delete hal
This commit is contained in:
@@ -1,4436 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32l4xx_hal_spi.c
|
||||
* @author MCD Application Team
|
||||
* @brief SPI HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the Serial Peripheral Interface (SPI) peripheral:
|
||||
* + Initialization and de-initialization functions
|
||||
* + IO operation functions
|
||||
* + Peripheral Control functions
|
||||
* + Peripheral State functions
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2017 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### How to use this driver #####
|
||||
==============================================================================
|
||||
[..]
|
||||
The SPI HAL driver can be used as follows:
|
||||
|
||||
(#) Declare a SPI_HandleTypeDef handle structure, for example:
|
||||
SPI_HandleTypeDef hspi;
|
||||
|
||||
(#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API:
|
||||
(##) Enable the SPIx interface clock
|
||||
(##) SPI pins configuration
|
||||
(+++) Enable the clock for the SPI GPIOs
|
||||
(+++) Configure these SPI pins as alternate function push-pull
|
||||
(##) NVIC configuration if you need to use interrupt process
|
||||
(+++) Configure the SPIx interrupt priority
|
||||
(+++) Enable the NVIC SPI IRQ handle
|
||||
(##) DMA Configuration if you need to use DMA process
|
||||
(+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel
|
||||
(+++) Enable the DMAx clock
|
||||
(+++) Configure the DMA handle parameters
|
||||
(+++) Configure the DMA Tx or Rx Stream/Channel
|
||||
(+++) Associate the initialized hdma_tx(or _rx) handle to the hspi DMA Tx or Rx handle
|
||||
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream/Channel
|
||||
|
||||
(#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
|
||||
management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
|
||||
|
||||
(#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
|
||||
(++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
|
||||
by calling the customized HAL_SPI_MspInit() API.
|
||||
[..]
|
||||
Circular mode restriction:
|
||||
(#) The DMA circular mode cannot be used when the SPI is configured in these modes:
|
||||
(##) Master 2Lines RxOnly
|
||||
(##) Master 1Line Rx
|
||||
(#) The CRC feature is not managed when the DMA circular mode is enabled
|
||||
(#) When the SPI DMA Pause/Stop features are used, we must use the following APIs
|
||||
the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks
|
||||
[..]
|
||||
Master Receive mode restriction:
|
||||
(#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=1) or
|
||||
bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI
|
||||
does not initiate a new transfer the following procedure has to be respected:
|
||||
(##) HAL_SPI_DeInit()
|
||||
(##) HAL_SPI_Init()
|
||||
[..]
|
||||
Callback registration:
|
||||
|
||||
(#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1U
|
||||
allows the user to configure dynamically the driver callbacks.
|
||||
Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback.
|
||||
|
||||
Function HAL_SPI_RegisterCallback() allows to register following callbacks:
|
||||
(++) TxCpltCallback : SPI Tx Completed callback
|
||||
(++) RxCpltCallback : SPI Rx Completed callback
|
||||
(++) TxRxCpltCallback : SPI TxRx Completed callback
|
||||
(++) TxHalfCpltCallback : SPI Tx Half Completed callback
|
||||
(++) RxHalfCpltCallback : SPI Rx Half Completed callback
|
||||
(++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback
|
||||
(++) ErrorCallback : SPI Error callback
|
||||
(++) AbortCpltCallback : SPI Abort callback
|
||||
(++) MspInitCallback : SPI Msp Init callback
|
||||
(++) MspDeInitCallback : SPI Msp DeInit callback
|
||||
This function takes as parameters the HAL peripheral handle, the Callback ID
|
||||
and a pointer to the user callback function.
|
||||
|
||||
|
||||
(#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default
|
||||
weak function.
|
||||
HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle,
|
||||
and the Callback ID.
|
||||
This function allows to reset following callbacks:
|
||||
(++) TxCpltCallback : SPI Tx Completed callback
|
||||
(++) RxCpltCallback : SPI Rx Completed callback
|
||||
(++) TxRxCpltCallback : SPI TxRx Completed callback
|
||||
(++) TxHalfCpltCallback : SPI Tx Half Completed callback
|
||||
(++) RxHalfCpltCallback : SPI Rx Half Completed callback
|
||||
(++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback
|
||||
(++) ErrorCallback : SPI Error callback
|
||||
(++) AbortCpltCallback : SPI Abort callback
|
||||
(++) MspInitCallback : SPI Msp Init callback
|
||||
(++) MspDeInitCallback : SPI Msp DeInit callback
|
||||
|
||||
[..]
|
||||
By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET
|
||||
all callbacks are set to the corresponding weak functions:
|
||||
examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback().
|
||||
Exception done for MspInit and MspDeInit functions that are
|
||||
reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when
|
||||
these callbacks are null (not registered beforehand).
|
||||
If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit()
|
||||
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
|
||||
|
||||
[..]
|
||||
Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only.
|
||||
Exception done MspInit/MspDeInit functions that can be registered/unregistered
|
||||
in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state,
|
||||
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
||||
Then, the user first registers the MspInit/MspDeInit user callbacks
|
||||
using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit()
|
||||
or HAL_SPI_Init() function.
|
||||
|
||||
[..]
|
||||
When the compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or
|
||||
not defined, the callback registering feature is not available
|
||||
and weak (surcharged) callbacks are used.
|
||||
|
||||
[..]
|
||||
Using the HAL it is not possible to reach all supported SPI frequency with the different SPI Modes,
|
||||
the following table resume the max SPI frequency reached with data size 8bits/16bits,
|
||||
according to frequency of the APBx Peripheral Clock (fPCLK) used by the SPI instance.
|
||||
|
||||
@endverbatim
|
||||
|
||||
Additional table :
|
||||
|
||||
DataSize = SPI_DATASIZE_8BIT:
|
||||
+----------------------------------------------------------------------------------------------+
|
||||
| | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
|
||||
| Process | Transfer mode |---------------------|----------------------|----------------------|
|
||||
| | | Master | Slave | Master | Slave | Master | Slave |
|
||||
|==============================================================================================|
|
||||
| T | Polling | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA |
|
||||
| X |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| / | Interrupt | Fpclk/4 | Fpclk/16 | NA | NA | NA | NA |
|
||||
| R |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA |
|
||||
|=========|================|==========|==========|===========|==========|===========|==========|
|
||||
| | Polling | Fpclk/4 | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 |
|
||||
| |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| R | Interrupt | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | Fpclk/4 |
|
||||
| X |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| | DMA | Fpclk/4 | Fpclk/2 | Fpclk/2 | Fpclk/16 | Fpclk/2 | Fpclk/16 |
|
||||
|=========|================|==========|==========|===========|==========|===========|==========|
|
||||
| | Polling | Fpclk/8 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/8 |
|
||||
| |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/16 | Fpclk/8 |
|
||||
| X |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/16 |
|
||||
+----------------------------------------------------------------------------------------------+
|
||||
|
||||
DataSize = SPI_DATASIZE_16BIT:
|
||||
+----------------------------------------------------------------------------------------------+
|
||||
| | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
|
||||
| Process | Transfer mode |---------------------|----------------------|----------------------|
|
||||
| | | Master | Slave | Master | Slave | Master | Slave |
|
||||
|==============================================================================================|
|
||||
| T | Polling | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA |
|
||||
| X |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| / | Interrupt | Fpclk/4 | Fpclk/16 | NA | NA | NA | NA |
|
||||
| R |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA |
|
||||
|=========|================|==========|==========|===========|==========|===========|==========|
|
||||
| | Polling | Fpclk/4 | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 |
|
||||
| |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| R | Interrupt | Fpclk/8 | Fpclk/16 | Fpclk/8 | Fpclk/8 | Fpclk/8 | Fpclk/4 |
|
||||
| X |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| | DMA | Fpclk/4 | Fpclk/2 | Fpclk/2 | Fpclk/16 | Fpclk/2 | Fpclk/16 |
|
||||
|=========|================|==========|==========|===========|==========|===========|==========|
|
||||
| | Polling | Fpclk/8 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/8 |
|
||||
| |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/16 | Fpclk/8 |
|
||||
| X |----------------|----------|----------|-----------|----------|-----------|----------|
|
||||
| | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/8 | Fpclk/16 |
|
||||
+----------------------------------------------------------------------------------------------+
|
||||
@note The max SPI frequency depend on SPI data size (4bits, 5bits,..., 8bits,...15bits, 16bits),
|
||||
SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA).
|
||||
@note
|
||||
(#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA()
|
||||
(#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA()
|
||||
(#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA()
|
||||
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32l4xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32L4xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup SPI SPI
|
||||
* @brief SPI HAL module driver
|
||||
* @{
|
||||
*/
|
||||
#ifdef HAL_SPI_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private defines -----------------------------------------------------------*/
|
||||
/** @defgroup SPI_Private_Constants SPI Private Constants
|
||||
* @{
|
||||
*/
|
||||
#define SPI_DEFAULT_TIMEOUT 100U
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup SPI_Private_Functions SPI Private Functions
|
||||
* @{
|
||||
*/
|
||||
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMAError(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
|
||||
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
|
||||
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State,
|
||||
uint32_t Timeout, uint32_t Tickstart);
|
||||
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State,
|
||||
uint32_t Timeout, uint32_t Tickstart);
|
||||
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
|
||||
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
|
||||
#endif /* USE_SPI_CRC */
|
||||
static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi);
|
||||
static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi);
|
||||
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
|
||||
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
|
||||
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
|
||||
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart);
|
||||
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart);
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
/** @defgroup SPI_Exported_Functions SPI Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and de-initialization functions #####
|
||||
===============================================================================
|
||||
[..] This subsection provides a set of functions allowing to initialize and
|
||||
de-initialize the SPIx peripheral:
|
||||
|
||||
(+) User must implement HAL_SPI_MspInit() function in which he configures
|
||||
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
|
||||
|
||||
(+) Call the function HAL_SPI_Init() to configure the selected device with
|
||||
the selected configuration:
|
||||
(++) Mode
|
||||
(++) Direction
|
||||
(++) Data Size
|
||||
(++) Clock Polarity and Phase
|
||||
(++) NSS Management
|
||||
(++) BaudRate Prescaler
|
||||
(++) FirstBit
|
||||
(++) TIMode
|
||||
(++) CRC Calculation
|
||||
(++) CRC Polynomial if CRC enabled
|
||||
(++) CRC Length, used only with Data8 and Data16
|
||||
(++) FIFO reception threshold
|
||||
|
||||
(+) Call the function HAL_SPI_DeInit() to restore the default configuration
|
||||
of the selected SPIx peripheral.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the SPI according to the specified parameters
|
||||
* in the SPI_InitTypeDef and initialize the associated handle.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
uint32_t frxth;
|
||||
|
||||
/* Check the SPI handle allocation */
|
||||
if (hspi == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
|
||||
assert_param(IS_SPI_MODE(hspi->Init.Mode));
|
||||
assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
|
||||
assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
|
||||
assert_param(IS_SPI_NSS(hspi->Init.NSS));
|
||||
assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode));
|
||||
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
|
||||
assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
|
||||
assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
|
||||
if (hspi->Init.TIMode == SPI_TIMODE_DISABLE)
|
||||
{
|
||||
assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
|
||||
assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
|
||||
|
||||
if (hspi->Init.Mode == SPI_MODE_MASTER)
|
||||
{
|
||||
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Baudrate prescaler not use in Motoraola Slave mode. force to default value */
|
||||
hspi->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
|
||||
|
||||
/* Force polarity and phase to TI protocaol requirements */
|
||||
hspi->Init.CLKPolarity = SPI_POLARITY_LOW;
|
||||
hspi->Init.CLKPhase = SPI_PHASE_1EDGE;
|
||||
}
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
|
||||
assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength));
|
||||
}
|
||||
#else
|
||||
hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (hspi->State == HAL_SPI_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
hspi->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
/* Init the SPI Callback settings */
|
||||
hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
||||
hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
||||
hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
|
||||
hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
||||
hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
||||
hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
|
||||
hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */
|
||||
hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
||||
|
||||
if (hspi->MspInitCallback == NULL)
|
||||
{
|
||||
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
|
||||
}
|
||||
|
||||
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
|
||||
hspi->MspInitCallback(hspi);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
|
||||
HAL_SPI_MspInit(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
hspi->State = HAL_SPI_STATE_BUSY;
|
||||
|
||||
/* Disable the selected SPI peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
/* Align by default the rs fifo threshold on the data size */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
frxth = SPI_RXFIFO_THRESHOLD_HF;
|
||||
}
|
||||
else
|
||||
{
|
||||
frxth = SPI_RXFIFO_THRESHOLD_QF;
|
||||
}
|
||||
|
||||
/* CRC calculation is valid only for 16Bit and 8 Bit */
|
||||
if ((hspi->Init.DataSize != SPI_DATASIZE_16BIT) && (hspi->Init.DataSize != SPI_DATASIZE_8BIT))
|
||||
{
|
||||
/* CRC must be disabled */
|
||||
hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
|
||||
}
|
||||
|
||||
/*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
|
||||
/* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management,
|
||||
Communication speed, First bit and CRC calculation state */
|
||||
WRITE_REG(hspi->Instance->CR1, ((hspi->Init.Mode & (SPI_CR1_MSTR | SPI_CR1_SSI)) |
|
||||
(hspi->Init.Direction & (SPI_CR1_RXONLY | SPI_CR1_BIDIMODE)) |
|
||||
(hspi->Init.CLKPolarity & SPI_CR1_CPOL) |
|
||||
(hspi->Init.CLKPhase & SPI_CR1_CPHA) |
|
||||
(hspi->Init.NSS & SPI_CR1_SSM) |
|
||||
(hspi->Init.BaudRatePrescaler & SPI_CR1_BR_Msk) |
|
||||
(hspi->Init.FirstBit & SPI_CR1_LSBFIRST) |
|
||||
(hspi->Init.CRCCalculation & SPI_CR1_CRCEN)));
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/*---------------------------- SPIx CRCL Configuration -------------------*/
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Align the CRC Length on the data size */
|
||||
if (hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE)
|
||||
{
|
||||
/* CRC Length aligned on the data size : value set by default */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
|
||||
}
|
||||
}
|
||||
|
||||
/* Configure : CRC Length */
|
||||
if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCL);
|
||||
}
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Configure : NSS management, TI Mode, NSS Pulse, Data size and Rx Fifo threshold */
|
||||
WRITE_REG(hspi->Instance->CR2, (((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE) |
|
||||
(hspi->Init.TIMode & SPI_CR2_FRF) |
|
||||
(hspi->Init.NSSPMode & SPI_CR2_NSSP) |
|
||||
(hspi->Init.DataSize & SPI_CR2_DS_Msk) |
|
||||
(frxth & SPI_CR2_FRXTH)));
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/*---------------------------- SPIx CRCPOLY Configuration ------------------*/
|
||||
/* Configure : CRC Polynomial */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
WRITE_REG(hspi->Instance->CRCPR, (hspi->Init.CRCPolynomial & SPI_CRCPR_CRCPOLY_Msk));
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
#if defined(SPI_I2SCFGR_I2SMOD)
|
||||
/* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
|
||||
CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
|
||||
#endif /* SPI_I2SCFGR_I2SMOD */
|
||||
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief De-Initialize the SPI peripheral.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Check the SPI handle allocation */
|
||||
if (hspi == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check SPI Instance parameter */
|
||||
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
|
||||
|
||||
hspi->State = HAL_SPI_STATE_BUSY;
|
||||
|
||||
/* Disable the SPI Peripheral Clock */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
if (hspi->MspDeInitCallback == NULL)
|
||||
{
|
||||
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
|
||||
}
|
||||
|
||||
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
||||
hspi->MspDeInitCallback(hspi);
|
||||
#else
|
||||
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
|
||||
HAL_SPI_MspDeInit(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->State = HAL_SPI_STATE_RESET;
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(hspi);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the SPI MSP.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_MspInit should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief De-Initialize the SPI MSP.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_MspDeInit should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
/**
|
||||
* @brief Register a User SPI Callback
|
||||
* To be used instead of the weak predefined callback
|
||||
* @param hspi Pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI.
|
||||
* @param CallbackID ID of the callback to be registered
|
||||
* @param pCallback pointer to the Callback function
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID,
|
||||
pSPI_CallbackTypeDef pCallback)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
if (pCallback == NULL)
|
||||
{
|
||||
/* Update the error code */
|
||||
hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK;
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
if (HAL_SPI_STATE_READY == hspi->State)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_SPI_TX_COMPLETE_CB_ID :
|
||||
hspi->TxCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_RX_COMPLETE_CB_ID :
|
||||
hspi->RxCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_TX_RX_COMPLETE_CB_ID :
|
||||
hspi->TxRxCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_TX_HALF_COMPLETE_CB_ID :
|
||||
hspi->TxHalfCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_RX_HALF_COMPLETE_CB_ID :
|
||||
hspi->RxHalfCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID :
|
||||
hspi->TxRxHalfCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_ERROR_CB_ID :
|
||||
hspi->ErrorCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_ABORT_CB_ID :
|
||||
hspi->AbortCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_MSPINIT_CB_ID :
|
||||
hspi->MspInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_MSPDEINIT_CB_ID :
|
||||
hspi->MspDeInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
default :
|
||||
/* Update the error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
||||
|
||||
/* Return error status */
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (HAL_SPI_STATE_RESET == hspi->State)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_SPI_MSPINIT_CB_ID :
|
||||
hspi->MspInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_SPI_MSPDEINIT_CB_ID :
|
||||
hspi->MspDeInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
default :
|
||||
/* Update the error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
||||
|
||||
/* Return error status */
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Update the error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
||||
|
||||
/* Return error status */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Unregister an SPI Callback
|
||||
* SPI callback is redirected to the weak predefined callback
|
||||
* @param hspi Pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI.
|
||||
* @param CallbackID ID of the callback to be unregistered
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
if (HAL_SPI_STATE_READY == hspi->State)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_SPI_TX_COMPLETE_CB_ID :
|
||||
hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_RX_COMPLETE_CB_ID :
|
||||
hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_TX_RX_COMPLETE_CB_ID :
|
||||
hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_TX_HALF_COMPLETE_CB_ID :
|
||||
hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_RX_HALF_COMPLETE_CB_ID :
|
||||
hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID :
|
||||
hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_ERROR_CB_ID :
|
||||
hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_ABORT_CB_ID :
|
||||
hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_SPI_MSPINIT_CB_ID :
|
||||
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
|
||||
break;
|
||||
|
||||
case HAL_SPI_MSPDEINIT_CB_ID :
|
||||
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
|
||||
break;
|
||||
|
||||
default :
|
||||
/* Update the error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
||||
|
||||
/* Return error status */
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (HAL_SPI_STATE_RESET == hspi->State)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_SPI_MSPINIT_CB_ID :
|
||||
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
|
||||
break;
|
||||
|
||||
case HAL_SPI_MSPDEINIT_CB_ID :
|
||||
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
|
||||
break;
|
||||
|
||||
default :
|
||||
/* Update the error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
||||
|
||||
/* Return error status */
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Update the error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
|
||||
|
||||
/* Return error status */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return status;
|
||||
}
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
|
||||
* @brief Data transfers functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to manage the SPI
|
||||
data transfers.
|
||||
|
||||
[..] The SPI supports master and slave mode :
|
||||
|
||||
(#) There are two modes of transfer:
|
||||
(++) Blocking mode: The communication is performed in polling mode.
|
||||
The HAL status of all data processing is returned by the same function
|
||||
after finishing transfer.
|
||||
(++) No-Blocking mode: The communication is performed using Interrupts
|
||||
or DMA, These APIs return the HAL status.
|
||||
The end of the data processing will be indicated through the
|
||||
dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
|
||||
using DMA mode.
