Initial commit
This commit is contained in:
56
Drivers/CMSIS/NN/Include/arm_nn_tables.h
Normal file
56
Drivers/CMSIS/NN/Include/arm_nn_tables.h
Normal file
@@ -0,0 +1,56 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_tables.h
|
||||
* Description: Extern declaration for NN tables
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_NN_TABLES_H
|
||||
#define _ARM_NN_TABLES_H
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @brief tables for various activation functions
|
||||
*
|
||||
*/
|
||||
|
||||
extern const q15_t sigmoidTable_q15[256];
|
||||
extern const q7_t sigmoidTable_q7[256];
|
||||
|
||||
extern const q7_t tanhTable_q7[256];
|
||||
extern const q15_t tanhTable_q15[256];
|
||||
|
||||
/**
|
||||
* @brief 2-way tables for various activation functions
|
||||
*
|
||||
* 2-way table, H table for value larger than 1/4
|
||||
* L table for value smaller than 1/4, H table for remaining
|
||||
* We have this only for the q15_t version. It does not make
|
||||
* sense to have it for q7_t type
|
||||
*/
|
||||
extern const q15_t sigmoidHTable_q15[192];
|
||||
extern const q15_t sigmoidLTable_q15[128];
|
||||
|
||||
#endif /* ARM_NN_TABLES_H */
|
||||
1075
Drivers/CMSIS/NN/Include/arm_nnfunctions.h
Normal file
1075
Drivers/CMSIS/NN/Include/arm_nnfunctions.h
Normal file
@@ -0,0 +1,1075 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nnfunctions.h
|
||||
* Description: Public header file for CMSIS NN Library
|
||||
*
|
||||
* $Date: 13. July 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
\mainpage CMSIS NN Software Library
|
||||
*
|
||||
* Introduction
|
||||
* ------------
|
||||
*
|
||||
* This user manual describes the CMSIS NN software library,
|
||||
* a collection of efficient neural network kernels developed to maximize the
|
||||
* performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
|
||||
*
|
||||
* The library is divided into a number of functions each covering a specific category:
|
||||
* - Neural Network Convolution Functions
|
||||
* - Neural Network Activation Functions
|
||||
* - Fully-connected Layer Functions
|
||||
* - Neural Network Pooling Functions
|
||||
* - Softmax Functions
|
||||
* - Neural Network Support Functions
|
||||
*
|
||||
* The library has separate functions for operating on different weight and activation data
|
||||
* types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
|
||||
* kernels are included in the function description. The implementation details are also
|
||||
* described in this paper [1].
|
||||
*
|
||||
* Block Diagram
|
||||
* --------
|
||||
* \image html CMSIS-NN-OVERVIEW.PNG
|
||||
*
|
||||
* Examples
|
||||
* --------
|
||||
*
|
||||
* The library ships with a number of examples which demonstrate how to use the library functions.
|
||||
*
|
||||
* Pre-processor Macros
|
||||
* ------------
|
||||
*
|
||||
* Each library project have differant pre-processor macros.
|
||||
*
|
||||
* - ARM_MATH_DSP:
|
||||
*
|
||||
* Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
|
||||
*
|
||||
* - ARM_MATH_BIG_ENDIAN:
|
||||
*
|
||||
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
|
||||
*
|
||||
* - ARM_NN_TRUNCATE:
|
||||
*
|
||||
* Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
|
||||
*
|
||||
* Copyright Notice
|
||||
* ------------
|
||||
*
|
||||
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
|
||||
*
|
||||
* [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup groupNN Neural Network Functions
|
||||
* These functions perform basic operations for neural network layers.
|
||||
*/
|
||||
|
||||
#ifndef _ARM_NNFUNCTIONS_H
|
||||
#define _ARM_NNFUNCTIONS_H
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
#include "arm_nn_tables.h"
|
||||
|
||||
#define USE_INTRINSIC
|
||||
|
||||
//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup NNConv Neural Network Convolution Functions
|
||||
*
|
||||
* Perform convolution layer
|
||||
*
|
||||
* The convolution is implemented in 2 steps: im2col and GEMM
|
||||
*
|
||||
* im2col is a process of converting each patch of image data into
|
||||
* a column. After im2col, the convolution is computed as matrix-matrix
|
||||
* multiplication.
|
||||
*
|
||||
* To reduce the memory footprint, the im2col is performed partially.
|
||||
* Each iteration, only a few column (i.e., patches) are generated and
|
||||
* computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q7 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Basic Q7 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Basic Q15 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q15_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
|
||||
* and dim_kernel_y=1). It can be used for
|
||||
* second half of MobileNets after depthwise separable convolution.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Q7 version of convolution for RGB image
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This kernel is written exclusively for convolution with ch_im_in
|
||||
* equals 3. This applies on the first layer of CNNs which has input
|
||||
* image with RGB format.
