using ::testing::AtLeast;
using ::testing::ByRef;
using ::testing::Eq;
using ::testing::Ge;
using ::testing::Pointee;
using ::testing::IsNull;
using ::testing::NiceMock;
typedef std::function<void()> VoidFunc;
namespace std {
inline bool operator ==(const VoidFunc& s, const VoidFunc& v) {
// TODO VoidFunc operator ==
return true;
}
}
class MockThread {
public:
bool is_executed;
VoidFunc runnnable;
explicit MockThread(VoidFunc runnnable) : is_executed(true), runnnable(std::move(runnnable)) { }
// MOCK_METHOD0(stop, void());
// MOCK_METHOD1(waitForStart, bool(int timeout_msecs));
MOCK_METHOD0(join, void());
};
class MockDeque : public PIBlockingDequeue<FunctionWrapper> {
public:
MOCK_METHOD1(offer, bool(const FunctionWrapper&));
MOCK_METHOD0(take, FunctionWrapper());
MOCK_METHOD1(poll, FunctionWrapper(int));
MOCK_METHOD0(capacity, size_t());
MOCK_METHOD0(remainingCapacity, size_t());
};
typedef PIThreadPoolExecutorTemplate<NiceMock<MockThread>, MockDeque> PIThreadPoolExecutorMoc_t;
class PIThreadPoolExecutorMoc : public PIThreadPoolExecutorMoc_t {
public:
explicit PIThreadPoolExecutorMoc(size_t corePoolSize) : PIThreadPoolExecutorMoc_t(corePoolSize) { }
template<typename Function>
explicit PIThreadPoolExecutorMoc(size_t corePoolSize, Function onBeforeStart) : PIThreadPoolExecutorMoc_t(corePoolSize, onBeforeStart) { }
std::vector<testing::NiceMock<MockThread>*>* getThreadPool() { return &threadPool; }
bool isShutdown() { return thread_command_ != thread_command::run; }
MockDeque* getTaskQueue() { return &taskQueue; }
};
TEST(ExecutorUnitTest, is_corePool_created) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
ASSERT_EQ(THREAD_COUNT, executor.getThreadPool()->size());
}
TEST(ExecutorUnitTest, is_corePool_started) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
for (auto* thread : *executor.getThreadPool()) ASSERT_TRUE(thread->is_executed);
}
TEST(ExecutorUnitTest, submit_is_added_to_taskQueue) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
// TODO add check of offered
EXPECT_CALL(*executor.getTaskQueue(), offer)
.WillOnce(Return(true));
executor.submit(voidFunc);
}
TEST(ExecutorUnitTest, submit_is_return_valid_future) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
// TODO add check of offered
EXPECT_CALL(*executor.getTaskQueue(), offer)
.WillOnce(Return(true));
auto future = executor.submit(voidFunc);
EXPECT_TRUE(future.valid());
}
TEST(ExecutorUnitTest, execute_is_added_to_taskQueue) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
// TODO add check of offered
EXPECT_CALL(*executor.getTaskQueue(), offer)
.WillOnce(Return(true));
executor.execute(voidFunc);
}
// TODO fix
TEST(DISABLED_ExecutorUnitTest, is_corePool_execute_queue_elements) {
bool is_executed = false;
PIThreadPoolExecutorMoc executor(1);
EXPECT_EQ(executor.getThreadPool()->size(), 1);
EXPECT_CALL(*executor.getTaskQueue(), poll(Ge(0)))
.WillOnce([&is_executed](int){
return FunctionWrapper([&is_executed](){ is_executed = true; });
});
executor.getThreadPool()->at(0)->runnnable();
ASSERT_TRUE(is_executed);
}
// FIXME
TEST(DISABLED_ExecutorUnitTest, shutdown_is_stop_threads) {
// Exclude stop calls when executor deleting
auto* executor = new PIThreadPoolExecutorMoc(THREAD_COUNT, [](MockThread* thread){
testing::Mock::AllowLeak(thread);
EXPECT_CALL(*thread, join())
.WillOnce(Return());
});
testing::Mock::AllowLeak(executor);
testing::Mock::AllowLeak(executor->getTaskQueue());
EXPECT_CALL(*executor->getTaskQueue(), poll(Ge(0)))
.WillRepeatedly([](int){ return FunctionWrapper(); });
executor->shutdown();
for (auto* thread : *executor->getThreadPool()) thread->runnnable();
}