|
||||
The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
|
||||
will be executed respectively at the end of the transmit or Receive process
|
||||
The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
|
||||
|
||||
(#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
|
||||
exist for 1Line (simplex) and 2Lines (full duplex) modes.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Transmit an amount of data in blocking mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pData pointer to data buffer
|
||||
* @param Size amount of data to be sent
|
||||
* @param Timeout Timeout duration
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
||||
{
|
||||
uint32_t tickstart;
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
uint16_t initial_TxXferCount;
|
||||
|
||||
/* Check Direction parameter */
|
||||
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
initial_TxXferCount = Size;
|
||||
|
||||
if (hspi->State != HAL_SPI_STATE_READY)
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pTxBuffPtr = (uint8_t *)pData;
|
||||
hspi->TxXferSize = Size;
|
||||
hspi->TxXferCount = Size;
|
||||
|
||||
/*Init field not used in handle to zero */
|
||||
hspi->pRxBuffPtr = (uint8_t *)NULL;
|
||||
hspi->RxXferSize = 0U;
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->TxISR = NULL;
|
||||
hspi->RxISR = NULL;
|
||||
|
||||
/* Configure communication direction : 1Line */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
{
|
||||
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
SPI_1LINE_TX(hspi);
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
/* Transmit data in 16 Bit mode */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
/* Transmit data in 16 Bit mode */
|
||||
while (hspi->TxXferCount > 0U)
|
||||
{
|
||||
/* Wait until TXE flag is set to send data */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Timeout management */
|
||||
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
||||
{
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Transmit data in 8 Bit mode */
|
||||
else
|
||||
{
|
||||
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
|
||||
{
|
||||
if (hspi->TxXferCount > 1U)
|
||||
{
|
||||
/* write on the data register in packing mode */
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount -= 2U;
|
||||
}
|
||||
else
|
||||
{
|
||||
*((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr ++;
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
}
|
||||
while (hspi->TxXferCount > 0U)
|
||||
{
|
||||
/* Wait until TXE flag is set to send data */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
|
||||
{
|
||||
if (hspi->TxXferCount > 1U)
|
||||
{
|
||||
/* write on the data register in packing mode */
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount -= 2U;
|
||||
}
|
||||
else
|
||||
{
|
||||
*((__IO uint8_t *)&hspi->Instance->DR) = (*hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr++;
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Timeout management */
|
||||
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
||||
{
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Enable CRC Transmission */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
|
||||
}
|
||||
|
||||
/* Clear overrun flag in 2 Lines communication mode because received is not read */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
|
||||
{
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
}
|
||||
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
|
||||
error:
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in blocking mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pData pointer to data buffer
|
||||
* @param Size amount of data to be received
|
||||
* @param Timeout Timeout duration
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
__IO uint32_t tmpreg = 0U;
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
#endif /* USE_SPI_CRC */
|
||||
uint32_t tickstart;
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
||||
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
|
||||
return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout);
|
||||
}
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
if (hspi->State != HAL_SPI_STATE_READY)
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pRxBuffPtr = (uint8_t *)pData;
|
||||
hspi->RxXferSize = Size;
|
||||
hspi->RxXferCount = Size;
|
||||
|
||||
/*Init field not used in handle to zero */
|
||||
hspi->pTxBuffPtr = (uint8_t *)NULL;
|
||||
hspi->TxXferSize = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
hspi->RxISR = NULL;
|
||||
hspi->TxISR = NULL;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
/* this is done to handle the CRCNEXT before the latest data */
|
||||
hspi->RxXferCount--;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Set the Rx Fifo threshold */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 16bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 8bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
|
||||
/* Configure communication direction: 1Line */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
{
|
||||
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
SPI_1LINE_RX(hspi);
|
||||
}
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
/* Receive data in 8 Bit mode */
|
||||
if (hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
|
||||
{
|
||||
/* Transfer loop */
|
||||
while (hspi->RxXferCount > 0U)
|
||||
{
|
||||
/* Check the RXNE flag */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
|
||||
{
|
||||
/* read the received data */
|
||||
(* (uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR;
|
||||
hspi->pRxBuffPtr += sizeof(uint8_t);
|
||||
hspi->RxXferCount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Timeout management */
|
||||
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
||||
{
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Transfer loop */
|
||||
while (hspi->RxXferCount > 0U)
|
||||
{
|
||||
/* Check the RXNE flag */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
|
||||
{
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
|
||||
hspi->pRxBuffPtr += sizeof(uint16_t);
|
||||
hspi->RxXferCount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Timeout management */
|
||||
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
|
||||
{
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Handle the CRC Transmission */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* freeze the CRC before the latest data */
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
|
||||
/* Read the latest data */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
/* the latest data has not been received */
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Receive last data in 16 Bit mode */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
|
||||
}
|
||||
/* Receive last data in 8 Bit mode */
|
||||
else
|
||||
{
|
||||
(*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR;
|
||||
}
|
||||
|
||||
/* Wait the CRC data */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Read CRC to Flush DR and RXNE flag */
|
||||
if (hspi->Init.DataSize == SPI_DATASIZE_16BIT)
|
||||
{
|
||||
/* Read 16bit CRC */
|
||||
tmpreg = READ_REG(hspi->Instance->DR);
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
/* Read 8bit CRC */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
|
||||
if ((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
|
||||
{
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
/* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTransaction(hspi, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Check if CRC error occurred */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
|
||||
error :
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Transmit and Receive an amount of data in blocking mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pTxData pointer to transmission data buffer
|
||||
* @param pRxData pointer to reception data buffer
|
||||
* @param Size amount of data to be sent and received
|
||||
* @param Timeout Timeout duration
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size,
|
||||
uint32_t Timeout)
|
||||
{
|
||||
uint16_t initial_TxXferCount;
|
||||
uint16_t initial_RxXferCount;
|
||||
uint32_t tmp_mode;
|
||||
HAL_SPI_StateTypeDef tmp_state;
|
||||
uint32_t tickstart;
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
__IO uint32_t tmpreg = 0U;
|
||||
uint32_t spi_cr1;
|
||||
uint32_t spi_cr2;
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Variable used to alternate Rx and Tx during transfer */
|
||||
uint32_t txallowed = 1U;
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
/* Check Direction parameter */
|
||||
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Init temporary variables */
|
||||
tmp_state = hspi->State;
|
||||
tmp_mode = hspi->Init.Mode;
|
||||
initial_TxXferCount = Size;
|
||||
initial_RxXferCount = Size;
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
spi_cr1 = READ_REG(hspi->Instance->CR1);
|
||||
spi_cr2 = READ_REG(hspi->Instance->CR2);
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (!((tmp_state == HAL_SPI_STATE_READY) || \
|
||||
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX))))
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
|
||||
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
||||
hspi->RxXferCount = Size;
|
||||
hspi->RxXferSize = Size;
|
||||
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
||||
hspi->TxXferCount = Size;
|
||||
hspi->TxXferSize = Size;
|
||||
|
||||
/*Init field not used in handle to zero */
|
||||
hspi->RxISR = NULL;
|
||||
hspi->TxISR = NULL;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Set the Rx Fifo threshold */
|
||||
if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (initial_RxXferCount > 1U))
|
||||
{
|
||||
/* Set fiforxthreshold according the reception data length: 16bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set fiforxthreshold according the reception data length: 8bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
/* Transmit and Receive data in 16 Bit mode */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
|
||||
{
|
||||
/* Check TXE flag */
|
||||
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U))
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount--;
|
||||
/* Next Data is a reception (Rx). Tx not allowed */
|
||||
txallowed = 0U;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Enable CRC Transmission */
|
||||
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
|
||||
{
|
||||
/* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */
|
||||
if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP))
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM);
|
||||
}
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
}
|
||||
|
||||
/* Check RXNE flag */
|
||||
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U))
|
||||
{
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
|
||||
hspi->pRxBuffPtr += sizeof(uint16_t);
|
||||
hspi->RxXferCount--;
|
||||
/* Next Data is a Transmission (Tx). Tx is allowed */
|
||||
txallowed = 1U;
|
||||
}
|
||||
if (((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY))
|
||||
{
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Transmit and Receive data in 8 Bit mode */
|
||||
else
|
||||
{
|
||||
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
|
||||
{
|
||||
if (hspi->TxXferCount > 1U)
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount -= 2U;
|
||||
}
|
||||
else
|
||||
{
|
||||
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr++;
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
}
|
||||
while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
|
||||
{
|
||||
/* Check TXE flag */
|
||||
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U))
|
||||
{
|
||||
if (hspi->TxXferCount > 1U)
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount -= 2U;
|
||||
}
|
||||
else
|
||||
{
|
||||
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr++;
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
/* Next Data is a reception (Rx). Tx not allowed */
|
||||
txallowed = 0U;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Enable CRC Transmission */
|
||||
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
|
||||
{
|
||||
/* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */
|
||||
if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP))
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM);
|
||||
}
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
}
|
||||
|
||||
/* Wait until RXNE flag is reset */
|
||||
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U))
|
||||
{
|
||||
if (hspi->RxXferCount > 1U)
|
||||
{
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
|
||||
hspi->pRxBuffPtr += sizeof(uint16_t);
|
||||
hspi->RxXferCount -= 2U;
|
||||
if (hspi->RxXferCount <= 1U)
|
||||
{
|
||||
/* Set RX Fifo threshold before to switch on 8 bit data size */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
(*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR;
|
||||
hspi->pRxBuffPtr++;
|
||||
hspi->RxXferCount--;
|
||||
}
|
||||
/* Next Data is a Transmission (Tx). Tx is allowed */
|
||||
txallowed = 1U;
|
||||
}
|
||||
if ((((HAL_GetTick() - tickstart) >= Timeout) && ((Timeout != HAL_MAX_DELAY))) || (Timeout == 0U))
|
||||
{
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Read CRC from DR to close CRC calculation process */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Wait until TXE flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
/* Read CRC */
|
||||
if (hspi->Init.DataSize == SPI_DATASIZE_16BIT)
|
||||
{
|
||||
/* Read 16bit CRC */
|
||||
tmpreg = READ_REG(hspi->Instance->DR);
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
/* Read 8bit CRC */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
|
||||
if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
|
||||
{
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
errorcode = HAL_TIMEOUT;
|
||||
goto error;
|
||||
}
|
||||
/* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if CRC error occurred */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
/* Clear CRC Flag */
|
||||
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
||||
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK)
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
|
||||
}
|
||||
|
||||
error :
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Transmit an amount of data in non-blocking mode with Interrupt.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pData pointer to data buffer
|
||||
* @param Size amount of data to be sent
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
/* Check Direction parameter */
|
||||
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if (hspi->State != HAL_SPI_STATE_READY)
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pTxBuffPtr = (uint8_t *)pData;
|
||||
hspi->TxXferSize = Size;
|
||||
hspi->TxXferCount = Size;
|
||||
|
||||
/* Init field not used in handle to zero */
|
||||
hspi->pRxBuffPtr = (uint8_t *)NULL;
|
||||
hspi->RxXferSize = 0U;
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->RxISR = NULL;
|
||||
|
||||
/* Set the function for IT treatment */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
hspi->TxISR = SPI_TxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->TxISR = SPI_TxISR_8BIT;
|
||||
}
|
||||
|
||||
/* Configure communication direction : 1Line */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
{
|
||||
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
SPI_1LINE_TX(hspi);
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Enable TXE and ERR interrupt */
|
||||
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
|
||||
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
error :
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in non-blocking mode with Interrupt.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pData pointer to data buffer
|
||||
* @param Size amount of data to be sent
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
||||
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
|
||||
return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
|
||||
}
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
if (hspi->State != HAL_SPI_STATE_READY)
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pRxBuffPtr = (uint8_t *)pData;
|
||||
hspi->RxXferSize = Size;
|
||||
hspi->RxXferCount = Size;
|
||||
|
||||
/* Init field not used in handle to zero */
|
||||
hspi->pTxBuffPtr = (uint8_t *)NULL;
|
||||
hspi->TxXferSize = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
hspi->TxISR = NULL;
|
||||
|
||||
/* Check the data size to adapt Rx threshold and the set the function for IT treatment */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 16 bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
hspi->RxISR = SPI_RxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 8 bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
hspi->RxISR = SPI_RxISR_8BIT;
|
||||
}
|
||||
|
||||
/* Configure communication direction : 1Line */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
{
|
||||
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
SPI_1LINE_RX(hspi);
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
hspi->CRCSize = 1U;
|
||||
if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
|
||||
{
|
||||
hspi->CRCSize = 2U;
|
||||
}
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->CRCSize = 0U;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Enable TXE and ERR interrupt */
|
||||
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
/* Note : The SPI must be enabled after unlocking current process
|
||||
to avoid the risk of SPI interrupt handle execution before current
|
||||
process unlock */
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
error :
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pTxData pointer to transmission data buffer
|
||||
* @param pRxData pointer to reception data buffer
|
||||
* @param Size amount of data to be sent and received
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
|
||||
{
|
||||
uint32_t tmp_mode;
|
||||
HAL_SPI_StateTypeDef tmp_state;
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
/* Check Direction parameter */
|
||||
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Init temporary variables */
|
||||
tmp_state = hspi->State;
|
||||
tmp_mode = hspi->Init.Mode;
|
||||
|
||||
if (!((tmp_state == HAL_SPI_STATE_READY) || \
|
||||
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX))))
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
|
||||
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
||||
hspi->TxXferSize = Size;
|
||||
hspi->TxXferCount = Size;
|
||||
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
||||
hspi->RxXferSize = Size;
|
||||
hspi->RxXferCount = Size;
|
||||
|
||||
/* Set the function for IT treatment */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
hspi->RxISR = SPI_2linesRxISR_16BIT;
|
||||
hspi->TxISR = SPI_2linesTxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->RxISR = SPI_2linesRxISR_8BIT;
|
||||
hspi->TxISR = SPI_2linesTxISR_8BIT;
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
hspi->CRCSize = 1U;
|
||||
if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
|
||||
{
|
||||
hspi->CRCSize = 2U;
|
||||
}
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->CRCSize = 0U;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check if packing mode is enabled and if there is more than 2 data to receive */
|
||||
if ((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (Size >= 2U))
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 16 bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 8 bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
|
||||
/* Enable TXE, RXNE and ERR interrupt */
|
||||
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
error :
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Transmit an amount of data in non-blocking mode with DMA.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pData pointer to data buffer
|
||||
* @param Size amount of data to be sent
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
/* Check tx dma handle */
|
||||
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
|
||||
|
||||
/* Check Direction parameter */
|
||||
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
if (hspi->State != HAL_SPI_STATE_READY)
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->State = HAL_SPI_STATE_BUSY_TX;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pTxBuffPtr = (uint8_t *)pData;
|
||||
hspi->TxXferSize = Size;
|
||||
hspi->TxXferCount = Size;
|
||||
|
||||
/* Init field not used in handle to zero */
|
||||
hspi->pRxBuffPtr = (uint8_t *)NULL;
|
||||
hspi->TxISR = NULL;
|
||||
hspi->RxISR = NULL;
|
||||
hspi->RxXferSize = 0U;
|
||||
hspi->RxXferCount = 0U;
|
||||
|
||||
/* Configure communication direction : 1Line */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
{
|
||||
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
SPI_1LINE_TX(hspi);
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Set the SPI TxDMA Half transfer complete callback */
|
||||
hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
|
||||
|
||||
/* Set the SPI TxDMA transfer complete callback */
|
||||
hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;
|
||||
|
||||
/* Set the DMA error callback */
|
||||
hspi->hdmatx->XferErrorCallback = SPI_DMAError;
|
||||
|
||||
/* Set the DMA AbortCpltCallback */
|
||||
hspi->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
||||
/* Packing mode is enabled only if the DMA setting is HALWORD */
|
||||
if ((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
|
||||
{
|
||||
/* Check the even/odd of the data size + crc if enabled */
|
||||
if ((hspi->TxXferCount & 0x1U) == 0U)
|
||||
{
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
||||
hspi->TxXferCount = (hspi->TxXferCount >> 1U);
|
||||
}
|
||||
else
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
||||
hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U;
|
||||
}
|
||||
}
|
||||
|
||||
/* Enable the Tx DMA Stream/Channel */
|
||||
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR,
|
||||
hspi->TxXferCount))
|
||||
{
|
||||
/* Update SPI error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
errorcode = HAL_ERROR;
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
/* Enable the SPI Error Interrupt Bit */
|
||||
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
|
||||
|
||||
/* Enable Tx DMA Request */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
|
||||
|
||||
error :
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in non-blocking mode with DMA.
|
||||
* @note In case of MASTER mode and SPI_DIRECTION_2LINES direction, hdmatx shall be defined.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pData pointer to data buffer
|
||||
* @note When the CRC feature is enabled the pData Length must be Size + 1.
|
||||
* @param Size amount of data to be sent
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
/* Check rx dma handle */
|
||||
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx));
|
||||
|
||||
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
||||
|
||||
/* Check tx dma handle */
|
||||
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
|
||||
|
||||
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
|
||||
return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size);
|
||||
}
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
if (hspi->State != HAL_SPI_STATE_READY)
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->State = HAL_SPI_STATE_BUSY_RX;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pRxBuffPtr = (uint8_t *)pData;
|
||||
hspi->RxXferSize = Size;
|
||||
hspi->RxXferCount = Size;
|
||||
|
||||
/*Init field not used in handle to zero */
|
||||
hspi->RxISR = NULL;
|
||||
hspi->TxISR = NULL;
|
||||
hspi->TxXferSize = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
|
||||
/* Configure communication direction : 1Line */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
{
|
||||
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
SPI_1LINE_RX(hspi);
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 16bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 8bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
|
||||
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 16bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
|
||||
if ((hspi->RxXferCount & 0x1U) == 0x0U)
|
||||
{
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
||||
hspi->RxXferCount = hspi->RxXferCount >> 1U;
|
||||
}
|
||||
else
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
||||
hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set the SPI RxDMA Half transfer complete callback */
|
||||
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
|
||||
|
||||
/* Set the SPI Rx DMA transfer complete callback */
|
||||
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
|
||||
|
||||
/* Set the DMA error callback */
|
||||
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
|
||||
|
||||
/* Set the DMA AbortCpltCallback */
|
||||
hspi->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
/* Enable the Rx DMA Stream/Channel */
|
||||
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr,
|
||||
hspi->RxXferCount))
|
||||
{
|
||||
/* Update SPI error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
errorcode = HAL_ERROR;
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
|
||||
/* Enable the SPI Error Interrupt Bit */
|
||||
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
|
||||
|
||||
/* Enable Rx DMA Request */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
|
||||
|
||||
error:
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Transmit and Receive an amount of data in non-blocking mode with DMA.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param pTxData pointer to transmission data buffer
|
||||
* @param pRxData pointer to reception data buffer
|
||||
* @note When the CRC feature is enabled the pRxData Length must be Size + 1
|
||||
* @param Size amount of data to be sent
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData,
|
||||
uint16_t Size)
|
||||
{
|
||||
uint32_t tmp_mode;
|
||||
HAL_SPI_StateTypeDef tmp_state;
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
|
||||
/* Check rx & tx dma handles */
|
||||
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx));
|
||||
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
|
||||
|
||||
/* Check Direction parameter */
|
||||
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Init temporary variables */
|
||||
tmp_state = hspi->State;
|
||||
tmp_mode = hspi->Init.Mode;
|
||||
|
||||
if (!((tmp_state == HAL_SPI_STATE_READY) ||
|
||||
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp_state == HAL_SPI_STATE_BUSY_RX))))
|
||||
{
|
||||
errorcode = HAL_BUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
|
||||
{
|
||||
errorcode = HAL_ERROR;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
|
||||
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
|
||||
}
|
||||
|
||||
/* Set the transaction information */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
hspi->pTxBuffPtr = (uint8_t *)pTxData;
|
||||
hspi->TxXferSize = Size;
|
||||
hspi->TxXferCount = Size;
|
||||
hspi->pRxBuffPtr = (uint8_t *)pRxData;
|
||||
hspi->RxXferSize = Size;
|
||||
hspi->RxXferCount = Size;
|
||||
|
||||
/* Init field not used in handle to zero */
|
||||
hspi->RxISR = NULL;
|
||||
hspi->TxISR = NULL;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Reset the threshold bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX);
|
||||
|
||||
/* The packing mode management is enabled by the DMA settings according the spi data size */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
/* Set fiforxthreshold according the reception data length: 16bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 8bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
|
||||
if (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
||||
{
|
||||
if ((hspi->TxXferSize & 0x1U) == 0x0U)
|
||||
{
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
||||
hspi->TxXferCount = hspi->TxXferCount >> 1U;
|
||||
}
|
||||
else
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
|
||||
hspi->TxXferCount = (hspi->TxXferCount >> 1U) + 1U;
|
||||
}
|
||||
}
|
||||
|
||||
if (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 16bit */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
|
||||
if ((hspi->RxXferCount & 0x1U) == 0x0U)
|
||||
{
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
||||
hspi->RxXferCount = hspi->RxXferCount >> 1U;
|
||||
}
|
||||
else
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
|
||||
hspi->RxXferCount = (hspi->RxXferCount >> 1U) + 1U;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */
|
||||
if (hspi->State == HAL_SPI_STATE_BUSY_RX)
|
||||
{
|
||||
/* Set the SPI Rx DMA Half transfer complete callback */
|
||||
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
|
||||
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set the SPI Tx/Rx DMA Half transfer complete callback */
|
||||
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
|
||||
hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
|
||||
}
|
||||
|
||||
/* Set the DMA error callback */
|
||||
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
|
||||
|
||||
/* Set the DMA AbortCpltCallback */
|
||||
hspi->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
/* Enable the Rx DMA Stream/Channel */
|
||||
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr,
|
||||
hspi->RxXferCount))
|
||||
{
|
||||
/* Update SPI error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
errorcode = HAL_ERROR;
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Enable Rx DMA Request */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
|
||||
|
||||
/* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
|
||||
is performed in DMA reception complete callback */
|
||||
hspi->hdmatx->XferHalfCpltCallback = NULL;
|
||||
hspi->hdmatx->XferCpltCallback = NULL;
|
||||
hspi->hdmatx->XferErrorCallback = NULL;
|
||||
hspi->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
/* Enable the Tx DMA Stream/Channel */
|
||||
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR,
|
||||
hspi->TxXferCount))
|
||||
{
|
||||
/* Update SPI error code */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
errorcode = HAL_ERROR;
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Check if the SPI is already enabled */
|
||||
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
|
||||
{
|
||||
/* Enable SPI peripheral */
|
||||
__HAL_SPI_ENABLE(hspi);
|
||||
}
|
||||
/* Enable the SPI Error Interrupt Bit */
|
||||
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
|
||||
|
||||
/* Enable Tx DMA Request */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
|
||||
|
||||
error :
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing transfer (blocking mode).
|
||||
* @param hspi SPI handle.