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Fast Q15 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 2
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q15_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Fast Q15 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 2
|
||||
*
|
||||
* ch_im_out is multipe of 2
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status
|
||||
arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q15_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Q7 depthwise separable convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 2
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
/**
|
||||
* @brief Q7 depthwise separable convolution function (non-square shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding sizes x
|
||||
* @param[in] padding_y padding sizes y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some contraints:
|
||||
* ch_im_in is multiple of 2
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t * wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t * bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t * Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t * bufferA,
|
||||
q7_t * bufferB);
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup FC Fully-connected Layer Functions
|
||||
*
|
||||
* Perform fully-connected layer
|
||||
*
|
||||
* Fully-connected layer is basically a matrix-vector multiplication
|
||||
* with bias. The matrix is the weights and the input/output vectors
|
||||
* are the activation values. Supported {weight, activation} precisions
|
||||
* include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
|
||||
*
|
||||
* Here we have two types of kernel functions. The basic function
|
||||
* implements the function using regular GEMV approach. The opt functions
|
||||
* operates with weights in interleaved formats.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 basic fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q7(const q7_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut,
|
||||
q15_t * vec_buffer);
|
||||
|
||||
/**
|
||||
* @brief Q7 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q7_opt(const q7_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut,
|
||||
q15_t * vec_buffer);
|
||||
|
||||
/**
|
||||
* @brief Q15 basic fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q15(const q15_t * pV,
|
||||
const q15_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q15_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer);
|
||||
|
||||
/**
|
||||
* @brief Q15 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q15_opt(const q15_t * pV,
|
||||
const q15_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q15_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer);
|
||||
|
||||
/**
|
||||
* @brief Mixed Q15-Q7 fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer);
|
||||
|
||||
/**
|
||||
* @brief Mixed Q15-Q7 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
|
||||
const q7_t * pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q15_t * pOut,
|
||||
q15_t * vec_buffer);
|
||||
|
||||
/**
|
||||
* @brief Matrix-Multiplication Kernels for Convolution
|
||||
*
|
||||
* These functions are used within convolution layer functions for
|
||||
* matrix multiplication.
|
||||
*
|
||||
* The implementation is similar to CMSIS-DSP arm_mat_mult functions
|
||||
* with one Q7 and one Q15 operands. The Q15 operand is the im2col
|
||||
* output which is always with 2 columns.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Matrix-multiplication function for convolution
|
||||
* @param[in] pA pointer to operand A
|
||||
* @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
|
||||
* @param[in] ch_im_out numRow of A
|
||||
* @param[in] numCol_A numCol of A
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias the bias
|
||||
* @param[in,out] pOut pointer to output
|
||||
* @return The function returns the incremented output pointer
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
|
||||
const q15_t * pInBuffer,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t numCol_A,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut);
|
||||
|
||||
/**
|
||||
* @brief Matrix-multiplication function for convolution with reordered columns
|
||||
* @param[in] pA pointer to operand A
|
||||
* @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
|
||||
* @param[in] ch_im_out numRow of A
|
||||
* @param[in] numCol_A numCol of A
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias the bias
|
||||
* @param[in,out] pOut pointer to output
|
||||
* @return The function returns the incremented output pointer
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
|
||||
const q15_t * pInBuffer,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t numCol_A,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t * bias,
|
||||
q7_t * pOut);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Other functions
|
||||
* These layers are typically not timing critical
|
||||
* Basic implementation is supported here
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup Acti Neural Network Activation Functions
|
||||
*
|
||||
* Perform activation layers, including ReLU (Rectified Linear Unit),
|
||||
* sigmoid and tanh
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 RELU function
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_relu_q7(q7_t * data, uint16_t size);
|
||||
|
||||
/**
|
||||
* @brief Q15 RELU function
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_relu_q15(q15_t * data, uint16_t size);
|
||||
|
||||
/**
|
||||
* @brief Q7 neural network activation function using direct table look-up
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
* @param[in] int_width bit-width of the integer part, assume to be smaller than 3
|
||||
* @param[in] type type of activation functions
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width,
|
||||
arm_nn_activation_type type);
|
||||
|
||||
/**
|
||||
* @brief Q15 neural network activation function using direct table look-up
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
* @param[in] int_width bit-width of the integer part, assume to be smaller than 3
|
||||
* @param[in] type type of activation functions
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
|
||||
arm_nn_activation_type type);
|
||||
|
||||
/**
|
||||
* @defgroup Pooling Neural Network Pooling Functions
|
||||
*
|
||||
* Perform pooling functions, including max pooling and average pooling
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 max pooling function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_maxpool_q7_HWC(q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const uint16_t dim_im_out,
|
||||
q7_t * bufferA,
|
||||
q7_t * Im_out);
|
||||
|
||||
/**
|
||||
* @brief Q7 average pooling function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_avepool_q7_HWC(q7_t * Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const uint16_t dim_im_out,
|
||||
q7_t * bufferA,
|
||||
q7_t * Im_out);
|
||||
|
||||
/**
|
||||
* @defgroup Softmax Softmax Functions
|
||||
*
|
||||
* EXP(2) based softmax function
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 softmax function
|
||||
* @param[in] vec_in pointer to input vector
|
||||
* @param[in] dim_vec input vector dimention
|
||||
* @param[out] p_out pointer to output vector
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);
|
||||
|
||||
/**
|
||||
* @brief Q15 softmax function
|
||||
* @param[in] vec_in pointer to input vector
|
||||
* @param[in] dim_vec input vector dimention
|
||||
* @param[out] p_out pointer to output vector
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);
|
||||
|
||||
/**
|
||||
* @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier
|
||||
* and input channels. Unless specified otherwise, arguments are mandatory.