|
||||
* @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
|
||||
* started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable SPI Interrupts (depending of transfer direction)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode;
|
||||
__IO uint32_t count;
|
||||
__IO uint32_t resetcount;
|
||||
|
||||
/* Initialized local variable */
|
||||
errorcode = HAL_OK;
|
||||
resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
|
||||
count = resetcount;
|
||||
|
||||
/* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
|
||||
|
||||
/* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
|
||||
{
|
||||
hspi->TxISR = SPI_AbortTx_ISR;
|
||||
/* Wait HAL_SPI_STATE_ABORT state */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (hspi->State != HAL_SPI_STATE_ABORT);
|
||||
/* Reset Timeout Counter */
|
||||
count = resetcount;
|
||||
}
|
||||
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
|
||||
{
|
||||
hspi->RxISR = SPI_AbortRx_ISR;
|
||||
/* Wait HAL_SPI_STATE_ABORT state */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (hspi->State != HAL_SPI_STATE_ABORT);
|
||||
/* Reset Timeout Counter */
|
||||
count = resetcount;
|
||||
}
|
||||
|
||||
/* Disable the SPI DMA Tx request if enabled */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
|
||||
{
|
||||
/* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */
|
||||
if (hspi->hdmatx != NULL)
|
||||
{
|
||||
/* Set the SPI DMA Abort callback :
|
||||
will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
|
||||
hspi->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
/* Abort DMA Tx Handle linked to SPI Peripheral */
|
||||
if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Disable Tx DMA Request */
|
||||
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN));
|
||||
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Disable SPI Peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable the SPI DMA Rx request if enabled */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
|
||||
{
|
||||
/* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */
|
||||
if (hspi->hdmarx != NULL)
|
||||
{
|
||||
/* Set the SPI DMA Abort callback :
|
||||
will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
|
||||
hspi->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
/* Abort DMA Rx Handle linked to SPI Peripheral */
|
||||
if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Disable peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
/* Control the BSY flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Disable Rx DMA Request */
|
||||
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN));
|
||||
}
|
||||
}
|
||||
/* Reset Tx and Rx transfer counters */
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
|
||||
/* Check error during Abort procedure */
|
||||
if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT)
|
||||
{
|
||||
/* return HAL_Error in case of error during Abort procedure */
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Reset errorCode */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
}
|
||||
|
||||
/* Clear the Error flags in the SR register */
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
||||
|
||||
/* Restore hspi->state to ready */
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing transfer (Interrupt mode).
|
||||
* @param hspi SPI handle.
|
||||
* @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
|
||||
* started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable SPI Interrupts (depending of transfer direction)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* - At abort completion, call user abort complete callback
|
||||
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
||||
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode;
|
||||
uint32_t abortcplt ;
|
||||
__IO uint32_t count;
|
||||
__IO uint32_t resetcount;
|
||||
|
||||
/* Initialized local variable */
|
||||
errorcode = HAL_OK;
|
||||
abortcplt = 1U;
|
||||
resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
|
||||
count = resetcount;
|
||||
|
||||
/* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
|
||||
|
||||
/* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
|
||||
{
|
||||
hspi->TxISR = SPI_AbortTx_ISR;
|
||||
/* Wait HAL_SPI_STATE_ABORT state */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (hspi->State != HAL_SPI_STATE_ABORT);
|
||||
/* Reset Timeout Counter */
|
||||
count = resetcount;
|
||||
}
|
||||
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
|
||||
{
|
||||
hspi->RxISR = SPI_AbortRx_ISR;
|
||||
/* Wait HAL_SPI_STATE_ABORT state */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (hspi->State != HAL_SPI_STATE_ABORT);
|
||||
/* Reset Timeout Counter */
|
||||
count = resetcount;
|
||||
}
|
||||
|
||||
/* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised
|
||||
before any call to DMA Abort functions */
|
||||
/* DMA Tx Handle is valid */
|
||||
if (hspi->hdmatx != NULL)
|
||||
{
|
||||
/* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
|
||||
Otherwise, set it to NULL */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
|
||||
{
|
||||
hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback;
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->hdmatx->XferAbortCallback = NULL;
|
||||
}
|
||||
}
|
||||
/* DMA Rx Handle is valid */
|
||||
if (hspi->hdmarx != NULL)
|
||||
{
|
||||
/* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
|
||||
Otherwise, set it to NULL */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
|
||||
{
|
||||
hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback;
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->hdmarx->XferAbortCallback = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable the SPI DMA Tx request if enabled */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
|
||||
{
|
||||
/* Abort the SPI DMA Tx Stream/Channel */
|
||||
if (hspi->hdmatx != NULL)
|
||||
{
|
||||
/* Abort DMA Tx Handle linked to SPI Peripheral */
|
||||
if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
|
||||
{
|
||||
hspi->hdmatx->XferAbortCallback = NULL;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
else
|
||||
{
|
||||
abortcplt = 0U;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Disable the SPI DMA Rx request if enabled */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
|
||||
{
|
||||
/* Abort the SPI DMA Rx Stream/Channel */
|
||||
if (hspi->hdmarx != NULL)
|
||||
{
|
||||
/* Abort DMA Rx Handle linked to SPI Peripheral */
|
||||
if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK)
|
||||
{
|
||||
hspi->hdmarx->XferAbortCallback = NULL;
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
else
|
||||
{
|
||||
abortcplt = 0U;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (abortcplt == 1U)
|
||||
{
|
||||
/* Reset Tx and Rx transfer counters */
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
|
||||
/* Check error during Abort procedure */
|
||||
if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT)
|
||||
{
|
||||
/* return HAL_Error in case of error during Abort procedure */
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Reset errorCode */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
}
|
||||
|
||||
/* Clear the Error flags in the SR register */
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
||||
|
||||
/* Restore hspi->State to Ready */
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
/* As no DMA to be aborted, call directly user Abort complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->AbortCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_AbortCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Pause the DMA Transfer.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Disable the SPI DMA Tx & Rx requests */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resume the DMA Transfer.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(hspi);
|
||||
|
||||
/* Enable the SPI DMA Tx & Rx requests */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stop the DMA Transfer.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
HAL_StatusTypeDef errorcode = HAL_OK;
|
||||
/* The Lock is not implemented on this API to allow the user application
|
||||
to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback():
|
||||
when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
|
||||
and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback()
|
||||
*/
|
||||
|
||||
/* Abort the SPI DMA tx Stream/Channel */
|
||||
if (hspi->hdmatx != NULL)
|
||||
{
|
||||
if (HAL_OK != HAL_DMA_Abort(hspi->hdmatx))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
/* Abort the SPI DMA rx Stream/Channel */
|
||||
if (hspi->hdmarx != NULL)
|
||||
{
|
||||
if (HAL_OK != HAL_DMA_Abort(hspi->hdmarx))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
errorcode = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable the SPI DMA Tx & Rx requests */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
return errorcode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle SPI interrupt request.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
uint32_t itsource = hspi->Instance->CR2;
|
||||
uint32_t itflag = hspi->Instance->SR;
|
||||
|
||||
/* SPI in mode Receiver ----------------------------------------------------*/
|
||||
if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) == RESET) &&
|
||||
(SPI_CHECK_FLAG(itflag, SPI_FLAG_RXNE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_RXNE) != RESET))
|
||||
{
|
||||
hspi->RxISR(hspi);
|
||||
return;
|
||||
}
|
||||
|
||||
/* SPI in mode Transmitter -------------------------------------------------*/
|
||||
if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_TXE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_TXE) != RESET))
|
||||
{
|
||||
hspi->TxISR(hspi);
|
||||
return;
|
||||
}
|
||||
|
||||
/* SPI in Error Treatment --------------------------------------------------*/
|
||||
if (((SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) || (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET)
|
||||
|| (SPI_CHECK_FLAG(itflag, SPI_FLAG_FRE) != RESET)) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_ERR) != RESET))
|
||||
{
|
||||
/* SPI Overrun error interrupt occurred ----------------------------------*/
|
||||
if (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET)
|
||||
{
|
||||
if (hspi->State != HAL_SPI_STATE_BUSY_TX)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR);
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
}
|
||||
else
|
||||
{
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* SPI Mode Fault error interrupt occurred -------------------------------*/
|
||||
if (SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF);
|
||||
__HAL_SPI_CLEAR_MODFFLAG(hspi);
|
||||
}
|
||||
|
||||
/* SPI Frame error interrupt occurred ------------------------------------*/
|
||||
if (SPI_CHECK_FLAG(itflag, SPI_FLAG_FRE) != RESET)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FRE);
|
||||
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
||||
}
|
||||
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
/* Disable all interrupts */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR);
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
/* Disable the SPI DMA requests if enabled */
|
||||
if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN)))
|
||||
{
|
||||
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN));
|
||||
|
||||
/* Abort the SPI DMA Rx channel */
|
||||
if (hspi->hdmarx != NULL)
|
||||
{
|
||||
/* Set the SPI DMA Abort callback :
|
||||
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
|
||||
hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
|
||||
if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
}
|
||||
}
|
||||
/* Abort the SPI DMA Tx channel */
|
||||
if (hspi->hdmatx != NULL)
|
||||
{
|
||||
/* Set the SPI DMA Abort callback :
|
||||
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
|
||||
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
|
||||
if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Tx Transfer completed callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_TxCpltCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rx Transfer completed callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_RxCpltCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Tx and Rx Transfer completed callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_TxRxCpltCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Tx Half Transfer completed callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_TxHalfCpltCallback should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rx Half Transfer completed callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Tx and Rx Half Transfer callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief SPI error callback.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_ErrorCallback should be implemented in the user file
|
||||
*/
|
||||
/* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes
|
||||
and user can use HAL_SPI_GetError() API to check the latest error occurred
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief SPI Abort Complete callback.
|
||||
* @param hspi SPI handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(hspi);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_SPI_AbortCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions
|
||||
* @brief SPI control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral State and Errors functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to control the SPI.
|
||||
(+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
|
||||
(+) HAL_SPI_GetError() check in run-time Errors occurring during communication
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Return the SPI handle state.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval SPI state
|
||||
*/
|
||||
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Return SPI handle state */
|
||||
return hspi->State;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the SPI error code.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval SPI error code in bitmap format
|
||||
*/
|
||||
uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Return SPI ErrorCode */
|
||||
return hspi->ErrorCode;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup SPI_Private_Functions
|
||||
* @brief Private functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief DMA SPI transmit process complete callback.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* DMA Normal Mode */
|
||||
if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
|
||||
{
|
||||
/* Disable ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
|
||||
|
||||
/* Disable Tx DMA Request */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
}
|
||||
|
||||
/* Clear overrun flag in 2 Lines communication mode because received data is not read */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
|
||||
{
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
}
|
||||
|
||||
hspi->TxXferCount = 0U;
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Call user Tx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->TxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_TxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI receive process complete callback.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
uint32_t tickstart;
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
__IO uint32_t tmpreg = 0U;
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* DMA Normal Mode */
|
||||
if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
|
||||
{
|
||||
/* Disable ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* CRC handling */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Wait until RXNE flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
}
|
||||
/* Read CRC */
|
||||
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
|
||||
{
|
||||
/* Read 16bit CRC */
|
||||
tmpreg = READ_REG(hspi->Instance->DR);
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
/* Read 8bit CRC */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
|
||||
if (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
|
||||
{
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
}
|
||||
/* Read 8bit CRC again in case of 16bit CRC in 8bit Data mode */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check if we are in Master RX 2 line mode */
|
||||
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
|
||||
{
|
||||
/* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Normal case */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
|
||||
}
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
|
||||
}
|
||||
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Check if CRC error occurred */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Call user Rx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->RxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_RxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI transmit receive process complete callback.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
uint32_t tickstart;
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
__IO uint32_t tmpreg = 0U;
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* DMA Normal Mode */
|
||||
if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
|
||||
{
|
||||
/* Disable ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* CRC handling */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
if ((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT))
|
||||
{
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT,
|
||||
tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
}
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
/* Read 8bit CRC */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
/* Error on the CRC reception */
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
}
|
||||
/* Read CRC to Flush DR and RXNE flag */
|
||||
tmpreg = READ_REG(hspi->Instance->DR);
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg);
|
||||
}
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
}
|
||||
|
||||
/* Disable Rx/Tx DMA Request */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
||||
|
||||
hspi->TxXferCount = 0U;
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Check if CRC error occurred */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR))
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Call user TxRx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->TxRxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_TxRxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI half transmit process complete callback.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
|
||||
/* Call user Tx half complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->TxHalfCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_TxHalfCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI half receive process complete callback
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
|
||||
/* Call user Rx half complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->RxHalfCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_RxHalfCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI half transmit receive process complete callback.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
|
||||
/* Call user TxRx half complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->TxRxHalfCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_TxRxHalfCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI communication error callback.
|
||||
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified DMA module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMAError(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
|
||||
/* Stop the disable DMA transfer on SPI side */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
||||
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI communication abort callback, when initiated by HAL services on Error
|
||||
* (To be called at end of DMA Abort procedure following error occurrence).
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI Tx communication abort callback, when initiated by user
|
||||
* (To be called at end of DMA Tx Abort procedure following user abort request).
|
||||
* @note When this callback is executed, User Abort complete call back is called only if no
|
||||
* Abort still ongoing for Rx DMA Handle.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
|
||||
hspi->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
/* Disable Tx DMA Request */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
|
||||
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Disable SPI Peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Check if an Abort process is still ongoing */
|
||||
if (hspi->hdmarx != NULL)
|
||||
{
|
||||
if (hspi->hdmarx->XferAbortCallback != NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
|
||||
/* Check no error during Abort procedure */
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT)
|
||||
{
|
||||
/* Reset errorCode */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
}
|
||||
|
||||
/* Clear the Error flags in the SR register */
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
||||
|
||||
/* Restore hspi->State to Ready */
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
/* Call user Abort complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->AbortCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_AbortCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA SPI Rx communication abort callback, when initiated by user
|
||||
* (To be called at end of DMA Rx Abort procedure following user abort request).
|
||||
* @note When this callback is executed, User Abort complete call back is called only if no
|
||||
* Abort still ongoing for Tx DMA Handle.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent); /* Derogation MISRAC2012-Rule-11.5 */
|
||||
|
||||
/* Disable SPI Peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
hspi->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
/* Disable Rx DMA Request */
|
||||
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
|
||||
|
||||
/* Control the BSY flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Check if an Abort process is still ongoing */
|
||||
if (hspi->hdmatx != NULL)
|
||||
{
|
||||
if (hspi->hdmatx->XferAbortCallback != NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */
|
||||
hspi->RxXferCount = 0U;
|
||||
hspi->TxXferCount = 0U;
|
||||
|
||||
/* Check no error during Abort procedure */
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT)
|
||||
{
|
||||
/* Reset errorCode */
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
|
||||
}
|
||||
|
||||
/* Clear the Error flags in the SR register */
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
__HAL_SPI_CLEAR_FREFLAG(hspi);
|
||||
|
||||
/* Restore hspi->State to Ready */
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
/* Call user Abort complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->AbortCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_AbortCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Receive data in packing mode */
|
||||
if (hspi->RxXferCount > 1U)
|
||||
{
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR);
|
||||
hspi->pRxBuffPtr += sizeof(uint16_t);
|
||||
hspi->RxXferCount -= 2U;
|
||||
if (hspi->RxXferCount == 1U)
|
||||
{
|
||||
/* Set RX Fifo threshold according the reception data length: 8bit */
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
}
|
||||
}
|
||||
/* Receive data in 8 Bit mode */
|
||||
else
|
||||
{
|
||||
*hspi->pRxBuffPtr = *((__IO uint8_t *)&hspi->Instance->DR);
|
||||
hspi->pRxBuffPtr++;
|
||||
hspi->RxXferCount--;
|
||||
}
|
||||
|
||||
/* Check end of the reception */
|
||||
if (hspi->RxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
|
||||
hspi->RxISR = SPI_2linesRxISR_8BITCRC;
|
||||
return;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Disable RXNE and ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
SPI_CloseRxTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/**
|
||||
* @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
/* Read 8bit CRC to flush Data Register */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
|
||||
hspi->CRCSize--;
|
||||
|
||||
/* Check end of the reception */
|
||||
if (hspi->CRCSize == 0U)
|
||||
{
|
||||
/* Disable RXNE and ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
SPI_CloseRxTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/**
|
||||
* @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Transmit data in packing Bit mode */
|
||||
if (hspi->TxXferCount >= 2U)
|
||||
{
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount -= 2U;
|
||||
}
|
||||
/* Transmit data in 8 Bit mode */
|
||||
else
|
||||
{
|
||||
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr++;
|
||||
hspi->TxXferCount--;
|
||||
}
|
||||
|
||||
/* Check the end of the transmission */
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Set CRC Next Bit to send CRC */
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
/* Disable TXE interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
|
||||
return;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Disable TXE interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
|
||||
|
||||
if (hspi->RxXferCount == 0U)
|
||||
{
|
||||
SPI_CloseRxTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Receive data in 16 Bit mode */
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR);
|
||||
hspi->pRxBuffPtr += sizeof(uint16_t);
|
||||
hspi->RxXferCount--;
|
||||
|
||||
if (hspi->RxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
hspi->RxISR = SPI_2linesRxISR_16BITCRC;
|
||||
return;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Disable RXNE interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
|
||||
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
SPI_CloseRxTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/**
|
||||
* @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint32_t tmpreg = 0U;
|
||||
|
||||
/* Read 16bit CRC to flush Data Register */
|
||||
tmpreg = READ_REG(hspi->Instance->DR);
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg);
|
||||
|
||||
/* Disable RXNE interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
|
||||
|
||||
SPI_CloseRxTx_ISR(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/**
|
||||
* @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Transmit data in 16 Bit mode */
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount--;
|
||||
|
||||
/* Enable CRC Transmission */
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Set CRC Next Bit to send CRC */
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
/* Disable TXE interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
|
||||
return;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/* Disable TXE interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
|
||||
|
||||
if (hspi->RxXferCount == 0U)
|
||||
{
|
||||
SPI_CloseRxTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/**
|
||||
* @brief Manage the CRC 8-bit receive in Interrupt context.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
/* Read 8bit CRC to flush Data Register */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
|
||||
hspi->CRCSize--;
|
||||
|
||||
if (hspi->CRCSize == 0U)
|
||||
{
|
||||
SPI_CloseRx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/**
|
||||
* @brief Manage the receive 8-bit in Interrupt context.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
*hspi->pRxBuffPtr = (*(__IO uint8_t *)&hspi->Instance->DR);
|
||||
hspi->pRxBuffPtr++;
|
||||
hspi->RxXferCount--;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Enable CRC Transmission */
|
||||
if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (hspi->RxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
hspi->RxISR = SPI_RxISR_8BITCRC;
|
||||
return;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
SPI_CloseRx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/**
|
||||
* @brief Manage the CRC 16-bit receive in Interrupt context.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint32_t tmpreg = 0U;
|
||||
|
||||
/* Read 16bit CRC to flush Data Register */
|
||||
tmpreg = READ_REG(hspi->Instance->DR);
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg);
|
||||
|
||||
/* Disable RXNE and ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
SPI_CloseRx_ISR(hspi);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
/**
|
||||
* @brief Manage the 16-bit receive in Interrupt context.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR);
|
||||
hspi->pRxBuffPtr += sizeof(uint16_t);
|
||||
hspi->RxXferCount--;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Enable CRC Transmission */
|
||||
if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
|
||||
{
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
|
||||
if (hspi->RxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
hspi->RxISR = SPI_RxISR_16BITCRC;
|
||||
return;
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
SPI_CloseRx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the data 8-bit transmit in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr++;
|
||||
hspi->TxXferCount--;
|
||||
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Enable CRC Transmission */
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
SPI_CloseTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the data 16-bit transmit in Interrupt mode.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Transmit data in 16 Bit mode */
|
||||
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
|
||||
hspi->pTxBuffPtr += sizeof(uint16_t);
|
||||
hspi->TxXferCount--;
|
||||
|
||||
if (hspi->TxXferCount == 0U)
|
||||
{
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
/* Enable CRC Transmission */
|
||||
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
SPI_CloseTx_ISR(hspi);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle SPI Communication Timeout.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param Flag SPI flag to check
|
||||
* @param State flag state to check
|
||||
* @param Timeout Timeout duration
|
||||
* @param Tickstart tick start value
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State,
|
||||
uint32_t Timeout, uint32_t Tickstart)
|
||||
{
|
||||
__IO uint32_t count;
|
||||
uint32_t tmp_timeout;
|
||||
uint32_t tmp_tickstart;
|
||||
|
||||
/* Adjust Timeout value in case of end of transfer */
|
||||
tmp_timeout = Timeout - (HAL_GetTick() - Tickstart);
|
||||
tmp_tickstart = HAL_GetTick();
|
||||
|
||||
/* Calculate Timeout based on a software loop to avoid blocking issue if Systick is disabled */
|
||||
count = tmp_timeout * ((SystemCoreClock * 32U) >> 20U);
|
||||
|
||||
while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) != State)
|
||||
{
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if (((HAL_GetTick() - tmp_tickstart) >= tmp_timeout) || (tmp_timeout == 0U))
|
||||
{
|
||||
/* Disable the SPI and reset the CRC: the CRC value should be cleared
|
||||
on both master and slave sides in order to resynchronize the master
|
||||
and slave for their respective CRC calculation */
|
||||
|
||||
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
|| (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
||||
{
|
||||
/* Disable SPI peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
}
|
||||
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
/* If Systick is disabled or not incremented, deactivate timeout to go in disable loop procedure */
|
||||
if (count == 0U)
|
||||
{
|
||||
tmp_timeout = 0U;
|
||||
}
|
||||
count--;
|
||||
}
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle SPI FIFO Communication Timeout.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param Fifo Fifo to check
|
||||
* @param State Fifo state to check
|
||||
* @param Timeout Timeout duration
|
||||
* @param Tickstart tick start value
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State,
|
||||
uint32_t Timeout, uint32_t Tickstart)
|
||||
{
|
||||
__IO uint32_t count;
|
||||
uint32_t tmp_timeout;
|
||||
uint32_t tmp_tickstart;
|
||||
__IO uint8_t *ptmpreg8;
|
||||
__IO uint8_t tmpreg8 = 0;
|
||||
|
||||
/* Adjust Timeout value in case of end of transfer */
|
||||
tmp_timeout = Timeout - (HAL_GetTick() - Tickstart);
|
||||
tmp_tickstart = HAL_GetTick();
|
||||
|
||||
/* Initialize the 8bit temporary pointer */
|
||||
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
|
||||
|
||||
/* Calculate Timeout based on a software loop to avoid blocking issue if Systick is disabled */
|
||||
count = tmp_timeout * ((SystemCoreClock * 35U) >> 20U);
|
||||
|
||||
while ((hspi->Instance->SR & Fifo) != State)
|
||||
{
|
||||
if ((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY))
|
||||
{
|
||||
/* Flush Data Register by a blank read */
|
||||
tmpreg8 = *ptmpreg8;
|
||||
/* To avoid GCC warning */
|
||||
UNUSED(tmpreg8);
|
||||
}
|
||||
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if (((HAL_GetTick() - tmp_tickstart) >= tmp_timeout) || (tmp_timeout == 0U))
|
||||
{
|
||||
/* Disable the SPI and reset the CRC: the CRC value should be cleared
|
||||
on both master and slave sides in order to resynchronize the master
|
||||
and slave for their respective CRC calculation */
|
||||
|
||||
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
|| (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
||||
{
|
||||
/* Disable SPI peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
}
|
||||
|
||||
/* Reset CRC Calculation */
|
||||
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
|
||||
{
|
||||
SPI_RESET_CRC(hspi);
|
||||
}
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(hspi);
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
/* If Systick is disabled or not incremented, deactivate timeout to go in disable loop procedure */
|
||||
if (count == 0U)
|
||||
{
|
||||
tmp_timeout = 0U;
|
||||
}
|
||||
count--;
|
||||
}
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the check of the RX transaction complete.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @param Timeout Timeout duration
|
||||
* @param Tickstart tick start value
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart)
|
||||
{
|
||||
if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
|| (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
||||
{
|
||||
/* Disable SPI peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
}
|
||||
|
||||
/* Control the BSY flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
|
||||
if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE)
|
||||
|| (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
|
||||
{
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout, Tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the check of the RXTX or TX transaction complete.
|
||||
* @param hspi SPI handle
|
||||
* @param Timeout Timeout duration
|
||||
* @param Tickstart tick start value
|
||||
* @retval HAL status
|
||||
*/
|
||||
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart)
|
||||
{
|
||||
/* Control if the TX fifo is empty */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout, Tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
|
||||
/* Control the BSY flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
|
||||
/* Control if the RX fifo is empty */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout, Tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the end of the RXTX transaction.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Disable ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
}
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Check if CRC error occurred */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
#endif /* USE_SPI_CRC */
|
||||
if (hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
if (hspi->State == HAL_SPI_STATE_BUSY_RX)
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
/* Call user Rx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->RxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_RxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
/* Call user TxRx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->TxRxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_TxRxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the end of the RX transaction.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
/* Disable RXNE and ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
}
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
/* Check if CRC error occurred */
|
||||
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
|
||||
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
#endif /* USE_SPI_CRC */
|
||||
if (hspi->ErrorCode == HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
/* Call user Rx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->RxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_RxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
#if (USE_SPI_CRC != 0U)
|
||||
}
|
||||
#endif /* USE_SPI_CRC */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle the end of the TX transaction.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Init tickstart for timeout management*/
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Disable TXE and ERR interrupt */
|
||||
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
|
||||
|
||||
/* Check the end of the transaction */
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
|
||||
}
|
||||
|
||||
/* Clear overrun flag in 2 Lines communication mode because received is not read */
|
||||
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
|
||||
{
|
||||
__HAL_SPI_CLEAR_OVRFLAG(hspi);
|
||||
}
|
||||
|
||||
hspi->State = HAL_SPI_STATE_READY;
|
||||
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->ErrorCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_ErrorCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Call user Rx complete callback */
|
||||
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
|
||||
hspi->TxCpltCallback(hspi);
|
||||
#else
|
||||
HAL_SPI_TxCpltCallback(hspi);
|
||||
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle abort a Rx transaction.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint32_t count;
|
||||
|
||||
/* Disable SPI Peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
|
||||
|
||||
/* Disable RXNEIE interrupt */
|
||||
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXNEIE));
|
||||
|
||||
/* Check RXNEIE is disabled */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE));
|
||||
|
||||
/* Control the BSY flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
hspi->State = HAL_SPI_STATE_ABORT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle abort a Tx or Rx/Tx transaction.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for SPI module.
|
||||
* @retval None
|
||||
*/
|
||||
static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint32_t count;
|
||||
|
||||
count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
|
||||
|
||||
/* Disable TXEIE interrupt */
|
||||
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE));
|
||||
|
||||
/* Check TXEIE is disabled */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE));
|
||||
|
||||
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Disable SPI Peripheral */
|
||||
__HAL_SPI_DISABLE(hspi);
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Check case of Full-Duplex Mode and disable directly RXNEIE interrupt */
|
||||
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
|
||||
{
|
||||
/* Disable RXNEIE interrupt */
|
||||
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXNEIE));
|
||||
|
||||
/* Check RXNEIE is disabled */
|
||||
do
|
||||
{
|
||||
if (count == 0U)
|
||||
{
|
||||
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
|
||||
break;
|
||||
}
|
||||
count--;
|
||||
} while (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE));
|
||||
|
||||
/* Control the BSY flag */
|
||||
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
|
||||
/* Empty the FRLVL fifo */
|
||||
if (SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
|
||||
{
|
||||
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
|
||||
}
|
||||
}
|
||||
hspi->State = HAL_SPI_STATE_ABORT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_SPI_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
@@ -1,112 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32l4xx_hal_spi_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended SPI HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* SPI peripheral extended functionalities :
|
||||
* + IO operation functions
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2017 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32l4xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32L4xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup SPIEx SPIEx
|
||||
* @brief SPI Extended HAL module driver
|
||||
* @{
|
||||
*/
|
||||
#ifdef HAL_SPI_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private defines -----------------------------------------------------------*/
|
||||
/** @defgroup SPIEx_Private_Constants SPIEx Private Constants
|
||||
* @{
|
||||
*/
|
||||
#define SPI_FIFO_SIZE 4UL
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @defgroup SPIEx_Exported_Functions SPIEx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup SPIEx_Exported_Functions_Group1 IO operation functions
|
||||
* @brief Data transfers functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of extended functions to manage the SPI
|
||||
data transfers.
|
||||
|
||||
(#) Rx data flush function:
|
||||
(++) HAL_SPIEx_FlushRxFifo()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Flush the RX fifo.
|
||||
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified SPI module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi)
|
||||
{
|
||||
__IO uint32_t tmpreg;
|
||||
uint8_t count = 0U;
|
||||
while ((hspi->Instance->SR & SPI_FLAG_FRLVL) != SPI_FRLVL_EMPTY)
|
||||
{
|
||||
count++;
|
||||
tmpreg = hspi->Instance->DR;
|
||||
UNUSED(tmpreg); /* To avoid GCC warning */
|
||||
if (count == SPI_FIFO_SIZE)
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_SPI_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
@@ -1,4840 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32l4xx_hal_uart.c
|
||||
* @author MCD Application Team
|
||||
* @brief UART HAL module driver.
|
||||
* This file provides firmware functions to manage the following
|
||||
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
|
||||
* + Initialization and de-initialization functions
|
||||
* + IO operation functions
|
||||
* + Peripheral Control functions
|
||||
*
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2017 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### How to use this driver #####
|
||||
===============================================================================
|
||||
[..]
|
||||
The UART HAL driver can be used as follows:
|
||||
|
||||
(#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
|
||||
(#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
|
||||
(++) Enable the USARTx interface clock.
|
||||
(++) UART pins configuration:
|
||||
(+++) Enable the clock for the UART GPIOs.
|
||||
(+++) Configure these UART pins as alternate function pull-up.
|
||||
(++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
|
||||
and HAL_UART_Receive_IT() APIs):
|
||||
(+++) Configure the USARTx interrupt priority.
|
||||
(+++) Enable the NVIC USART IRQ handle.
|
||||
(++) UART interrupts handling:
|
||||
-@@- The specific UART interrupts (Transmission complete interrupt,
|
||||
RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts)
|
||||
are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT()
|
||||
inside the transmit and receive processes.
|
||||
(++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
|
||||
and HAL_UART_Receive_DMA() APIs):
|
||||
(+++) Declare a DMA handle structure for the Tx/Rx channel.
|
||||
(+++) Enable the DMAx interface clock.
|
||||
(+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
|
||||
(+++) Configure the DMA Tx/Rx channel.
|
||||
(+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
|
||||
(+++) Configure the priority and enable the NVIC for the transfer complete
|
||||
interrupt on the DMA Tx/Rx channel.
|
||||
|
||||
(#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware
|
||||
flow control and Mode (Receiver/Transmitter) in the huart handle Init structure.
|
||||
|
||||
(#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
|
||||
in the huart handle AdvancedInit structure.
|
||||
|
||||
(#) For the UART asynchronous mode, initialize the UART registers by calling
|
||||
the HAL_UART_Init() API.
|
||||
|
||||
(#) For the UART Half duplex mode, initialize the UART registers by calling
|
||||
the HAL_HalfDuplex_Init() API.
|
||||
|
||||
(#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers
|
||||
by calling the HAL_LIN_Init() API.
|
||||
|
||||
(#) For the UART Multiprocessor mode, initialize the UART registers
|
||||
by calling the HAL_MultiProcessor_Init() API.
|
||||
|
||||
(#) For the UART RS485 Driver Enabled mode, initialize the UART registers
|
||||
by calling the HAL_RS485Ex_Init() API.
|
||||
|
||||
[..]
|
||||
(@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(),
|
||||
also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by
|
||||
calling the customized HAL_UART_MspInit() API.
|
||||
|
||||
##### Callback registration #####
|
||||
==================================
|
||||
|
||||
[..]
|
||||
The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
|
||||
allows the user to configure dynamically the driver callbacks.
|
||||
|
||||
[..]
|
||||
Use Function HAL_UART_RegisterCallback() to register a user callback.
|
||||
Function HAL_UART_RegisterCallback() allows to register following callbacks:
|
||||
(+) TxHalfCpltCallback : Tx Half Complete Callback.
|
||||
(+) TxCpltCallback : Tx Complete Callback.
|
||||
(+) RxHalfCpltCallback : Rx Half Complete Callback.
|
||||
(+) RxCpltCallback : Rx Complete Callback.
|
||||
(+) ErrorCallback : Error Callback.
|
||||
(+) AbortCpltCallback : Abort Complete Callback.
|
||||
(+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
|
||||
(+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
|
||||
(+) WakeupCallback : Wakeup Callback.
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
(+) RxFifoFullCallback : Rx Fifo Full Callback.
|
||||
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
|
||||
#endif
|
||||
(+) MspInitCallback : UART MspInit.
|
||||
(+) MspDeInitCallback : UART MspDeInit.
|
||||
This function takes as parameters the HAL peripheral handle, the Callback ID
|
||||
and a pointer to the user callback function.
|
||||
|
||||
[..]
|
||||
Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
|
||||
weak (surcharged) function.
|
||||
HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
||||
and the Callback ID.
|
||||
This function allows to reset following callbacks:
|
||||
(+) TxHalfCpltCallback : Tx Half Complete Callback.
|
||||
(+) TxCpltCallback : Tx Complete Callback.
|
||||
(+) RxHalfCpltCallback : Rx Half Complete Callback.
|
||||
(+) RxCpltCallback : Rx Complete Callback.
|
||||
(+) ErrorCallback : Error Callback.
|
||||
(+) AbortCpltCallback : Abort Complete Callback.
|
||||
(+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
|
||||
(+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
|
||||
(+) WakeupCallback : Wakeup Callback.
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
(+) RxFifoFullCallback : Rx Fifo Full Callback.
|
||||
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
|
||||
#endif
|
||||
(+) MspInitCallback : UART MspInit.
|
||||
(+) MspDeInitCallback : UART MspDeInit.
|
||||
|
||||
[..]
|
||||
For specific callback RxEventCallback, use dedicated registration/reset functions:
|
||||
respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
|
||||
|
||||
[..]
|
||||
By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
|
||||
all callbacks are set to the corresponding weak (surcharged) functions:
|
||||
examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
|
||||
Exception done for MspInit and MspDeInit functions that are respectively
|
||||
reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
|
||||
and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
|
||||
If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
|
||||
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
|
||||
|
||||
[..]
|
||||
Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
|
||||
Exception done MspInit/MspDeInit that can be registered/unregistered
|
||||
in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
|
||||
MspInit/DeInit callbacks can be used during the Init/DeInit.
|
||||
In that case first register the MspInit/MspDeInit user callbacks
|
||||
using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
|
||||
or HAL_UART_Init() function.
|
||||
|
||||
[..]
|
||||
When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
|
||||
not defined, the callback registration feature is not available
|
||||
and weak (surcharged) callbacks are used.
|
||||
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32l4xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32L4xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UART UART
|
||||
* @brief HAL UART module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_UART_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
/** @defgroup UART_Private_Constants UART Private Constants
|
||||
* @{
|
||||
*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \
|
||||
USART_CR1_OVER8 | USART_CR1_FIFOEN)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
|
||||
#else
|
||||
#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \
|
||||
USART_CR1_OVER8)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT | USART_CR3_TXFTCFG | \
|
||||
USART_CR3_RXFTCFG)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
|
||||
#else
|
||||
#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE |\
|
||||
USART_CR3_ONEBIT)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
#define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */
|
||||
#define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */
|
||||
|
||||
#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */
|
||||
#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @addtogroup UART_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
|
||||
static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
|
||||
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMAError(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
|
||||
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
|
||||
static void UART_TxISR_8BIT(UART_HandleTypeDef *huart);
|
||||
static void UART_TxISR_16BIT(UART_HandleTypeDef *huart);
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
|
||||
static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
static void UART_EndTransmit_IT(UART_HandleTypeDef *huart);
|
||||
static void UART_RxISR_8BIT(UART_HandleTypeDef *huart);
|
||||
static void UART_RxISR_16BIT(UART_HandleTypeDef *huart);
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
|
||||
static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
/** @addtogroup UART_Private_variables
|
||||
* @{
|
||||
*/
|
||||
const uint16_t UARTPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
/* Exported Constants --------------------------------------------------------*/
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @defgroup UART_Exported_Functions UART Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Initialization and Configuration functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and Configuration functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
|
||||
in asynchronous mode.
|
||||
(+) For the asynchronous mode the parameters below can be configured:
|
||||
(++) Baud Rate
|
||||
(++) Word Length
|
||||
(++) Stop Bit
|
||||
(++) Parity: If the parity is enabled, then the MSB bit of the data written
|
||||
in the data register is transmitted but is changed by the parity bit.
|
||||
(++) Hardware flow control
|
||||
(++) Receiver/transmitter modes
|
||||
(++) Over Sampling Method
|
||||
(++) One-Bit Sampling Method
|
||||
(+) For the asynchronous mode, the following advanced features can be configured as well:
|
||||
(++) TX and/or RX pin level inversion
|
||||
(++) data logical level inversion
|
||||
(++) RX and TX pins swap
|
||||
(++) RX overrun detection disabling
|
||||
(++) DMA disabling on RX error
|
||||
(++) MSB first on communication line
|
||||
(++) auto Baud rate detection
|
||||
[..]
|
||||
The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API
|
||||
follow respectively the UART asynchronous, UART Half duplex, UART LIN mode
|
||||
and UART multiprocessor mode configuration procedures (details for the procedures
|
||||
are available in reference manual).
|
||||
|
||||
@endverbatim
|
||||
|
||||
Depending on the frame length defined by the M1 and M0 bits (7-bit,
|
||||
8-bit or 9-bit), the possible UART formats are listed in the
|
||||
following table.
|
||||
|
||||
Table 1. UART frame format.
|
||||
+-----------------------------------------------------------------------+
|
||||
| M1 bit | M0 bit | PCE bit | UART frame |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
|
||||
+-----------------------------------------------------------------------+
|
||||
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the UART mode according to the specified
|
||||
* parameters in the UART_InitTypeDef and initialize the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
|
||||
}
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* In asynchronous mode, the following bits must be kept cleared:
|
||||
- LINEN and CLKEN bits in the USART_CR2 register,
|
||||
- SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
|
||||
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
|
||||
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
|
||||
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the half-duplex mode according to the specified
|
||||
* parameters in the UART_InitTypeDef and creates the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check UART instance */
|
||||
assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* In half-duplex mode, the following bits must be kept cleared:
|
||||
- LINEN and CLKEN bits in the USART_CR2 register,
|
||||
- SCEN and IREN bits in the USART_CR3 register.*/
|
||||
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
|
||||
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
|
||||
|
||||
/* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
|
||||
SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
|
||||
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialize the LIN mode according to the specified
|
||||
* parameters in the UART_InitTypeDef and creates the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @param BreakDetectLength Specifies the LIN break detection length.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection
|
||||
* @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the LIN UART instance */
|
||||
assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
|
||||
/* Check the Break detection length parameter */
|
||||
assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
|
||||
|
||||
/* LIN mode limited to 16-bit oversampling only */
|
||||
if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
/* LIN mode limited to 8-bit data length */
|
||||
if (huart->Init.WordLength != UART_WORDLENGTH_8B)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* In LIN mode, the following bits must be kept cleared:
|
||||
- LINEN and CLKEN bits in the USART_CR2 register,
|
||||
- SCEN and IREN bits in the USART_CR3 register.*/
|
||||
CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
|
||||
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
|
||||
|
||||
/* Enable the LIN mode by setting the LINEN bit in the CR2 register */
|
||||
SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
|
||||
|
||||
/* Set the USART LIN Break detection length. */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
|
||||
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Initialize the multiprocessor mode according to the specified
|
||||
* parameters in the UART_InitTypeDef and initialize the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @param Address UART node address (4-, 6-, 7- or 8-bit long).
|
||||
* @param WakeUpMethod Specifies the UART wakeup method.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection
|
||||
* @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark
|
||||
* @note If the user resorts to idle line detection wake up, the Address parameter
|
||||
* is useless and ignored by the initialization function.
|
||||
* @note If the user resorts to address mark wake up, the address length detection
|
||||
* is configured by default to 4 bits only. For the UART to be able to
|
||||
* manage 6-, 7- or 8-bit long addresses detection, the API
|
||||
* HAL_MultiProcessorEx_AddressLength_Set() must be called after
|
||||
* HAL_MultiProcessor_Init().
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the wake up method parameter */
|
||||
assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* In multiprocessor mode, the following bits must be kept cleared:
|
||||
- LINEN and CLKEN bits in the USART_CR2 register,
|
||||
- SCEN, HDSEL and IREN bits in the USART_CR3 register. */
|
||||
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
|
||||
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
|
||||
|
||||
if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
|
||||
{
|
||||
/* If address mark wake up method is chosen, set the USART address node */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
|
||||
}
|
||||
|
||||
/* Set the wake up method by setting the WAKE bit in the CR1 register */
|
||||
MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
|
||||
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief DeInitialize the UART peripheral.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
huart->Instance->CR1 = 0x0U;
|
||||
huart->Instance->CR2 = 0x0U;
|
||||
huart->Instance->CR3 = 0x0U;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
if (huart->MspDeInitCallback == NULL)
|
||||
{
|
||||
huart->MspDeInitCallback = HAL_UART_MspDeInit;
|
||||
}
|
||||
/* DeInit the low level hardware */
|
||||
huart->MspDeInitCallback(huart);
|
||||
#else
|
||||
/* DeInit the low level hardware */
|
||||
HAL_UART_MspDeInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->gState = HAL_UART_STATE_RESET;
|
||||
huart->RxState = HAL_UART_STATE_RESET;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initialize the UART MSP.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_MspInit can be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DeInitialize the UART MSP.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_MspDeInit can be implemented in the user file
|
||||
*/
|
||||
}
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/**
|
||||
* @brief Register a User UART Callback
|
||||
* To be used instead of the weak predefined callback
|
||||
* @param huart uart handle
|
||||
* @param CallbackID ID of the callback to be registered
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
|
||||
* @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
|
||||
* @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
|
||||
* @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
|
||||
* @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
|
||||
* @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
|
||||
* @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
|
||||
* @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
|
||||
* @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
* @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
|
||||
* @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
|
||||
#endif
|
||||
* @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
|
||||
* @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
|
||||
* @param pCallback pointer to the Callback function
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
|
||||
pUART_CallbackTypeDef pCallback)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
if (pCallback == NULL)
|
||||
{
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_UART_TX_HALFCOMPLETE_CB_ID :
|
||||
huart->TxHalfCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_TX_COMPLETE_CB_ID :
|
||||
huart->TxCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_RX_HALFCOMPLETE_CB_ID :
|
||||
huart->RxHalfCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_RX_COMPLETE_CB_ID :
|
||||
huart->RxCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_ERROR_CB_ID :
|
||||
huart->ErrorCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_ABORT_COMPLETE_CB_ID :
|
||||
huart->AbortCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
|
||||
huart->AbortTransmitCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
|
||||
huart->AbortReceiveCpltCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_WAKEUP_CB_ID :
|
||||
huart->WakeupCallback = pCallback;
|
||||
break;
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
case HAL_UART_RX_FIFO_FULL_CB_ID :
|
||||
huart->RxFifoFullCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_TX_FIFO_EMPTY_CB_ID :
|
||||
huart->TxFifoEmptyCallback = pCallback;
|
||||
break;
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
case HAL_UART_MSPINIT_CB_ID :
|
||||
huart->MspInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_MSPDEINIT_CB_ID :
|
||||
huart->MspDeInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
default :
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_UART_MSPINIT_CB_ID :
|
||||
huart->MspInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
case HAL_UART_MSPDEINIT_CB_ID :
|
||||
huart->MspDeInitCallback = pCallback;
|
||||
break;
|
||||
|
||||
default :
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Unregister an UART Callback
|
||||
* UART callaback is redirected to the weak predefined callback
|
||||
* @param huart uart handle
|
||||
* @param CallbackID ID of the callback to be unregistered
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
|
||||
* @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
|
||||
* @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
|
||||
* @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
|
||||
* @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
|
||||
* @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
|
||||
* @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
|
||||
* @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
|
||||
* @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
* @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
|
||||
* @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
|
||||
#endif
|
||||
* @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
|
||||
* @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
if (HAL_UART_STATE_READY == huart->gState)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_UART_TX_HALFCOMPLETE_CB_ID :
|
||||
huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_TX_COMPLETE_CB_ID :
|
||||
huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_RX_HALFCOMPLETE_CB_ID :
|
||||
huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_RX_COMPLETE_CB_ID :
|
||||
huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_ERROR_CB_ID :
|
||||
huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_ABORT_COMPLETE_CB_ID :
|
||||
huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
|
||||
huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak
|
||||
AbortTransmitCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
|
||||
huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak
|
||||
AbortReceiveCpltCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_WAKEUP_CB_ID :
|
||||
huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
|
||||
break;
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
case HAL_UART_RX_FIFO_FULL_CB_ID :
|
||||
huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_TX_FIFO_EMPTY_CB_ID :
|
||||
huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
|
||||
break;
|
||||
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
case HAL_UART_MSPINIT_CB_ID :
|
||||
huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */
|
||||
break;
|
||||
|
||||
case HAL_UART_MSPDEINIT_CB_ID :
|
||||
huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */
|
||||
break;
|
||||
|
||||
default :
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (HAL_UART_STATE_RESET == huart->gState)
|
||||
{
|
||||
switch (CallbackID)
|
||||
{
|
||||
case HAL_UART_MSPINIT_CB_ID :
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
break;
|
||||
|
||||
case HAL_UART_MSPDEINIT_CB_ID :
|
||||
huart->MspDeInitCallback = HAL_UART_MspDeInit;
|
||||
break;
|
||||
|
||||
default :
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Register a User UART Rx Event Callback
|
||||
* To be used instead of the weak predefined callback
|
||||
* @param huart Uart handle
|
||||
* @param pCallback Pointer to the Rx Event Callback function
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
if (pCallback == NULL)
|
||||
{
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
huart->RxEventCallback = pCallback;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UnRegister the UART Rx Event Callback
|
||||
* UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
|
||||
* @param huart Uart handle
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
|
||||
/* Process locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
|
||||
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Release Lock */
|
||||
__HAL_UNLOCK(huart);
|
||||
return status;
|
||||
}
|
||||
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UART_Exported_Functions_Group2 IO operation functions
|
||||
* @brief UART Transmit/Receive functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
This subsection provides a set of functions allowing to manage the UART asynchronous
|
||||
and Half duplex data transfers.