|
||||
*
|
||||
* @param[in] input Pointer to input tensor
|
||||
* @param[in] input_x Width of input tensor
|
||||
* @param[in] input_y Height of input tensor
|
||||
* @param[in] input_ch Channels in input tensor
|
||||
* @param[in] kernel Pointer to kernel weights
|
||||
* @param[in] kernel_x Width of kernel
|
||||
* @param[in] kernel_y Height of kernel
|
||||
* @param[in] ch_mult Number of channel multiplier
|
||||
* @param[in] pad_x Padding sizes x
|
||||
* @param[in] pad_y Padding sizes y
|
||||
* @param[in] stride_x Convolution stride along the width
|
||||
* @param[in] stride_y Convolution stride along the height
|
||||
* @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
|
||||
* @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
|
||||
* @param[in] bias Pointer to optional bias values. If no bias is
|
||||
* availble, NULL is expected
|
||||
* @param[in] input_offset Input tensor zero offset
|
||||
* @param[in] filter_offset Kernel tensor zero offset
|
||||
* @param[in] output_offset Output tensor zero offset
|
||||
* @param[in,out] output Pointer to output tensor
|
||||
* @param[in] output_x Width of output tensor
|
||||
* @param[in] output_y Height of output tensor
|
||||
* @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
|
||||
* @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
|
||||
* @param[in] out_shift Amount of right-shift for output
|
||||
* @param[in] out_mult Output multiplier for requantization
|
||||
* @return The function returns one of the following
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
|
||||
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||||
* <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
|
||||
*
|
||||
* <b> Input constraints</b>
|
||||
* ch_mult is multiple of 2
|
||||
* kernel_x is multiple of 2
|
||||
*
|
||||
*/
|
||||
arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const uint16_t kernel_x,
|
||||
const uint16_t kernel_y,
|
||||
const int16_t ch_mult,
|
||||
const int16_t pad_x,
|
||||
const int16_t pad_y,
|
||||
const int16_t stride_x,
|
||||
const int16_t stride_y,
|
||||
const int16_t dilation_x,
|
||||
const int16_t dilation_y,
|
||||
const int32_t *bias,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_offset,
|
||||
uint8_t *output,
|
||||
const uint16_t output_x,
|
||||
const uint16_t output_y,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_mult);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
269
Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h
Normal file
269
Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h
Normal file
@@ -0,0 +1,269 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nnsupportfunctions.h
|
||||
* Description: Public header file of support functions for CMSIS NN Library
|
||||
*
|
||||
* $Date: 13. July 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#ifndef _ARM_NNSUPPORTFUNCTIONS_H_
|
||||
#define _ARM_NNSUPPORTFUNCTIONS_H_
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0)
|
||||
#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift)
|
||||
#define Q31_MIN (0x80000000L)
|
||||
#define Q31_MAX (0x7FFFFFFFL)
|
||||
|
||||
/**
|
||||
* @brief Union for SIMD access of Q31/Q15/Q7 types
|
||||
*/
|
||||
union arm_nnword
|
||||
{
|
||||
q31_t word;
|
||||
/**< Q31 type */
|
||||
q15_t half_words[2];
|
||||
/**< Q15 type */
|
||||
q7_t bytes[4];
|
||||
/**< Q7 type */
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Struct for specifying activation function types
|
||||
*
|
||||
*/
|
||||
typedef enum
|
||||
{
|
||||
ARM_SIGMOID = 0,
|
||||
/**< Sigmoid activation function */
|
||||
ARM_TANH = 1,
|
||||
/**< Tanh activation function */
|
||||
} arm_nn_activation_type;
|
||||
|
||||
/**
|
||||
* @defgroup nndata_convert Neural Network Data Conversion Functions
|
||||
*
|
||||
* Perform data type conversion in-between neural network operations