|
||||
|
||||
(#) There are two mode of transfer:
|
||||
(+) Blocking mode: The communication is performed in polling mode.
|
||||
The HAL status of all data processing is returned by the same function
|
||||
after finishing transfer.
|
||||
(+) Non-Blocking mode: The communication is performed using Interrupts
|
||||
or DMA, These API's return the HAL status.
|
||||
The end of the data processing will be indicated through the
|
||||
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
|
||||
using DMA mode.
|
||||
The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
|
||||
will be executed respectively at the end of the transmit or Receive process
|
||||
The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
|
||||
|
||||
(#) Blocking mode API's are :
|
||||
(+) HAL_UART_Transmit()
|
||||
(+) HAL_UART_Receive()
|
||||
|
||||
(#) Non-Blocking mode API's with Interrupt are :
|
||||
(+) HAL_UART_Transmit_IT()
|
||||
(+) HAL_UART_Receive_IT()
|
||||
(+) HAL_UART_IRQHandler()
|
||||
|
||||
(#) Non-Blocking mode API's with DMA are :
|
||||
(+) HAL_UART_Transmit_DMA()
|
||||
(+) HAL_UART_Receive_DMA()
|
||||
(+) HAL_UART_DMAPause()
|
||||
(+) HAL_UART_DMAResume()
|
||||
(+) HAL_UART_DMAStop()
|
||||
|
||||
(#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
|
||||
(+) HAL_UART_TxHalfCpltCallback()
|
||||
(+) HAL_UART_TxCpltCallback()
|
||||
(+) HAL_UART_RxHalfCpltCallback()
|
||||
(+) HAL_UART_RxCpltCallback()
|
||||
(+) HAL_UART_ErrorCallback()
|
||||
|
||||
(#) Non-Blocking mode transfers could be aborted using Abort API's :
|
||||
(+) HAL_UART_Abort()
|
||||
(+) HAL_UART_AbortTransmit()
|
||||
(+) HAL_UART_AbortReceive()
|
||||
(+) HAL_UART_Abort_IT()
|
||||
(+) HAL_UART_AbortTransmit_IT()
|
||||
(+) HAL_UART_AbortReceive_IT()
|
||||
|
||||
(#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
|
||||
(+) HAL_UART_AbortCpltCallback()
|
||||
(+) HAL_UART_AbortTransmitCpltCallback()
|
||||
(+) HAL_UART_AbortReceiveCpltCallback()
|
||||
|
||||
(#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced
|
||||
reception services:
|
||||
(+) HAL_UARTEx_RxEventCallback()
|
||||
|
||||
(#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
|
||||
Errors are handled as follows :
|
||||
(+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
|
||||
to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
|
||||
in Interrupt mode reception .
|
||||
Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
|
||||
to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
|
||||
Transfer is kept ongoing on UART side.
|
||||
If user wants to abort it, Abort services should be called by user.
|
||||
(+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
|
||||
This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
|
||||
Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback()
|
||||
user callback is executed.
|
||||
|
||||
-@- In the Half duplex communication, it is forbidden to run the transmit
|
||||
and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Send an amount of data in blocking mode.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the sent data is handled as a set of u16. In this case, Size must indicate the number
|
||||
* of u16 provided through pData.
|
||||
* @note When FIFO mode is enabled, writing a data in the TDR register adds one
|
||||
* data to the TXFIFO. Write operations to the TDR register are performed
|
||||
* when TXFNF flag is set. From hardware perspective, TXFNF flag and
|
||||
* TXE are mapped on the same bit-field.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be sent.
|
||||
* @param Timeout Timeout duration.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
||||
{
|
||||
const uint8_t *pdata8bits;
|
||||
const uint16_t *pdata16bits;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Check that a Tx process is not already ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->gState = HAL_UART_STATE_BUSY_TX;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
huart->TxXferSize = Size;
|
||||
huart->TxXferCount = Size;
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
pdata8bits = NULL;
|
||||
pdata16bits = (const uint16_t *) pData;
|
||||
}
|
||||
else
|
||||
{
|
||||
pdata8bits = pData;
|
||||
pdata16bits = NULL;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
while (huart->TxXferCount > 0U)
|
||||
{
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
if (pdata8bits == NULL)
|
||||
{
|
||||
huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
|
||||
pdata16bits++;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
|
||||
pdata8bits++;
|
||||
}
|
||||
huart->TxXferCount--;
|
||||
}
|
||||
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
|
||||
/* At end of Tx process, restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in blocking mode.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of u16. In this case, Size must indicate the number
|
||||
* of u16 available through pData.
|
||||
* @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
|
||||
* is not empty. Read operations from the RDR register are performed when
|
||||
* RXFNE flag is set. From hardware perspective, RXFNE flag and
|
||||
* RXNE are mapped on the same bit-field.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be received.
|
||||
* @param Timeout Timeout duration.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
|
||||
{
|
||||
uint8_t *pdata8bits;
|
||||
uint16_t *pdata16bits;
|
||||
uint16_t uhMask;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
huart->RxXferSize = Size;
|
||||
huart->RxXferCount = Size;
|
||||
|
||||
/* Computation of UART mask to apply to RDR register */
|
||||
UART_MASK_COMPUTATION(huart);
|
||||
uhMask = huart->Mask;
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
pdata8bits = NULL;
|
||||
pdata16bits = (uint16_t *) pData;
|
||||
}
|
||||
else
|
||||
{
|
||||
pdata8bits = pData;
|
||||
pdata16bits = NULL;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* as long as data have to be received */
|
||||
while (huart->RxXferCount > 0U)
|
||||
{
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
|
||||
{
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
if (pdata8bits == NULL)
|
||||
{
|
||||
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
|
||||
pdata16bits++;
|
||||
}
|
||||
else
|
||||
{
|
||||
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
|
||||
pdata8bits++;
|
||||
}
|
||||
huart->RxXferCount--;
|
||||
}
|
||||
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Send an amount of data in interrupt mode.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the sent data is handled as a set of u16. In this case, Size must indicate the number
|
||||
* of u16 provided through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be sent.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
/* Check that a Tx process is not already ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->pTxBuffPtr = pData;
|
||||
huart->TxXferSize = Size;
|
||||
huart->TxXferCount = Size;
|
||||
huart->TxISR = NULL;
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->gState = HAL_UART_STATE_BUSY_TX;
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Configure Tx interrupt processing */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
/* Set the Tx ISR function pointer according to the data word length */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
huart->TxISR = UART_TxISR_16BIT_FIFOEN;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->TxISR = UART_TxISR_8BIT_FIFOEN;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the TX FIFO threshold interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set the Tx ISR function pointer according to the data word length */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
huart->TxISR = UART_TxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->TxISR = UART_TxISR_8BIT;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the Transmit Data Register Empty interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
|
||||
}
|
||||
#else
|
||||
/* Set the Tx ISR function pointer according to the data word length */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
huart->TxISR = UART_TxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->TxISR = UART_TxISR_8BIT;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the Transmit Data Register Empty interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in interrupt mode.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of u16. In this case, Size must indicate the number
|
||||
* of u16 available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set Reception type to Standard reception */
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
||||
{
|
||||
/* Check that USART RTOEN bit is set */
|
||||
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
||||
{
|
||||
/* Enable the UART Receiver Timeout Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
||||
}
|
||||
}
|
||||
|
||||
return (UART_Start_Receive_IT(huart, pData, Size));
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Send an amount of data in DMA mode.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the sent data is handled as a set of u16. In this case, Size must indicate the number
|
||||
* of u16 provided through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be sent.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
/* Check that a Tx process is not already ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->pTxBuffPtr = pData;
|
||||
huart->TxXferSize = Size;
|
||||
huart->TxXferCount = Size;
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->gState = HAL_UART_STATE_BUSY_TX;
|
||||
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
/* Set the UART DMA transfer complete callback */
|
||||
huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
|
||||
|
||||
/* Set the UART DMA Half transfer complete callback */
|
||||
huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
|
||||
|
||||
/* Set the DMA error callback */
|
||||
huart->hdmatx->XferErrorCallback = UART_DMAError;
|
||||
|
||||
/* Set the DMA abort callback */
|
||||
huart->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
/* Enable the UART transmit DMA channel */
|
||||
if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Restore huart->gState to ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
/* Clear the TC flag in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the DMA transfer for transmit request by setting the DMAT bit
|
||||
in the UART CR3 register */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in DMA mode.
|
||||
* @note When the UART parity is enabled (PCE = 1), the received data contain
|
||||
* the parity bit (MSB position).
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of u16. In this case, Size must indicate the number
|
||||
* of u16 available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set Reception type to Standard reception */
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
||||
{
|
||||
/* Check that USART RTOEN bit is set */
|
||||
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
|
||||
{
|
||||
/* Enable the UART Receiver Timeout Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
|
||||
}
|
||||
}
|
||||
|
||||
return (UART_Start_Receive_DMA(huart, pData, Size));
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Pause the DMA Transfer.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
|
||||
{
|
||||
const HAL_UART_StateTypeDef gstate = huart->gState;
|
||||
const HAL_UART_StateTypeDef rxstate = huart->RxState;
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
|
||||
(gstate == HAL_UART_STATE_BUSY_TX))
|
||||
{
|
||||
/* Disable the UART DMA Tx request */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
}
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
|
||||
(rxstate == HAL_UART_STATE_BUSY_RX))
|
||||
{
|
||||
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Disable the UART DMA Rx request */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resume the DMA Transfer.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
|
||||
{
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
||||
{
|
||||
/* Enable the UART DMA Tx request */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
}
|
||||
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
||||
{
|
||||
/* Clear the Overrun flag before resuming the Rx transfer */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
|
||||
|
||||
/* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
if (huart->Init.Parity != UART_PARITY_NONE)
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
}
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Enable the UART DMA Rx request */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Stop the DMA Transfer.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* The Lock is not implemented on this API to allow the user application
|
||||
to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() /
|
||||
HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback:
|
||||
indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
|
||||
interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
|
||||
the stream and the corresponding call back is executed. */
|
||||
|
||||
const HAL_UART_StateTypeDef gstate = huart->gState;
|
||||
const HAL_UART_StateTypeDef rxstate = huart->RxState;
|
||||
|
||||
/* Stop UART DMA Tx request if ongoing */
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
|
||||
(gstate == HAL_UART_STATE_BUSY_TX))
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
/* Abort the UART DMA Tx channel */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
|
||||
{
|
||||
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
UART_EndTxTransfer(huart);
|
||||
}
|
||||
|
||||
/* Stop UART DMA Rx request if ongoing */
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
|
||||
(rxstate == HAL_UART_STATE_BUSY_RX))
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* Abort the UART DMA Rx channel */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
|
||||
{
|
||||
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
UART_EndRxTransfer(huart);
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing transfers (blocking mode).
|
||||
* @param huart UART handle.
|
||||
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable UART Interrupts (Tx and Rx)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
|
||||
{
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE |
|
||||
USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE);
|
||||
#else
|
||||
/* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
||||
}
|
||||
|
||||
/* Abort the UART DMA Tx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
||||
{
|
||||
/* Disable the UART DMA Tx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback to Null.
|
||||
No call back execution at end of DMA abort procedure */
|
||||
huart->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
|
||||
{
|
||||
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Abort the UART DMA Rx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
/* Disable the UART DMA Rx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback to Null.
|
||||
No call back execution at end of DMA abort procedure */
|
||||
huart->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
|
||||
{
|
||||
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset Tx and Rx transfer counters */
|
||||
huart->TxXferCount = 0U;
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Flush the whole TX FIFO (if needed) */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Discard the received data */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
|
||||
/* Restore huart->gState and huart->RxState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing Transmit transfer (blocking mode).
|
||||
* @param huart UART handle.
|
||||
* @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable UART Interrupts (Tx)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
|
||||
{
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Disable TCIE, TXEIE and TXFTIE interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
||||
#else
|
||||
/* Disable TXEIE and TCIE interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Abort the UART DMA Tx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
||||
{
|
||||
/* Disable the UART DMA Tx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback to Null.
|
||||
No call back execution at end of DMA abort procedure */
|
||||
huart->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
|
||||
{
|
||||
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset Tx transfer counter */
|
||||
huart->TxXferCount = 0U;
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Flush the whole TX FIFO (if needed) */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing Receive transfer (blocking mode).
|
||||
* @param huart UART handle.
|
||||
* @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable UART Interrupts (Rx)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
|
||||
{
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE);
|
||||
#else
|
||||
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
||||
}
|
||||
|
||||
/* Abort the UART DMA Rx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
/* Disable the UART DMA Rx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback to Null.
|
||||
No call back execution at end of DMA abort procedure */
|
||||
huart->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
|
||||
{
|
||||
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Reset Rx transfer counter */
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
/* Discard the received data */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
|
||||
/* Restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing transfers (Interrupt mode).
|
||||
* @param huart UART handle.
|
||||
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable UART Interrupts (Tx and Rx)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* - At abort completion, call user abort complete callback
|
||||
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
||||
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t abortcplt = 1U;
|
||||
|
||||
/* Disable interrupts */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE |
|
||||
USART_CR1_TXEIE_TXFNFIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
||||
}
|
||||
|
||||
/* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
|
||||
before any call to DMA Abort functions */
|
||||
/* DMA Tx Handle is valid */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
/* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
|
||||
Otherwise, set it to NULL */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
||||
{
|
||||
huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->hdmatx->XferAbortCallback = NULL;
|
||||
}
|
||||
}
|
||||
/* DMA Rx Handle is valid */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
|
||||
Otherwise, set it to NULL */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->hdmarx->XferAbortCallback = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Abort the UART DMA Tx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
||||
{
|
||||
/* Disable DMA Tx at UART level */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
/* UART Tx DMA Abort callback has already been initialised :
|
||||
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
||||
|
||||
/* Abort DMA TX */
|
||||
if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
|
||||
{
|
||||
huart->hdmatx->XferAbortCallback = NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
abortcplt = 0U;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Abort the UART DMA Rx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
/* Disable the UART DMA Rx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* UART Rx DMA Abort callback has already been initialised :
|
||||
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
||||
|
||||
/* Abort DMA RX */
|
||||
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
|
||||
{
|
||||
huart->hdmarx->XferAbortCallback = NULL;
|
||||
abortcplt = 1U;
|
||||
}
|
||||
else
|
||||
{
|
||||
abortcplt = 0U;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* if no DMA abort complete callback execution is required => call user Abort Complete callback */
|
||||
if (abortcplt == 1U)
|
||||
{
|
||||
/* Reset Tx and Rx transfer counters */
|
||||
huart->TxXferCount = 0U;
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Clear ISR function pointers */
|
||||
huart->RxISR = NULL;
|
||||
huart->TxISR = NULL;
|
||||
|
||||
/* Reset errorCode */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Flush the whole TX FIFO (if needed) */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Discard the received data */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
|
||||
/* Restore huart->gState and huart->RxState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* As no DMA to be aborted, call directly user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort complete callback */
|
||||
huart->AbortCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort complete callback */
|
||||
HAL_UART_AbortCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing Transmit transfer (Interrupt mode).
|
||||
* @param huart UART handle.
|
||||
* @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable UART Interrupts (Tx)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* - At abort completion, call user abort complete callback
|
||||
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
||||
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Disable interrupts */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Abort the UART DMA Tx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
|
||||
{
|
||||
/* Disable the UART DMA Tx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback :
|
||||
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
||||
huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
|
||||
|
||||
/* Abort DMA TX */
|
||||
if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
|
||||
{
|
||||
/* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
|
||||
huart->hdmatx->XferAbortCallback(huart->hdmatx);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Reset Tx transfer counter */
|
||||
huart->TxXferCount = 0U;
|
||||
|
||||
/* Clear TxISR function pointers */
|
||||
huart->TxISR = NULL;
|
||||
|
||||
/* Restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* As no DMA to be aborted, call directly user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort Transmit Complete Callback */
|
||||
huart->AbortTransmitCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort Transmit Complete Callback */
|
||||
HAL_UART_AbortTransmitCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Reset Tx transfer counter */
|
||||
huart->TxXferCount = 0U;
|
||||
|
||||
/* Clear TxISR function pointers */
|
||||
huart->TxISR = NULL;
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Flush the whole TX FIFO (if needed) */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* As no DMA to be aborted, call directly user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort Transmit Complete Callback */
|
||||
huart->AbortTransmitCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort Transmit Complete Callback */
|
||||
HAL_UART_AbortTransmitCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Abort ongoing Receive transfer (Interrupt mode).
|
||||
* @param huart UART handle.
|
||||
* @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
|
||||
* This procedure performs following operations :
|
||||
* - Disable UART Interrupts (Rx)
|
||||
* - Disable the DMA transfer in the peripheral register (if enabled)
|
||||
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
|
||||
* - Set handle State to READY
|
||||
* - At abort completion, call user abort complete callback
|
||||
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
|
||||
* considered as completed only when user abort complete callback is executed (not when exiting function).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
|
||||
}
|
||||
|
||||
/* Abort the UART DMA Rx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
/* Disable the UART DMA Rx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback :
|
||||
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
|
||||
huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
|
||||
|
||||
/* Abort DMA RX */
|
||||
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
|
||||
{
|
||||
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
|
||||
huart->hdmarx->XferAbortCallback(huart->hdmarx);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Reset Rx transfer counter */
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->pRxBuffPtr = NULL;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
/* Discard the received data */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
|
||||
/* Restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* As no DMA to be aborted, call directly user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort Receive Complete Callback */
|
||||
huart->AbortReceiveCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort Receive Complete Callback */
|
||||
HAL_UART_AbortReceiveCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Reset Rx transfer counter */
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->pRxBuffPtr = NULL;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
/* Restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* As no DMA to be aborted, call directly user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort Receive Complete Callback */
|
||||
huart->AbortReceiveCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort Receive Complete Callback */
|
||||
HAL_UART_AbortReceiveCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Handle UART interrupt request.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t isrflags = READ_REG(huart->Instance->ISR);
|
||||
uint32_t cr1its = READ_REG(huart->Instance->CR1);
|
||||
uint32_t cr3its = READ_REG(huart->Instance->CR3);
|
||||
|
||||
uint32_t errorflags;
|
||||
uint32_t errorcode;
|
||||
|
||||
/* If no error occurs */
|
||||
errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF));
|
||||
if (errorflags == 0U)
|
||||
{
|
||||
/* UART in mode Receiver ---------------------------------------------------*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
|
||||
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
|
||||
|| ((cr3its & USART_CR3_RXFTIE) != 0U)))
|
||||
#else
|
||||
if (((isrflags & USART_ISR_RXNE) != 0U)
|
||||
&& ((cr1its & USART_CR1_RXNEIE) != 0U))
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
{
|
||||
if (huart->RxISR != NULL)
|
||||
{
|
||||
huart->RxISR(huart);
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* If some errors occur */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
if ((errorflags != 0U)
|
||||
&& ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)
|
||||
|| ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U))))
|
||||
#else
|
||||
if ((errorflags != 0U)
|
||||
&& (((cr3its & USART_CR3_EIE) != 0U)
|
||||
|| ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U)))
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
{
|
||||
/* UART parity error interrupt occurred -------------------------------------*/
|
||||
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_PE;
|
||||
}
|
||||
|
||||
/* UART frame error interrupt occurred --------------------------------------*/
|
||||
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_FE;
|
||||
}
|
||||
|
||||
/* UART noise error interrupt occurred --------------------------------------*/
|
||||
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_NE;
|
||||
}
|
||||
|
||||
/* UART Over-Run interrupt occurred -----------------------------------------*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
if (((isrflags & USART_ISR_ORE) != 0U)
|
||||
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) ||
|
||||
((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)))
|
||||
#else
|
||||
if (((isrflags & USART_ISR_ORE) != 0U)
|
||||
&& (((cr1its & USART_CR1_RXNEIE) != 0U) ||
|
||||
((cr3its & USART_CR3_EIE) != 0U)))
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_ORE;
|
||||
}
|
||||
|
||||
/* UART Receiver Timeout interrupt occurred ---------------------------------*/
|
||||
if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_RTO;
|
||||
}
|
||||
|
||||
/* Call UART Error Call back function if need be ----------------------------*/
|
||||
if (huart->ErrorCode != HAL_UART_ERROR_NONE)
|
||||
{
|
||||
/* UART in mode Receiver --------------------------------------------------*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
|
||||
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
|
||||
|| ((cr3its & USART_CR3_RXFTIE) != 0U)))
|
||||
#else
|
||||
if (((isrflags & USART_ISR_RXNE) != 0U)
|
||||
&& ((cr1its & USART_CR1_RXNEIE) != 0U))
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
{
|
||||
if (huart->RxISR != NULL)
|
||||
{
|
||||
huart->RxISR(huart);
|
||||
}
|
||||
}
|
||||
|
||||
/* If Error is to be considered as blocking :
|
||||
- Receiver Timeout error in Reception
|
||||
- Overrun error in Reception
|
||||
- any error occurs in DMA mode reception
|
||||
*/
|
||||
errorcode = huart->ErrorCode;
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) ||
|
||||
((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U))
|
||||
{
|
||||
/* Blocking error : transfer is aborted
|
||||
Set the UART state ready to be able to start again the process,
|
||||
Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
|
||||
UART_EndRxTransfer(huart);
|
||||
|
||||
/* Abort the UART DMA Rx channel if enabled */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
/* Disable the UART DMA Rx request if enabled */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* Abort the UART DMA Rx channel */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* Set the UART DMA Abort callback :
|
||||
will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
|
||||
huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
|
||||
|
||||
/* Abort DMA RX */
|
||||
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
|
||||
{
|
||||
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
|
||||
huart->hdmarx->XferAbortCallback(huart->hdmarx);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Call user error callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Non Blocking error : transfer could go on.
|
||||
Error is notified to user through user error callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
}
|
||||
}
|
||||
return;
|
||||
|
||||
} /* End if some error occurs */
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : */
|
||||
if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
&& ((isrflags & USART_ISR_IDLE) != 0U)
|
||||
&& ((cr1its & USART_ISR_IDLE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
|
||||
/* Check if DMA mode is enabled in UART */
|
||||
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
|
||||
{
|
||||
/* DMA mode enabled */
|
||||
/* Check received length : If all expected data are received, do nothing,
|
||||
(DMA cplt callback will be called).
|
||||
Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
|
||||
uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
|
||||
if ((nb_remaining_rx_data > 0U)
|
||||
&& (nb_remaining_rx_data < huart->RxXferSize))
|
||||
{
|
||||
/* Reception is not complete */
|
||||
huart->RxXferCount = nb_remaining_rx_data;
|
||||
|
||||
/* In Normal mode, end DMA xfer and HAL UART Rx process*/
|
||||
if (HAL_IS_BIT_CLR(huart->hdmarx->Instance->CCR, DMA_CCR_CIRC))
|
||||
{
|
||||
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Disable the DMA transfer for the receiver request by resetting the DMAR bit
|
||||
in the UART CR3 register */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
|
||||
/* Last bytes received, so no need as the abort is immediate */
|
||||
(void)HAL_DMA_Abort(huart->hdmarx);
|
||||
}
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* DMA mode not enabled */
|
||||
/* Check received length : If all expected data are received, do nothing.
|
||||
Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
|
||||
uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
|
||||
if ((huart->RxXferCount > 0U)
|
||||
&& (nb_rx_data > 0U))
|
||||
{
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Disable the UART Parity Error Interrupt and RXNE interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
||||
|
||||
/* Disable the UART Error Interrupt:(Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
||||
#else
|
||||
/* Disable the UART Parity Error Interrupt and RXNE interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
||||
|
||||
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
#endif
|
||||
|
||||
/* Rx process is completed, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->RxISR = NULL;
|
||||
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx complete callback*/
|
||||
huart->RxEventCallback(huart, nb_rx_data);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* UART wakeup from Stop mode interrupt occurred ---------------------------*/
|
||||
if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF);
|
||||
|
||||
/* UART Rx state is not reset as a reception process might be ongoing.
|
||||
If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Wakeup Callback */
|
||||
huart->WakeupCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Wakeup Callback */
|
||||
HAL_UARTEx_WakeupCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
return;
|
||||
}
|
||||
|
||||
/* UART in mode Transmitter ------------------------------------------------*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
if (((isrflags & USART_ISR_TXE_TXFNF) != 0U)
|
||||
&& (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)
|
||||
|| ((cr3its & USART_CR3_TXFTIE) != 0U)))
|
||||
#else
|
||||
if (((isrflags & USART_ISR_TXE) != 0U)
|
||||
&& ((cr1its & USART_CR1_TXEIE) != 0U))
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
{
|
||||
if (huart->TxISR != NULL)
|
||||
{
|
||||
huart->TxISR(huart);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/* UART in mode Transmitter (transmission end) -----------------------------*/
|
||||
if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
|
||||
{
|
||||
UART_EndTransmit_IT(huart);
|
||||
return;
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* UART TX Fifo Empty occurred ----------------------------------------------*/
|
||||
if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U))
|
||||
{
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Tx Fifo Empty Callback */
|
||||
huart->TxFifoEmptyCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Tx Fifo Empty Callback */
|
||||
HAL_UARTEx_TxFifoEmptyCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
return;
|
||||
}
|
||||
|
||||
/* UART RX Fifo Full occurred ----------------------------------------------*/
|
||||
if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U))
|
||||
{
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Rx Fifo Full Callback */
|
||||
huart->RxFifoFullCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Rx Fifo Full Callback */
|
||||
HAL_UARTEx_RxFifoFullCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
return;
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Tx Transfer completed callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_TxCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Tx Half Transfer completed callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE: This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_TxHalfCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rx Transfer completed callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_RxCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rx Half Transfer completed callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE: This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_RxHalfCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART error callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_ErrorCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART Abort Complete callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_AbortCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART Abort Complete callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART Abort Receive Complete callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reception Event Callback (Rx event notification called after use of advanced reception service).
|
||||
* @param huart UART handle
|
||||
* @param Size Number of data available in application reception buffer (indicates a position in
|
||||
* reception buffer until which, data are available)
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
UNUSED(Size);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UARTEx_RxEventCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
|
||||
* @brief UART control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to control the UART.
|
||||
(+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly
|
||||
(+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature
|
||||
(+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature
|
||||
(+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
|
||||
(+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
|
||||
(+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
|
||||
(+) UART_SetConfig() API configures the UART peripheral
|
||||
(+) UART_AdvFeatureConfig() API optionally configures the UART advanced features
|
||||
(+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization
|
||||
(+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter
|
||||
(+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver
|
||||
(+) HAL_LIN_SendBreak() API transmits the break characters
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Update on the fly the receiver timeout value in RTOR register.
|
||||
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified UART module.
|
||||
* @param TimeoutValue receiver timeout value in number of baud blocks. The timeout
|
||||
* value must be less or equal to 0x0FFFFFFFF.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue)
|
||||
{
|
||||
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
||||
{
|
||||
assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue));
|
||||
MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the UART receiver timeout feature.
|
||||
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified UART module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart)
|
||||
{
|
||||
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
||||
{
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Set the USART RTOEN bit */
|
||||
SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the UART receiver timeout feature.
|
||||
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified UART module.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart)
|
||||
{
|
||||
if (!(IS_LPUART_INSTANCE(huart->Instance)))
|
||||
{
|
||||
if (huart->gState == HAL_UART_STATE_READY)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Clear the USART RTOEN bit */
|
||||
CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable UART in mute mode (does not mean UART enters mute mode;
|
||||
* to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called).
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Enable USART mute mode by setting the MME bit in the CR1 register */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_MME);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable UART mute mode (does not mean the UART actually exits mute mode
|
||||
* as it may not have been in mute mode at this very moment).
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable USART mute mode by clearing the MME bit in the CR1 register */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enter UART mute mode (means UART actually enters mute mode).
|
||||
* @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the UART transmitter and disable the UART receiver.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
|
||||
{
|
||||
__HAL_LOCK(huart);
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Clear TE and RE bits */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
|
||||
|
||||
/* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TE);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable the UART receiver and disable the UART transmitter.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status.
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
|
||||
{
|
||||
__HAL_LOCK(huart);
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Clear TE and RE bits */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
|
||||
|
||||
/* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RE);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Transmit break characters.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Check the parameters */
|
||||
assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Send break characters */
|
||||
__HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions
|
||||
* @brief UART Peripheral State functions
|
||||
*
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### Peripheral State and Error functions #####
|
||||
==============================================================================
|
||||
[..]
|
||||
This subsection provides functions allowing to :
|
||||
(+) Return the UART handle state.
|
||||
(+) Return the UART handle error code
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Return the UART handle state.
|
||||
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified UART.
|
||||
* @retval HAL state
|
||||
*/
|
||||
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t temp1;
|
||||
uint32_t temp2;
|
||||
temp1 = huart->gState;
|
||||
temp2 = huart->RxState;
|
||||
|
||||
return (HAL_UART_StateTypeDef)(temp1 | temp2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the UART handle error code.
|
||||
* @param huart Pointer to a UART_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified UART.
|
||||
* @retval UART Error Code
|
||||
*/
|
||||
uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
|
||||
{
|
||||
return huart->ErrorCode;
|
||||
}
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UART_Private_Functions UART Private Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the callbacks to their default values.
|
||||
* @param huart UART handle.
|
||||
* @retval none
|
||||
*/
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Init the UART Callback settings */
|
||||
huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
|
||||
huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
|
||||
huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
|
||||
huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
|
||||
huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
|
||||
huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
|
||||
huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
|
||||
huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
|
||||
huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
|
||||
huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */
|
||||
|
||||
}
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
|
||||
/**
|
||||
* @brief Configure the UART peripheral.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t tmpreg;
|
||||
uint16_t brrtemp;
|
||||
UART_ClockSourceTypeDef clocksource;
|
||||
uint32_t usartdiv;
|
||||
HAL_StatusTypeDef ret = HAL_OK;
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
uint32_t lpuart_ker_ck_pres;
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
uint32_t pclk;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
|
||||
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
|
||||
if (UART_INSTANCE_LOWPOWER(huart))
|
||||
{
|
||||
assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits));
|
||||
}
|
||||
else
|
||||
{
|
||||
assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
|
||||
assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling));
|
||||
}
|
||||
|
||||
assert_param(IS_UART_PARITY(huart->Init.Parity));
|
||||
assert_param(IS_UART_MODE(huart->Init.Mode));
|
||||
assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
|
||||
assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler));
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
|
||||
/*-------------------------- USART CR1 Configuration -----------------------*/
|
||||
/* Clear M, PCE, PS, TE, RE and OVER8 bits and configure
|
||||
* the UART Word Length, Parity, Mode and oversampling:
|
||||
* set the M bits according to huart->Init.WordLength value
|
||||
* set PCE and PS bits according to huart->Init.Parity value
|
||||
* set TE and RE bits according to huart->Init.Mode value
|
||||
* set OVER8 bit according to huart->Init.OverSampling value */
|
||||
tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
|
||||
MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
|
||||
|
||||
/*-------------------------- USART CR2 Configuration -----------------------*/
|
||||
/* Configure the UART Stop Bits: Set STOP[13:12] bits according
|
||||
* to huart->Init.StopBits value */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
|
||||
|
||||
/*-------------------------- USART CR3 Configuration -----------------------*/
|
||||
/* Configure
|
||||
* - UART HardWare Flow Control: set CTSE and RTSE bits according
|
||||
* to huart->Init.HwFlowCtl value
|
||||
* - one-bit sampling method versus three samples' majority rule according
|
||||
* to huart->Init.OneBitSampling (not applicable to LPUART) */
|
||||
tmpreg = (uint32_t)huart->Init.HwFlowCtl;
|
||||
|
||||
if (!(UART_INSTANCE_LOWPOWER(huart)))
|
||||
{
|
||||
tmpreg |= huart->Init.OneBitSampling;
|
||||
}
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg);
|
||||
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
/*-------------------------- USART PRESC Configuration -----------------------*/
|
||||
/* Configure
|
||||
* - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */
|
||||
MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler);
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
|
||||
/*-------------------------- USART BRR Configuration -----------------------*/
|
||||
UART_GETCLOCKSOURCE(huart, clocksource);
|
||||
|
||||
/* Check LPUART instance */
|
||||
if (UART_INSTANCE_LOWPOWER(huart))
|
||||
{
|
||||
/* Retrieve frequency clock */
|
||||
switch (clocksource)
|
||||
{
|
||||
case UART_CLOCKSOURCE_PCLK1:
|
||||
pclk = HAL_RCC_GetPCLK1Freq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_HSI:
|
||||
pclk = (uint32_t) HSI_VALUE;
|
||||
break;
|
||||
case UART_CLOCKSOURCE_SYSCLK:
|
||||
pclk = HAL_RCC_GetSysClockFreq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_LSE:
|
||||
pclk = (uint32_t) LSE_VALUE;
|
||||
break;
|
||||
default:
|
||||
pclk = 0U;
|
||||
ret = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* If proper clock source reported */
|
||||
if (pclk != 0U)
|
||||
{
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
/* Compute clock after Prescaler */
|
||||
lpuart_ker_ck_pres = (pclk / UARTPrescTable[huart->Init.ClockPrescaler]);
|
||||
|
||||
/* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
|
||||
if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) ||
|
||||
(lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate)))
|
||||
{
|
||||
ret = HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Check computed UsartDiv value is in allocated range
|
||||
(it is forbidden to write values lower than 0x300 in the LPUART_BRR register) */
|
||||
usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
|
||||
if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
|
||||
{
|
||||
huart->Instance->BRR = usartdiv;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = HAL_ERROR;
|
||||
}
|
||||
} /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) ||
|
||||
(lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */
|
||||
#else
|
||||
/* No Prescaler applicable */
|
||||
/* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
|
||||
if ((pclk < (3U * huart->Init.BaudRate)) ||
|
||||
(pclk > (4096U * huart->Init.BaudRate)))
|
||||
{
|
||||
ret = HAL_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate));
|
||||
if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
|
||||
{
|
||||
huart->Instance->BRR = usartdiv;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = HAL_ERROR;
|
||||
}
|
||||
} /* if ( (pclk < (3 * huart->Init.BaudRate) ) || (pclk > (4096 * huart->Init.BaudRate) )) */
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
} /* if (pclk != 0) */
|
||||
}
|
||||
/* Check UART Over Sampling to set Baud Rate Register */
|
||||
else if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
|
||||
{
|
||||
switch (clocksource)
|
||||
{
|
||||
case UART_CLOCKSOURCE_PCLK1:
|
||||
pclk = HAL_RCC_GetPCLK1Freq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_PCLK2:
|
||||
pclk = HAL_RCC_GetPCLK2Freq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_HSI:
|
||||
pclk = (uint32_t) HSI_VALUE;
|
||||
break;
|
||||
case UART_CLOCKSOURCE_SYSCLK:
|
||||
pclk = HAL_RCC_GetSysClockFreq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_LSE:
|
||||
pclk = (uint32_t) LSE_VALUE;
|
||||
break;
|
||||
default:
|
||||
pclk = 0U;
|
||||
ret = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
/* USARTDIV must be greater than or equal to 0d16 */
|
||||
if (pclk != 0U)
|
||||
{
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
|
||||
#else
|
||||
usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate));
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
|
||||
{
|
||||
brrtemp = (uint16_t)(usartdiv & 0xFFF0U);
|
||||
brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
|
||||
huart->Instance->BRR = brrtemp;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (clocksource)
|
||||
{
|
||||
case UART_CLOCKSOURCE_PCLK1:
|
||||
pclk = HAL_RCC_GetPCLK1Freq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_PCLK2:
|
||||
pclk = HAL_RCC_GetPCLK2Freq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_HSI:
|
||||
pclk = (uint32_t) HSI_VALUE;
|
||||
break;
|
||||
case UART_CLOCKSOURCE_SYSCLK:
|
||||
pclk = HAL_RCC_GetSysClockFreq();
|
||||
break;
|
||||
case UART_CLOCKSOURCE_LSE:
|
||||
pclk = (uint32_t) LSE_VALUE;
|
||||
break;
|
||||
default:
|
||||
pclk = 0U;
|
||||
ret = HAL_ERROR;
|
||||
break;
|
||||
}
|
||||
|
||||
if (pclk != 0U)
|
||||
{
|
||||
/* USARTDIV must be greater than or equal to 0d16 */
|
||||
#if defined(USART_PRESC_PRESCALER)
|
||||
usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
|
||||
#else
|
||||
usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate));
|
||||
#endif /* USART_PRESC_PRESCALER */
|
||||
if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
|
||||
{
|
||||
huart->Instance->BRR = (uint16_t)usartdiv;
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Initialize the number of data to process during RX/TX ISR execution */
|
||||
huart->NbTxDataToProcess = 1;
|
||||
huart->NbRxDataToProcess = 1;
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Clear ISR function pointers */
|
||||
huart->RxISR = NULL;
|
||||
huart->TxISR = NULL;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Configure the UART peripheral advanced features.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Check whether the set of advanced features to configure is properly set */
|
||||
assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
|
||||
|
||||
/* if required, configure TX pin active level inversion */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
|
||||
}
|
||||
|
||||
/* if required, configure RX pin active level inversion */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
|
||||
}
|
||||
|
||||
/* if required, configure data inversion */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
|
||||
}
|
||||
|
||||
/* if required, configure RX/TX pins swap */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
|
||||
}
|
||||
|
||||
/* if required, configure RX overrun detection disabling */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
|
||||
{
|
||||
assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
|
||||
}
|
||||
|
||||
/* if required, configure DMA disabling on reception error */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
|
||||
}
|
||||
|
||||
/* if required, configure auto Baud rate detection scheme */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
|
||||
{
|
||||
assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
|
||||
assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
|
||||
/* set auto Baudrate detection parameters if detection is enabled */
|
||||
if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
|
||||
}
|
||||
}
|
||||
|
||||
/* if required, configure MSB first on communication line */
|
||||
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
|
||||
{
|
||||
assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check the UART Idle State.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Initialize the UART ErrorCode */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Check if the Transmitter is enabled */
|
||||
if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
|
||||
{
|
||||
/* Wait until TEACK flag is set */
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
||||
{
|
||||
/* Timeout occurred */
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if the Receiver is enabled */
|
||||
if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
|
||||
{
|
||||
/* Wait until REACK flag is set */
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
||||
{
|
||||
/* Timeout occurred */
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize the UART State */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This function handles UART Communication Timeout. It waits
|
||||
* until a flag is no longer in the specified status.
|
||||
* @param huart UART handle.
|
||||
* @param Flag Specifies the UART flag to check
|
||||
* @param Status The actual Flag status (SET or RESET)
|
||||
* @param Tickstart Tick start value
|
||||
* @param Timeout Timeout duration
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
|
||||
uint32_t Tickstart, uint32_t Timeout)
|
||||
{
|
||||
/* Wait until flag is set */
|
||||
while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
|
||||
{
|
||||
/* Check for the Timeout */
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
|
||||
{
|
||||
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error)
|
||||
interrupts for the interrupt process */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE |
|
||||
USART_CR1_TXEIE_TXFNFIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
|
||||
if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U)
|
||||
{
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET)
|
||||
{
|
||||
/* Clear Receiver Timeout flag*/
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
|
||||
|
||||
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error)
|
||||
interrupts for the interrupt process */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE |
|
||||
USART_CR1_TXEIE_TXFNFIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
|
||||
#endif
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ErrorCode = HAL_UART_ERROR_RTO;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start Receive operation in interrupt mode.
|
||||
* @note This function could be called by all HAL UART API providing reception in Interrupt mode.
|
||||
* @note When calling this function, parameters validity is considered as already checked,
|
||||
* i.e. Rx State, buffer address, ...
|
||||
* UART Handle is assumed as Locked.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
huart->pRxBuffPtr = pData;
|
||||
huart->RxXferSize = Size;
|
||||
huart->RxXferCount = Size;
|
||||
huart->RxISR = NULL;
|
||||
|
||||
/* Computation of UART mask to apply to RDR register */
|
||||
UART_MASK_COMPUTATION(huart);
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
||||
|
||||
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Configure Rx interrupt processing */
|
||||
if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess))
|
||||
{
|
||||
/* Set the Rx ISR function pointer according to the data word length */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
huart->RxISR = UART_RxISR_16BIT_FIFOEN;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->RxISR = UART_RxISR_8BIT_FIFOEN;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */
|
||||
if (huart->Init.Parity != UART_PARITY_NONE)
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
}
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Set the Rx ISR function pointer according to the data word length */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
huart->RxISR = UART_RxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->RxISR = UART_RxISR_8BIT;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
|
||||
if (huart->Init.Parity != UART_PARITY_NONE)
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Set the Rx ISR function pointer according to the data word length */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
huart->RxISR = UART_RxISR_16BIT;
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->RxISR = UART_RxISR_8BIT;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
|
||||
if (huart->Init.Parity != UART_PARITY_NONE)
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Start Receive operation in DMA mode.
|
||||
* @note This function could be called by all HAL UART API providing reception in DMA mode.