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the Q7 input vector
|
||||
* @param[out] *pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the Q7 input vector
|
||||
* @param[out] *pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
|
||||
|
||||
#if defined (ARM_MATH_DSP)
|
||||
|
||||
/**
|
||||
* @brief read and expand one Q7 word into two Q15 words
|
||||
*/
|
||||
|
||||
__STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2)
|
||||
{
|
||||
q31_t inA = *__SIMD32(source)++;
|
||||
q31_t inAbuf1 = __SXTB16(__ROR(inA, 8));
|
||||
q31_t inAbuf2 = __SXTB16(inA);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*out2 = __PKHTB(inAbuf1, inAbuf2, 16);
|
||||
*out1 = __PKHBT(inAbuf2, inAbuf1, 16);
|
||||
#else
|
||||
*out1 = __PKHTB(inAbuf1, inAbuf2, 16);
|
||||
*out2 = __PKHBT(inAbuf2, inAbuf1, 16);
|
||||
#endif
|
||||
|
||||
return source;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief read and expand one Q7 word into two Q15 words with reordering
|
||||
*/
|
||||
|
||||
__STATIC_FORCEINLINE void *read_and_pad_reordered(void *source, q31_t * out1, q31_t * out2)
|
||||
{
|
||||
q31_t inA = *__SIMD32(source)++;
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
*out2 = __SXTB16(__ROR(inA, 8));
|
||||
*out1 = __SXTB16(inA);
|
||||
#else
|
||||
*out1 = __SXTB16(__ROR(inA, 8));
|
||||
*out2 = __SXTB16(inA);
|
||||
#endif
|
||||
|
||||
return source;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
|
||||
*
|
||||
* Basic Math Functions for Neural Network Computation
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q15(
|
||||
q15_t * pSrcA,
|
||||
q15_t * pSrcB,
|
||||
q15_t * pDst,
|
||||
const uint16_t out_shift,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q7(
|
||||
q7_t * pSrcA,
|
||||
q7_t * pSrcB,
|
||||
q7_t * pDst,
|
||||
const uint16_t out_shift,
|
||||
uint32_t blockSize);
|
||||
|
||||
/**
|
||||
* @brief macro for adding rounding offset
|
||||
*/
|
||||
#ifndef ARM_NN_TRUNCATE
|
||||
#define NN_ROUND(out_shift) ( (0x1u << out_shift) >> 1 )
|
||||
#else
|
||||
#define NN_ROUND(out_shift) 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Saturating doubling high multiply. Result matches
|
||||
* NEON instruction VQRDMULH.
|
||||
* @param[in] m1 Multiplicand
|
||||
* @param[in] m2 Multiplier
|
||||
* @return Result of multiplication.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_sat_doubling_high_mult(const q31_t m1, const q31_t m2)
|
||||
{
|
||||
q31_t result = 0;
|
||||
// Rounding offset to add for a right shift of 31
|
||||
q63_t mult = 1 << 30;
|
||||
|
||||
if ((m1 < 0) ^ (m2 < 0))
|
||||
{
|
||||
mult = 1 - mult;
|
||||
}
|
||||
// Gets resolved as a SMLAL instruction
|
||||
mult = mult + (q63_t)m1 * m2;
|
||||
|
||||
// Utilize all of the upper 32 bits. This is the doubling step
|
||||
// as well.
|
||||
result = mult / (1UL << 31);
|
||||
|
||||
if ((m1 == m2) && (m1 == Q31_MIN))
|
||||
{
|
||||
result = Q31_MAX;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rounding divide by power of two.
|
||||
* @param[in] dividend - Dividend
|
||||
* @param[in] exponent - Divisor = power(2, exponent)
|
||||
* Range: [0, 31]
|
||||
* @return Rounded result of division. Midpoint is rounded away from zero.
|
||||
*
|
||||
*/
|
||||
__STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent)
|
||||
{
|
||||
q31_t result = 0;
|
||||
const q31_t remainder_mask = (1l << exponent) - 1;
|
||||
int32_t remainder = remainder_mask & dividend;
|
||||
|
||||
// Basic division
|
||||
result = dividend >> exponent;
|
||||
|
||||
// Adjust 'result' for rounding (mid point away from zero)
|
||||
q31_t threshold = remainder_mask >> 1;
|
||||
if (result < 0)
|
||||
{
|
||||
threshold++;
|
||||
}
|
||||
if (remainder > threshold)
|
||||
{
|
||||
result++;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user