|
||||
* @note When calling this function, parameters validity is considered as already checked,
|
||||
* i.e. Rx State, buffer address, ...
|
||||
* UART Handle is assumed as Locked.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (u8 or u16 data elements).
|
||||
* @param Size Amount of data elements (u8 or u16) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
huart->pRxBuffPtr = pData;
|
||||
huart->RxXferSize = Size;
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
||||
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
/* Set the UART DMA transfer complete callback */
|
||||
huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
|
||||
|
||||
/* Set the UART DMA Half transfer complete callback */
|
||||
huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
|
||||
|
||||
/* Set the DMA error callback */
|
||||
huart->hdmarx->XferErrorCallback = UART_DMAError;
|
||||
|
||||
/* Set the DMA abort callback */
|
||||
huart->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
/* Enable the DMA channel */
|
||||
if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK)
|
||||
{
|
||||
/* Set error code to DMA */
|
||||
huart->ErrorCode = HAL_UART_ERROR_DMA;
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Restore huart->RxState to ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_ERROR;
|
||||
}
|
||||
}
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Enable the UART Parity Error Interrupt */
|
||||
if (huart->Init.Parity != UART_PARITY_NONE)
|
||||
{
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
}
|
||||
|
||||
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Enable the DMA transfer for the receiver request by setting the DMAR bit
|
||||
in the UART CR3 register */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
|
||||
{
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Disable TXEIE, TCIE, TXFT interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE));
|
||||
#else
|
||||
/* Disable TXEIE and TCIE interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* At end of Tx process, restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Reset RxIsr function pointer */
|
||||
huart->RxISR = NULL;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief DMA UART transmit process complete callback.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
/* DMA Normal mode */
|
||||
if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
|
||||
{
|
||||
huart->TxXferCount = 0U;
|
||||
|
||||
/* Disable the DMA transfer for transmit request by resetting the DMAT bit
|
||||
in the UART CR3 register */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
|
||||
|
||||
/* Enable the UART Transmit Complete Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
||||
}
|
||||
/* DMA Circular mode */
|
||||
else
|
||||
{
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Tx complete callback*/
|
||||
huart->TxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Tx complete callback*/
|
||||
HAL_UART_TxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART transmit process half complete callback.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Tx Half complete callback*/
|
||||
huart->TxHalfCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Tx Half complete callback*/
|
||||
HAL_UART_TxHalfCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART receive process complete callback.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
/* DMA Normal mode */
|
||||
if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
|
||||
{
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Disable the DMA transfer for the receiver request by resetting the DMAR bit
|
||||
in the UART CR3 register */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
|
||||
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
/* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
}
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : use Rx Event callback */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, huart->RxXferSize);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In other cases : use Rx Complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx complete callback*/
|
||||
huart->RxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Rx complete callback*/
|
||||
HAL_UART_RxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART receive process half complete callback.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : use Rx Event callback */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, huart->RxXferSize / 2U);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In other cases : use Rx Half Complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Half complete callback*/
|
||||
huart->RxHalfCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Rx Half complete callback*/
|
||||
HAL_UART_RxHalfCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART communication error callback.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMAError(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
const HAL_UART_StateTypeDef gstate = huart->gState;
|
||||
const HAL_UART_StateTypeDef rxstate = huart->RxState;
|
||||
|
||||
/* Stop UART DMA Tx request if ongoing */
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
|
||||
(gstate == HAL_UART_STATE_BUSY_TX))
|
||||
{
|
||||
huart->TxXferCount = 0U;
|
||||
UART_EndTxTransfer(huart);
|
||||
}
|
||||
|
||||
/* Stop UART DMA Rx request if ongoing */
|
||||
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
|
||||
(rxstate == HAL_UART_STATE_BUSY_RX))
|
||||
{
|
||||
huart->RxXferCount = 0U;
|
||||
UART_EndRxTransfer(huart);
|
||||
}
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_DMA;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART communication abort callback, when initiated by HAL services on Error
|
||||
* (To be called at end of DMA Abort procedure following error occurrence).
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
huart->RxXferCount = 0U;
|
||||
huart->TxXferCount = 0U;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART Tx communication abort callback, when initiated by user
|
||||
* (To be called at end of DMA Tx Abort procedure following user abort request).
|
||||
* @note When this callback is executed, User Abort complete call back is called only if no
|
||||
* Abort still ongoing for Rx DMA Handle.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
huart->hdmatx->XferAbortCallback = NULL;
|
||||
|
||||
/* Check if an Abort process is still ongoing */
|
||||
if (huart->hdmarx != NULL)
|
||||
{
|
||||
if (huart->hdmarx->XferAbortCallback != NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
|
||||
huart->TxXferCount = 0U;
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Reset errorCode */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Flush the whole TX FIFO (if needed) */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Restore huart->gState and huart->RxState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Call user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort complete callback */
|
||||
huart->AbortCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort complete callback */
|
||||
HAL_UART_AbortCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief DMA UART Rx communication abort callback, when initiated by user
|
||||
* (To be called at end of DMA Rx Abort procedure following user abort request).
|
||||
* @note When this callback is executed, User Abort complete call back is called only if no
|
||||
* Abort still ongoing for Tx DMA Handle.
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
huart->hdmarx->XferAbortCallback = NULL;
|
||||
|
||||
/* Check if an Abort process is still ongoing */
|
||||
if (huart->hdmatx != NULL)
|
||||
{
|
||||
if (huart->hdmatx->XferAbortCallback != NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
|
||||
huart->TxXferCount = 0U;
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Reset errorCode */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
/* Discard the received data */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
|
||||
/* Restore huart->gState and huart->RxState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Call user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort complete callback */
|
||||
huart->AbortCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort complete callback */
|
||||
HAL_UART_AbortCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief DMA UART Tx communication abort callback, when initiated by user by a call to
|
||||
* HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
|
||||
* (This callback is executed at end of DMA Tx Abort procedure following user abort request,
|
||||
* and leads to user Tx Abort Complete callback execution).
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
|
||||
|
||||
huart->TxXferCount = 0U;
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/* Flush the whole TX FIFO (if needed) */
|
||||
if (huart->FifoMode == UART_FIFOMODE_ENABLE)
|
||||
{
|
||||
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Call user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort Transmit Complete Callback */
|
||||
huart->AbortTransmitCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort Transmit Complete Callback */
|
||||
HAL_UART_AbortTransmitCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief DMA UART Rx communication abort callback, when initiated by user by a call to
|
||||
* HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
|
||||
* (This callback is executed at end of DMA Rx Abort procedure following user abort request,
|
||||
* and leads to user Rx Abort Complete callback execution).
|
||||
* @param hdma DMA handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
|
||||
{
|
||||
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
||||
|
||||
huart->RxXferCount = 0U;
|
||||
|
||||
/* Clear the Error flags in the ICR register */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
|
||||
|
||||
/* Discard the received data */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
|
||||
/* Restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Call user Abort complete callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/* Call registered Abort Receive Complete Callback */
|
||||
huart->AbortReceiveCpltCallback(huart);
|
||||
#else
|
||||
/* Call legacy weak Abort Receive Complete Callback */
|
||||
HAL_UART_AbortReceiveCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TX interrupt handler for 7 or 8 bits data word length .
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_TxISR_8BIT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Check that a Tx process is ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
||||
{
|
||||
if (huart->TxXferCount == 0U)
|
||||
{
|
||||
/* Disable the UART Transmit Data Register Empty Interrupt */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Enable the UART Transmit Complete Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
|
||||
huart->pTxBuffPtr++;
|
||||
huart->TxXferCount--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TX interrupt handler for 9 bits data word length.
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_TxISR_16BIT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
const uint16_t *tmp;
|
||||
|
||||
/* Check that a Tx process is ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
||||
{
|
||||
if (huart->TxXferCount == 0U)
|
||||
{
|
||||
/* Disable the UART Transmit Data Register Empty Interrupt */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Enable the UART Transmit Complete Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp = (const uint16_t *) huart->pTxBuffPtr;
|
||||
huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
|
||||
huart->pTxBuffPtr += 2U;
|
||||
huart->TxXferCount--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/**
|
||||
* @brief TX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint16_t nb_tx_data;
|
||||
|
||||
/* Check that a Tx process is ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
||||
{
|
||||
for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
|
||||
{
|
||||
if (huart->TxXferCount == 0U)
|
||||
{
|
||||
/* Disable the TX FIFO threshold interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
||||
|
||||
/* Enable the UART Transmit Complete Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
||||
|
||||
break; /* force exit loop */
|
||||
}
|
||||
else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
|
||||
{
|
||||
huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
|
||||
huart->pTxBuffPtr++;
|
||||
huart->TxXferCount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Nothing to do */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief TX interrupt handler for 9 bits data word length and FIFO mode is enabled.
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Transmit_IT().
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
|
||||
{
|
||||
const uint16_t *tmp;
|
||||
uint16_t nb_tx_data;
|
||||
|
||||
/* Check that a Tx process is ongoing */
|
||||
if (huart->gState == HAL_UART_STATE_BUSY_TX)
|
||||
{
|
||||
for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
|
||||
{
|
||||
if (huart->TxXferCount == 0U)
|
||||
{
|
||||
/* Disable the TX FIFO threshold interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
|
||||
|
||||
/* Enable the UART Transmit Complete Interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
||||
|
||||
break; /* force exit loop */
|
||||
}
|
||||
else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
|
||||
{
|
||||
tmp = (const uint16_t *) huart->pTxBuffPtr;
|
||||
huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
|
||||
huart->pTxBuffPtr += 2U;
|
||||
huart->TxXferCount--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Nothing to do */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/**
|
||||
* @brief Wrap up transmission in non-blocking mode.
|
||||
* @param huart pointer to a UART_HandleTypeDef structure that contains
|
||||
* the configuration information for the specified UART module.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_EndTransmit_IT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Disable the UART Transmit Complete Interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE);
|
||||
|
||||
/* Tx process is ended, restore huart->gState to Ready */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Cleat TxISR function pointer */
|
||||
huart->TxISR = NULL;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Tx complete callback*/
|
||||
huart->TxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Tx complete callback*/
|
||||
HAL_UART_TxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RX interrupt handler for 7 or 8 bits data word length .
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_RxISR_8BIT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint16_t uhMask = huart->Mask;
|
||||
uint16_t uhdata;
|
||||
|
||||
/* Check that a Rx process is ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
||||
{
|
||||
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
||||
*huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
|
||||
huart->pRxBuffPtr++;
|
||||
huart->RxXferCount--;
|
||||
|
||||
if (huart->RxXferCount == 0U)
|
||||
{
|
||||
/* Disable the UART Parity Error Interrupt and RXNE interrupts */
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Rx process is completed, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->RxISR = NULL;
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
/* Set reception type to Standard */
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Disable IDLE interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
||||
{
|
||||
/* Clear IDLE Flag */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
}
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, huart->RxXferSize);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Standard reception API called */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx complete callback*/
|
||||
huart->RxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Rx complete callback*/
|
||||
HAL_UART_RxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear RXNE interrupt flag */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RX interrupt handler for 9 bits data word length .
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Receive_IT()
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_RxISR_16BIT(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint16_t *tmp;
|
||||
uint16_t uhMask = huart->Mask;
|
||||
uint16_t uhdata;
|
||||
|
||||
/* Check that a Rx process is ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
||||
{
|
||||
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
||||
tmp = (uint16_t *) huart->pRxBuffPtr ;
|
||||
*tmp = (uint16_t)(uhdata & uhMask);
|
||||
huart->pRxBuffPtr += 2U;
|
||||
huart->RxXferCount--;
|
||||
|
||||
if (huart->RxXferCount == 0U)
|
||||
{
|
||||
/* Disable the UART Parity Error Interrupt and RXNE interrupt*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
|
||||
#else
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
|
||||
|
||||
/* Rx process is completed, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->RxISR = NULL;
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
/* Set reception type to Standard */
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Disable IDLE interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
||||
{
|
||||
/* Clear IDLE Flag */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
}
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, huart->RxXferSize);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Standard reception API called */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx complete callback*/
|
||||
huart->RxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Rx complete callback*/
|
||||
HAL_UART_RxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear RXNE interrupt flag */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/**
|
||||
* @brief RX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Receive_IT()
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint16_t uhMask = huart->Mask;
|
||||
uint16_t uhdata;
|
||||
uint16_t nb_rx_data;
|
||||
uint16_t rxdatacount;
|
||||
uint32_t isrflags = READ_REG(huart->Instance->ISR);
|
||||
uint32_t cr1its = READ_REG(huart->Instance->CR1);
|
||||
uint32_t cr3its = READ_REG(huart->Instance->CR3);
|
||||
|
||||
/* Check that a Rx process is ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
||||
{
|
||||
nb_rx_data = huart->NbRxDataToProcess;
|
||||
while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
|
||||
{
|
||||
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
||||
*huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
|
||||
huart->pRxBuffPtr++;
|
||||
huart->RxXferCount--;
|
||||
isrflags = READ_REG(huart->Instance->ISR);
|
||||
|
||||
/* If some non blocking errors occurred */
|
||||
if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
|
||||
{
|
||||
/* UART parity error interrupt occurred -------------------------------------*/
|
||||
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_PE;
|
||||
}
|
||||
|
||||
/* UART frame error interrupt occurred --------------------------------------*/
|
||||
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_FE;
|
||||
}
|
||||
|
||||
/* UART noise error interrupt occurred --------------------------------------*/
|
||||
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_NE;
|
||||
}
|
||||
|
||||
/* Call UART Error Call back function if need be ----------------------------*/
|
||||
if (huart->ErrorCode != HAL_UART_ERROR_NONE)
|
||||
{
|
||||
/* Non Blocking error : transfer could go on.
|
||||
Error is notified to user through user error callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
if (huart->RxXferCount == 0U)
|
||||
{
|
||||
/* Disable the UART Parity Error Interrupt and RXFT interrupt*/
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
|
||||
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
|
||||
and RX FIFO Threshold interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
||||
|
||||
/* Rx process is completed, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->RxISR = NULL;
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
/* Set reception type to Standard */
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Disable IDLE interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
||||
{
|
||||
/* Clear IDLE Flag */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
}
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, huart->RxXferSize);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Standard reception API called */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx complete callback*/
|
||||
huart->RxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Rx complete callback*/
|
||||
HAL_UART_RxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* When remaining number of bytes to receive is less than the RX FIFO
|
||||
threshold, next incoming frames are processed as if FIFO mode was
|
||||
disabled (i.e. one interrupt per received frame).
|
||||
*/
|
||||
rxdatacount = huart->RxXferCount;
|
||||
if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
|
||||
{
|
||||
/* Disable the UART RXFT interrupt*/
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
|
||||
|
||||
/* Update the RxISR function pointer */
|
||||
huart->RxISR = UART_RxISR_8BIT;
|
||||
|
||||
/* Enable the UART Data Register Not Empty interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear RXNE interrupt flag */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief RX interrupt handler for 9 bits data word length and FIFO mode is enabled.
|
||||
* @note Function is called under interruption only, once
|
||||
* interruptions have been enabled by HAL_UART_Receive_IT()
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint16_t *tmp;
|
||||
uint16_t uhMask = huart->Mask;
|
||||
uint16_t uhdata;
|
||||
uint16_t nb_rx_data;
|
||||
uint16_t rxdatacount;
|
||||
uint32_t isrflags = READ_REG(huart->Instance->ISR);
|
||||
uint32_t cr1its = READ_REG(huart->Instance->CR1);
|
||||
uint32_t cr3its = READ_REG(huart->Instance->CR3);
|
||||
|
||||
/* Check that a Rx process is ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_BUSY_RX)
|
||||
{
|
||||
nb_rx_data = huart->NbRxDataToProcess;
|
||||
while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
|
||||
{
|
||||
uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
|
||||
tmp = (uint16_t *) huart->pRxBuffPtr ;
|
||||
*tmp = (uint16_t)(uhdata & uhMask);
|
||||
huart->pRxBuffPtr += 2U;
|
||||
huart->RxXferCount--;
|
||||
isrflags = READ_REG(huart->Instance->ISR);
|
||||
|
||||
/* If some non blocking errors occurred */
|
||||
if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
|
||||
{
|
||||
/* UART parity error interrupt occurred -------------------------------------*/
|
||||
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_PE;
|
||||
}
|
||||
|
||||
/* UART frame error interrupt occurred --------------------------------------*/
|
||||
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_FE;
|
||||
}
|
||||
|
||||
/* UART noise error interrupt occurred --------------------------------------*/
|
||||
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
|
||||
|
||||
huart->ErrorCode |= HAL_UART_ERROR_NE;
|
||||
}
|
||||
|
||||
/* Call UART Error Call back function if need be ----------------------------*/
|
||||
if (huart->ErrorCode != HAL_UART_ERROR_NONE)
|
||||
{
|
||||
/* Non Blocking error : transfer could go on.
|
||||
Error is notified to user through user error callback */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered error callback*/
|
||||
huart->ErrorCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak error callback*/
|
||||
HAL_UART_ErrorCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
}
|
||||
}
|
||||
|
||||
if (huart->RxXferCount == 0U)
|
||||
{
|
||||
/* Disable the UART Parity Error Interrupt and RXFT interrupt*/
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
|
||||
|
||||
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
|
||||
and RX FIFO Threshold interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
|
||||
|
||||
/* Rx process is completed, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Clear RxISR function pointer */
|
||||
huart->RxISR = NULL;
|
||||
|
||||
/* Check current reception Mode :
|
||||
If Reception till IDLE event has been selected : */
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
/* Set reception type to Standard */
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
|
||||
|
||||
/* Disable IDLE interrupt */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
|
||||
{
|
||||
/* Clear IDLE Flag */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
}
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx Event callback*/
|
||||
huart->RxEventCallback(huart, huart->RxXferSize);
|
||||
#else
|
||||
/*Call legacy weak Rx Event callback*/
|
||||
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Standard reception API called */
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
/*Call registered Rx complete callback*/
|
||||
huart->RxCpltCallback(huart);
|
||||
#else
|
||||
/*Call legacy weak Rx complete callback*/
|
||||
HAL_UART_RxCpltCallback(huart);
|
||||
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* When remaining number of bytes to receive is less than the RX FIFO
|
||||
threshold, next incoming frames are processed as if FIFO mode was
|
||||
disabled (i.e. one interrupt per received frame).
|
||||
*/
|
||||
rxdatacount = huart->RxXferCount;
|
||||
if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
|
||||
{
|
||||
/* Disable the UART RXFT interrupt*/
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
|
||||
|
||||
/* Update the RxISR function pointer */
|
||||
huart->RxISR = UART_RxISR_16BIT;
|
||||
|
||||
/* Enable the UART Data Register Not Empty interrupt */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Clear RXNE interrupt flag */
|
||||
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
|
||||
}
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_UART_MODULE_ENABLED */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
@@ -1,1074 +0,0 @@
|
||||
/**
|
||||
******************************************************************************
|
||||
* @file stm32l4xx_hal_uart_ex.c
|
||||
* @author MCD Application Team
|
||||
* @brief Extended UART HAL module driver.
|
||||
* This file provides firmware functions to manage the following extended
|
||||
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
|
||||
* + Initialization and de-initialization functions
|
||||
* + Peripheral Control functions
|
||||
*
|
||||
*
|
||||
******************************************************************************
|
||||
* @attention
|
||||
*
|
||||
* Copyright (c) 2017 STMicroelectronics.
|
||||
* All rights reserved.
|
||||
*
|
||||
* This software is licensed under terms that can be found in the LICENSE file
|
||||
* in the root directory of this software component.
|
||||
* If no LICENSE file comes with this software, it is provided AS-IS.
|
||||
*
|
||||
******************************************************************************
|
||||
@verbatim
|
||||
==============================================================================
|
||||
##### UART peripheral extended features #####
|
||||
==============================================================================
|
||||
|
||||
(#) Declare a UART_HandleTypeDef handle structure.
|
||||
|
||||
(#) For the UART RS485 Driver Enable mode, initialize the UART registers
|
||||
by calling the HAL_RS485Ex_Init() API.
|
||||
|
||||
(#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming.
|
||||
|
||||
-@- When UART operates in FIFO mode, FIFO mode must be enabled prior
|
||||
starting RX/TX transfers. Also RX/TX FIFO thresholds must be
|
||||
configured prior starting RX/TX transfers.
|
||||
|
||||
@endverbatim
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
/* Includes ------------------------------------------------------------------*/
|
||||
#include "stm32l4xx_hal.h"
|
||||
|
||||
/** @addtogroup STM32L4xx_HAL_Driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx UARTEx
|
||||
* @brief UART Extended HAL module driver
|
||||
* @{
|
||||
*/
|
||||
|
||||
#ifdef HAL_UART_MODULE_ENABLED
|
||||
|
||||
/* Private typedef -----------------------------------------------------------*/
|
||||
/* Private define ------------------------------------------------------------*/
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/** @defgroup UARTEX_Private_Constants UARTEx Private Constants
|
||||
* @{
|
||||
*/
|
||||
/* UART RX FIFO depth */
|
||||
#define RX_FIFO_DEPTH 8U
|
||||
|
||||
/* UART TX FIFO depth */
|
||||
#define TX_FIFO_DEPTH 8U
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/* Private macros ------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Private function prototypes -----------------------------------------------*/
|
||||
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
|
||||
* @{
|
||||
*/
|
||||
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart);
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/* Exported functions --------------------------------------------------------*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
|
||||
* @brief Extended Initialization and Configuration Functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Initialization and Configuration functions #####
|
||||
===============================================================================
|
||||
[..]
|
||||
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
|
||||
in asynchronous mode.
|
||||
(+) For the asynchronous mode the parameters below can be configured:
|
||||
(++) Baud Rate
|
||||
(++) Word Length
|
||||
(++) Stop Bit
|
||||
(++) Parity: If the parity is enabled, then the MSB bit of the data written
|
||||
in the data register is transmitted but is changed by the parity bit.
|
||||
(++) Hardware flow control
|
||||
(++) Receiver/transmitter modes
|
||||
(++) Over Sampling Method
|
||||
(++) One-Bit Sampling Method
|
||||
(+) For the asynchronous mode, the following advanced features can be configured as well:
|
||||
(++) TX and/or RX pin level inversion
|
||||
(++) data logical level inversion
|
||||
(++) RX and TX pins swap
|
||||
(++) RX overrun detection disabling
|
||||
(++) DMA disabling on RX error
|
||||
(++) MSB first on communication line
|
||||
(++) auto Baud rate detection
|
||||
[..]
|
||||
The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
|
||||
procedures (details for the procedures are available in reference manual).
|
||||
|
||||
@endverbatim
|
||||
|
||||
Depending on the frame length defined by the M1 and M0 bits (7-bit,
|
||||
8-bit or 9-bit), the possible UART formats are listed in the
|
||||
following table.
|
||||
|
||||
Table 1. UART frame format.
|
||||
+-----------------------------------------------------------------------+
|
||||
| M1 bit | M0 bit | PCE bit | UART frame |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 0 | | SB | 8 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 0 | | SB | 9 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 0 | | SB | 7 bit data | STB | |
|
||||
|---------|---------|-----------|---------------------------------------|
|
||||
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
|
||||
+-----------------------------------------------------------------------+
|
||||
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the RS485 Driver enable feature according to the specified
|
||||
* parameters in the UART_InitTypeDef and creates the associated handle.
|
||||
* @param huart UART handle.
|
||||
* @param Polarity Select the driver enable polarity.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
|
||||
* @arg @ref UART_DE_POLARITY_LOW DE signal is active low
|
||||
* @param AssertionTime Driver Enable assertion time:
|
||||
* 5-bit value defining the time between the activation of the DE (Driver Enable)
|
||||
* signal and the beginning of the start bit. It is expressed in sample time
|
||||
* units (1/8 or 1/16 bit time, depending on the oversampling rate)
|
||||
* @param DeassertionTime Driver Enable deassertion time:
|
||||
* 5-bit value defining the time between the end of the last stop bit, in a
|
||||
* transmitted message, and the de-activation of the DE (Driver Enable) signal.
|
||||
* It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
|
||||
* oversampling rate).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
|
||||
uint32_t DeassertionTime)
|
||||
{
|
||||
uint32_t temp;
|
||||
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
/* Check the Driver Enable UART instance */
|
||||
assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
|
||||
|
||||
/* Check the Driver Enable polarity */
|
||||
assert_param(IS_UART_DE_POLARITY(Polarity));
|
||||
|
||||
/* Check the Driver Enable assertion time */
|
||||
assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
|
||||
|
||||
/* Check the Driver Enable deassertion time */
|
||||
assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
|
||||
|
||||
if (huart->gState == HAL_UART_STATE_RESET)
|
||||
{
|
||||
/* Allocate lock resource and initialize it */
|
||||
huart->Lock = HAL_UNLOCKED;
|
||||
|
||||
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
|
||||
UART_InitCallbacksToDefault(huart);
|
||||
|
||||
if (huart->MspInitCallback == NULL)
|
||||
{
|
||||
huart->MspInitCallback = HAL_UART_MspInit;
|
||||
}
|
||||
|
||||
/* Init the low level hardware */
|
||||
huart->MspInitCallback(huart);
|
||||
#else
|
||||
/* Init the low level hardware : GPIO, CLOCK, CORTEX */
|
||||
HAL_UART_MspInit(huart);
|
||||
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
|
||||
}
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the UART Communication parameters */
|
||||
if (UART_SetConfig(huart) == HAL_ERROR)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
|
||||
{
|
||||
UART_AdvFeatureConfig(huart);
|
||||
}
|
||||
|
||||
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
|
||||
SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
|
||||
|
||||
/* Set the Driver Enable polarity */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
|
||||
|
||||
/* Set the Driver Enable assertion and deassertion times */
|
||||
temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
|
||||
temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
|
||||
MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
|
||||
* @brief Extended functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### IO operation functions #####
|
||||
===============================================================================
|
||||
This subsection provides a set of Wakeup and FIFO mode related callback functions.
|
||||
|
||||
(#) Wakeup from Stop mode Callback:
|
||||
(+) HAL_UARTEx_WakeupCallback()
|
||||
|
||||
(#) TX/RX Fifos Callbacks:
|
||||
(+) HAL_UARTEx_RxFifoFullCallback()
|
||||
(+) HAL_UARTEx_TxFifoEmptyCallback()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief UART wakeup from Stop mode callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UARTEx_WakeupCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/**
|
||||
* @brief UART RX Fifo full callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief UART TX Fifo empty callback.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
__weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Prevent unused argument(s) compilation warning */
|
||||
UNUSED(huart);
|
||||
|
||||
/* NOTE : This function should not be modified, when the callback is needed,
|
||||
the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file.
|
||||
*/
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
|
||||
* @brief Extended Peripheral Control functions
|
||||
*
|
||||
@verbatim
|
||||
===============================================================================
|
||||
##### Peripheral Control functions #####
|
||||
===============================================================================
|
||||
[..] This section provides the following functions:
|
||||
(+) HAL_UARTEx_EnableClockStopMode() API enables the UART clock (HSI or LSE only) during stop mode
|
||||
(+) HAL_UARTEx_DisableClockStopMode() API disables the above functionality
|
||||
(+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
|
||||
detection length to more than 4 bits for multiprocessor address mark wake up.
|
||||
(+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
|
||||
trigger: address match, Start Bit detection or RXNE bit status.
|
||||
(+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
|
||||
(+) HAL_UARTEx_DisableStopMode() API disables the above functionality
|
||||
(+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode
|
||||
(+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode
|
||||
(+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold
|
||||
(+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold
|
||||
|
||||
[..] This subsection also provides a set of additional functions providing enhanced reception
|
||||
services to user. (For example, these functions allow application to handle use cases
|
||||
where number of data to be received is unknown).
|
||||
|
||||
(#) Compared to standard reception services which only consider number of received
|
||||
data elements as reception completion criteria, these functions also consider additional events
|
||||
as triggers for updating reception status to caller :
|
||||
(+) Detection of inactivity period (RX line has not been active for a given period).
|
||||
(++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
|
||||
for 1 frame time, after last received byte.
|
||||
(++) RX inactivity detected by RTO, i.e. line has been in idle state
|
||||
for a programmable time, after last received byte.
|
||||
(+) Detection that a specific character has been received.
|
||||
|
||||
(#) There are two mode of transfer:
|
||||
(+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
|
||||
or till IDLE event occurs. Reception is handled only during function execution.
|
||||
When function exits, no data reception could occur. HAL status and number of actually received data elements,
|
||||
are returned by function after finishing transfer.
|
||||
(+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
|
||||
These API's return the HAL status.
|
||||
The end of the data processing will be indicated through the
|
||||
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
|
||||
The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
|
||||
The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
|
||||
|
||||
(#) Blocking mode API:
|
||||
(+) HAL_UARTEx_ReceiveToIdle()
|
||||
|
||||
(#) Non-Blocking mode API with Interrupt:
|
||||
(+) HAL_UARTEx_ReceiveToIdle_IT()
|
||||
|
||||
(#) Non-Blocking mode API with DMA:
|
||||
(+) HAL_UARTEx_ReceiveToIdle_DMA()
|
||||
|
||||
@endverbatim
|
||||
* @{
|
||||
*/
|
||||
|
||||
#if defined(USART_CR3_UCESM)
|
||||
/**
|
||||
* @brief Keep UART Clock enabled when in Stop Mode.
|
||||
* @note When the USART clock source is configured to be LSE or HSI, it is possible to keep enabled
|
||||
* this clock during STOP mode by setting the UCESM bit in USART_CR3 control register.
|
||||
* @note When LPUART is used to wakeup from stop with LSE is selected as LPUART clock source,
|
||||
* and desired baud rate is 9600 baud, the bit UCESM bit in LPUART_CR3 control register must be set.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_EnableClockStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set UCESM bit */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_UCESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable UART Clock when in Stop Mode.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_DisableClockStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Clear UCESM bit */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_UCESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
#endif /* USART_CR3_UCESM */
|
||||
/**
|
||||
* @brief By default in multiprocessor mode, when the wake up method is set
|
||||
* to address mark, the UART handles only 4-bit long addresses detection;
|
||||
* this API allows to enable longer addresses detection (6-, 7- or 8-bit
|
||||
* long).
|
||||
* @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
|
||||
* 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
|
||||
* @param huart UART handle.
|
||||
* @param AddressLength This parameter can be one of the following values:
|
||||
* @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
|
||||
* @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
|
||||
{
|
||||
/* Check the UART handle allocation */
|
||||
if (huart == NULL)
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
/* Check the address length parameter */
|
||||
assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the address length */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* TEACK and/or REACK to check before moving huart->gState to Ready */
|
||||
return (UART_CheckIdleState(huart));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set Wakeup from Stop mode interrupt flag selection.
|
||||
* @note It is the application responsibility to enable the interrupt used as
|
||||
* usart_wkup interrupt source before entering low-power mode.
|
||||
* @param huart UART handle.
|
||||
* @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_WAKEUP_ON_ADDRESS
|
||||
* @arg @ref UART_WAKEUP_ON_STARTBIT
|
||||
* @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
|
||||
{
|
||||
HAL_StatusTypeDef status = HAL_OK;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* check the wake-up from stop mode UART instance */
|
||||
assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
|
||||
/* check the wake-up selection parameter */
|
||||
assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Disable the Peripheral */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Set the wake-up selection scheme */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
|
||||
|
||||
if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
|
||||
{
|
||||
UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
|
||||
}
|
||||
|
||||
/* Enable the Peripheral */
|
||||
__HAL_UART_ENABLE(huart);
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
/* Wait until REACK flag is set */
|
||||
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
|
||||
{
|
||||
status = HAL_TIMEOUT;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialize the UART State */
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
}
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Enable UART Stop Mode.
|
||||
* @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set UESM bit */
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable UART Stop Mode.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Clear UESM bit */
|
||||
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/**
|
||||
* @brief Enable the FIFO mode.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t tmpcr1;
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Save actual UART configuration */
|
||||
tmpcr1 = READ_REG(huart->Instance->CR1);
|
||||
|
||||
/* Disable UART */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Enable FIFO mode */
|
||||
SET_BIT(tmpcr1, USART_CR1_FIFOEN);
|
||||
huart->FifoMode = UART_FIFOMODE_ENABLE;
|
||||
|
||||
/* Restore UART configuration */
|
||||
WRITE_REG(huart->Instance->CR1, tmpcr1);
|
||||
|
||||
/* Determine the number of data to process during RX/TX ISR execution */
|
||||
UARTEx_SetNbDataToProcess(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Disable the FIFO mode.
|
||||
* @param huart UART handle.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint32_t tmpcr1;
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Save actual UART configuration */
|
||||
tmpcr1 = READ_REG(huart->Instance->CR1);
|
||||
|
||||
/* Disable UART */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Enable FIFO mode */
|
||||
CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN);
|
||||
huart->FifoMode = UART_FIFOMODE_DISABLE;
|
||||
|
||||
/* Restore UART configuration */
|
||||
WRITE_REG(huart->Instance->CR1, tmpcr1);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the TXFIFO threshold.
|
||||
* @param huart UART handle.
|
||||
* @param Threshold TX FIFO threshold value
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_TXFIFO_THRESHOLD_1_8
|
||||
* @arg @ref UART_TXFIFO_THRESHOLD_1_4
|
||||
* @arg @ref UART_TXFIFO_THRESHOLD_1_2
|
||||
* @arg @ref UART_TXFIFO_THRESHOLD_3_4
|
||||
* @arg @ref UART_TXFIFO_THRESHOLD_7_8
|
||||
* @arg @ref UART_TXFIFO_THRESHOLD_8_8
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
|
||||
{
|
||||
uint32_t tmpcr1;
|
||||
|
||||
/* Check parameters */
|
||||
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
|
||||
assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Save actual UART configuration */
|
||||
tmpcr1 = READ_REG(huart->Instance->CR1);
|
||||
|
||||
/* Disable UART */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Update TX threshold configuration */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold);
|
||||
|
||||
/* Determine the number of data to process during RX/TX ISR execution */
|
||||
UARTEx_SetNbDataToProcess(huart);
|
||||
|
||||
/* Restore UART configuration */
|
||||
WRITE_REG(huart->Instance->CR1, tmpcr1);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the RXFIFO threshold.
|
||||
* @param huart UART handle.
|
||||
* @param Threshold RX FIFO threshold value
|
||||
* This parameter can be one of the following values:
|
||||
* @arg @ref UART_RXFIFO_THRESHOLD_1_8
|
||||
* @arg @ref UART_RXFIFO_THRESHOLD_1_4
|
||||
* @arg @ref UART_RXFIFO_THRESHOLD_1_2
|
||||
* @arg @ref UART_RXFIFO_THRESHOLD_3_4
|
||||
* @arg @ref UART_RXFIFO_THRESHOLD_7_8
|
||||
* @arg @ref UART_RXFIFO_THRESHOLD_8_8
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
|
||||
{
|
||||
uint32_t tmpcr1;
|
||||
|
||||
/* Check the parameters */
|
||||
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
|
||||
assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold));
|
||||
|
||||
/* Process Locked */
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->gState = HAL_UART_STATE_BUSY;
|
||||
|
||||
/* Save actual UART configuration */
|
||||
tmpcr1 = READ_REG(huart->Instance->CR1);
|
||||
|
||||
/* Disable UART */
|
||||
__HAL_UART_DISABLE(huart);
|
||||
|
||||
/* Update RX threshold configuration */
|
||||
MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold);
|
||||
|
||||
/* Determine the number of data to process during RX/TX ISR execution */
|
||||
UARTEx_SetNbDataToProcess(huart);
|
||||
|
||||
/* Restore UART configuration */
|
||||
WRITE_REG(huart->Instance->CR1, tmpcr1);
|
||||
|
||||
huart->gState = HAL_UART_STATE_READY;
|
||||
|
||||
/* Process Unlocked */
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
/**
|
||||
* @brief Receive an amount of data in blocking mode till either the expected number of data
|
||||
* is received or an IDLE event occurs.
|
||||
* @note HAL_OK is returned if reception is completed (expected number of data has been received)
|
||||
* or if reception is stopped after IDLE event (less than the expected number of data has been received)
|
||||
* In this case, RxLen output parameter indicates number of data available in reception buffer.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
|
||||
* is not empty. Read operations from the RDR register are performed when
|
||||
* RXFNE flag is set. From hardware perspective, RXFNE flag and
|
||||
* RXNE are mapped on the same bit-field.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @param RxLen Number of data elements finally received
|
||||
* (could be lower than Size, in case reception ends on IDLE event)
|
||||
* @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
|
||||
uint32_t Timeout)
|
||||
{
|
||||
uint8_t *pdata8bits;
|
||||
uint16_t *pdata16bits;
|
||||
uint16_t uhMask;
|
||||
uint32_t tickstart;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
huart->ErrorCode = HAL_UART_ERROR_NONE;
|
||||
huart->RxState = HAL_UART_STATE_BUSY_RX;
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
|
||||
/* Init tickstart for timeout management */
|
||||
tickstart = HAL_GetTick();
|
||||
|
||||
huart->RxXferSize = Size;
|
||||
huart->RxXferCount = Size;
|
||||
|
||||
/* Computation of UART mask to apply to RDR register */
|
||||
UART_MASK_COMPUTATION(huart);
|
||||
uhMask = huart->Mask;
|
||||
|
||||
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
|
||||
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
|
||||
{
|
||||
pdata8bits = NULL;
|
||||
pdata16bits = (uint16_t *) pData;
|
||||
}
|
||||
else
|
||||
{
|
||||
pdata8bits = pData;
|
||||
pdata16bits = NULL;
|
||||
}
|
||||
|
||||
__HAL_UNLOCK(huart);
|
||||
|
||||
/* Initialize output number of received elements */
|
||||
*RxLen = 0U;
|
||||
|
||||
/* as long as data have to be received */
|
||||
while (huart->RxXferCount > 0U)
|
||||
{
|
||||
/* Check if IDLE flag is set */
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
|
||||
{
|
||||
/* Clear IDLE flag in ISR */
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
|
||||
/* If Set, but no data ever received, clear flag without exiting loop */
|
||||
/* If Set, and data has already been received, this means Idle Event is valid : End reception */
|
||||
if (*RxLen > 0U)
|
||||
{
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if RXNE flag is set */
|
||||
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
|
||||
{
|
||||
if (pdata8bits == NULL)
|
||||
{
|
||||
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
|
||||
pdata16bits++;
|
||||
}
|
||||
else
|
||||
{
|
||||
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
|
||||
pdata8bits++;
|
||||
}
|
||||
/* Increment number of received elements */
|
||||
*RxLen += 1U;
|
||||
huart->RxXferCount--;
|
||||
}
|
||||
|
||||
/* Check for the Timeout */
|
||||
if (Timeout != HAL_MAX_DELAY)
|
||||
{
|
||||
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
||||
{
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_TIMEOUT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set number of received elements in output parameter : RxLen */
|
||||
*RxLen = huart->RxXferSize - huart->RxXferCount;
|
||||
/* At end of Rx process, restore huart->RxState to Ready */
|
||||
huart->RxState = HAL_UART_STATE_READY;
|
||||
|
||||
return HAL_OK;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in interrupt mode till either the expected number of data
|
||||
* is received or an IDLE event occurs.
|
||||
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
|
||||
* to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
|
||||
* number of received data elements.
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef status;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set Reception type to reception till IDLE Event*/
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
|
||||
status = UART_Start_Receive_IT(huart, pData, Size);
|
||||
|
||||
/* Check Rx process has been successfully started */
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In case of errors already pending when reception is started,
|
||||
Interrupts may have already been raised and lead to reception abortion.
|
||||
(Overrun error for instance).
|
||||
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Receive an amount of data in DMA mode till either the expected number
|
||||
* of data is received or an IDLE event occurs.
|
||||
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks
|
||||
* to DMA services, transferring automatically received data elements in user reception buffer and
|
||||
* calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
|
||||
* reception phase as ended. In all cases, callback execution will indicate number of received data elements.
|
||||
* @note When the UART parity is enabled (PCE = 1), the received data contain
|
||||
* the parity bit (MSB position).
|
||||
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
|
||||
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number
|
||||
* of uint16_t available through pData.
|
||||
* @param huart UART handle.
|
||||
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
|
||||
* @param Size Amount of data elements (uint8_t or uint16_t) to be received.
|
||||
* @retval HAL status
|
||||
*/
|
||||
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
|
||||
{
|
||||
HAL_StatusTypeDef status;
|
||||
|
||||
/* Check that a Rx process is not already ongoing */
|
||||
if (huart->RxState == HAL_UART_STATE_READY)
|
||||
{
|
||||
if ((pData == NULL) || (Size == 0U))
|
||||
{
|
||||
return HAL_ERROR;
|
||||
}
|
||||
|
||||
__HAL_LOCK(huart);
|
||||
|
||||
/* Set Reception type to reception till IDLE Event*/
|
||||
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
|
||||
|
||||
status = UART_Start_Receive_DMA(huart, pData, Size);
|
||||
|
||||
/* Check Rx process has been successfully started */
|
||||
if (status == HAL_OK)
|
||||
{
|
||||
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
|
||||
{
|
||||
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
|
||||
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* In case of errors already pending when reception is started,
|
||||
Interrupts may have already been raised and lead to reception abortion.
|
||||
(Overrun error for instance).
|
||||
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
|
||||
status = HAL_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
return status;
|
||||
}
|
||||
else
|
||||
{
|
||||
return HAL_BUSY;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/** @addtogroup UARTEx_Private_Functions
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
|
||||
* @param huart UART handle.
|
||||
* @param WakeUpSelection UART wake up from stop mode parameters.
|
||||
* @retval None
|
||||
*/
|
||||
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
|
||||
{
|
||||
assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
|
||||
|
||||
/* Set the USART address length */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
|
||||
|
||||
/* Set the USART address node */
|
||||
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
|
||||
}
|
||||
|
||||
#if defined(USART_CR1_FIFOEN)
|
||||
/**
|
||||
* @brief Calculate the number of data to process in RX/TX ISR.
|
||||
* @note The RX FIFO depth and the TX FIFO depth is extracted from
|
||||
* the UART configuration registers.
|
||||
* @param huart UART handle.
|
||||
* @retval None
|
||||
*/
|
||||
static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart)
|
||||
{
|
||||
uint8_t rx_fifo_depth;
|
||||
uint8_t tx_fifo_depth;
|
||||
uint8_t rx_fifo_threshold;
|
||||
uint8_t tx_fifo_threshold;
|
||||
static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U};
|
||||
static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U};
|
||||
|
||||
if (huart->FifoMode == UART_FIFOMODE_DISABLE)
|
||||
{
|
||||
huart->NbTxDataToProcess = 1U;
|
||||
huart->NbRxDataToProcess = 1U;
|
||||
}
|
||||
else
|
||||
{
|
||||
rx_fifo_depth = RX_FIFO_DEPTH;
|
||||
tx_fifo_depth = TX_FIFO_DEPTH;
|
||||
rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
|
||||
tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
|
||||
huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) /
|
||||
(uint16_t)denominator[tx_fifo_threshold];
|
||||
huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) /
|
||||
(uint16_t)denominator[rx_fifo_threshold];
|
||||
}
|
||||
}
|
||||
#endif /* USART_CR1_FIFOEN */
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
#endif /* HAL_UART_MODULE_ENABLED */
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
Reference in New Issue
Block a user