Files
qglengine/core/glprimitives.cpp
2020-08-25 21:57:31 +03:00

438 lines
12 KiB
C++

/*
QGL Primitives
Ivan Pelipenko peri4ko@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "glprimitives.h"
#include "glmesh.h"
Mesh * Primitive::plane(float width, float length) {
Mesh * ret = new Mesh();
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & i(ret->indicesTriangles ());
float hw = width / 2.f, hl = length / 2.f;
for (int j = 0; j < 4; ++j) n << QVector3D(0., 0., 1.);
t << QVector2D(0., 0.) << QVector2D(0., 1.) << QVector2D(1., 1.) << QVector2D(1., 0.);
v << QVector3D(-hw, -hl, 0.) << QVector3D(-hw, hl, 0.) << QVector3D(hw, hl, 0.) << QVector3D(hw, -hl, 0.);
i << Vector3i(0, 2, 1) << Vector3i(0, 3, 2);
return ret;
}
Mesh * Primitive::cube(float width, float length, float height) {
Mesh * ret = new Mesh();
QVector3D scale(width, length, height);
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & i(ret->indicesTriangles ());
float hs = 0.5f;
int si = 0;
QMatrix4x4 mat;
si = v.size();
for (int j = 0; j < 4; ++j) n << QVector3D(0., -1., 0.);
t << QVector2D(0., 0.) << QVector2D(1., 0.) << QVector2D(1., 1.) << QVector2D(0., 1.);
v << QVector3D(-hs, -hs, -hs) << QVector3D(hs, -hs, -hs) << QVector3D(hs, -hs, hs) << QVector3D(-hs, -hs, hs);
i << Vector3i(si + 0, si + 1, si + 2) << Vector3i(si + 0, si + 2, si + 3);
for (int r = 0; r < 3; ++r) {
si = v.size();
mat.rotate(90., 0., 0., 1.);
QVector3D cn = mat.map(n[0]);
for (int j = 0; j < 4; ++j) {
n << cn;
v << mat.map(QVector4D(v[j])).toVector3D();
}
t << QVector2D(0., 0.) << QVector2D(1., 0.) << QVector2D(1., 1.) << QVector2D(0., 1.);
i << Vector3i(si + 0, si + 1, si + 2) << Vector3i(si + 0, si + 2, si + 3);
}
mat.setToIdentity();
mat.rotate(90., 1., 0.,0.);
for (int r = 0; r < 2; ++r) {
si = v.size();
mat.rotate(180., 1., 0.,0.);
QVector3D cn = mat.map(n[0]);
for (int j = 0; j < 4; ++j) {
n << cn;
v << mat.map(QVector4D(v[j])).toVector3D();
}
t << QVector2D(0., 0.) << QVector2D(1., 0.) << QVector2D(1., 1.) << QVector2D(0., 1.);
i << Vector3i(si + 0, si + 1, si + 2) << Vector3i(si + 0, si + 2, si + 3);
}
for (int i = 0; i < v.size(); ++i)
v[i] *= scale;
return ret;
}
Mesh * Primitive::ellipsoid(int segments_wl, int segments_h, float radius, float end_angle) {
Mesh * ret = new Mesh();
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & ind(ret->indicesTriangles());
int hseg = segments_h + 1, wlseg = segments_wl + 1;
double crw, crl, a, ch, twl;
double eang = deg2rad * end_angle;
QVector3D cp;
for (int i = 0; i <= hseg; i++) {
ch = -cos((double)i / hseg * M_PI);
cp.setZ(ch * radius);
twl = sqrt(1. - ch * ch);
crw = twl * radius;
crl = twl * radius;
int cvcnt = wlseg * 2;
for (int j = 0; j < cvcnt; j++) {
a = (double)j / (cvcnt - 1) * eang;
cp.setX(crl * cos(a));
cp.setY(crw * sin(a));
v << cp;
t << QVector2D((double)j / (cvcnt - 1), ch/2.f + 0.5f);
n << cp.normalized();
int si = v.size() - 1;
if (j > 0 && i > 0) {
ind << Vector3i(si - cvcnt - 1, si, si - 1);
ind << Vector3i(si - cvcnt, si, si - cvcnt - 1);
}
}
}
if (end_angle < 360.) {
Mesh * cap = Primitive::disc(segments_h+1, radius, 180);
cap->rotatePoints(90, 0, 1, 0);
cap->rotatePoints(-90, 0, 0, 1);
ret->append(cap);
cap->flipNormals();
cap->rotatePoints(end_angle, 0, 0, 1);
ret->append(cap);
delete cap;
}
return ret;
}
Mesh * Primitive::disc(int segments, float radius, float end_angle) {
Mesh * ret = new Mesh();
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & ind(ret->indicesTriangles());
segments = qMax(segments + 1, 4);
QVector3D cp;
v << QVector3D();
n << QVector3D(0, 0, 1);
t << QVector2D(0.5f, 0.5f);
end_angle *= deg2rad;
for (int i = 0; i < segments; i++) {
double a = (double)i / (segments - 1) * end_angle;
cp.setX(radius * cos(a));
cp.setY(radius * sin(a));
v << cp;
n << QVector3D(0, 0, 1);
t << QVector2D(cp.x() / radius + 1, cp.y() / radius + 1);
int si = v.size() - 1;
if (i > 0) ind << Vector3i(si - 1, si, 0);
}
return ret;
}
QVector3D coneNormal(double r, double height, double ang) {
QVector3D norm;
norm.setX(r * cos(ang));
norm.setY(r * sin(ang));
norm.setZ(0.);
double rl = norm.length();
double ca = atan2(rl, height);
norm *= cos(ca);
norm.setZ(norm.length() * tan(ca));
return norm.normalized();
}
Mesh * Primitive::cone(int segments, float radius, float height) {
Mesh * ret = new Mesh();
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & ind(ret->indicesTriangles());
int seg = qMax(segments + 1, 4);
QVector3D cp;
for (int i = 0; i < seg; i++) {
double a = (double)i / (seg - 1) * M_2PI;
cp.setX(radius * cos(a));
cp.setY(radius * sin(a));
if (i > 0) {
v << QVector3D(0, 0, height);
t << QVector2D((double)(i - 1) / (seg - 1), 1.f);
double ta = ((double)i - 0.5) / (seg - 1) * M_2PI;
n << coneNormal(radius, height, ta);
}
v << cp;
t << QVector2D((double)i / (seg - 1), 0.f);
n << coneNormal(radius, height, a);
int si = v.size() - 1;
if (i > 0)
ind << Vector3i(si - 1, si - 2, si);
}
Mesh * cap = Primitive::disc(segments, radius);
cap->flipNormals();
ret->append(cap);
delete cap;
return ret;
}
Mesh * Primitive::cylinder(int segments, float radius, float height, float end_angle) {
Mesh * ret = new Mesh();
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & ind(ret->indicesTriangles());
int seg = qMax(segments + 1, 4);
QVector3D cp, norm;
double eang = deg2rad * end_angle;
for (int i = 0; i < seg; i++) {
double a = (double)i / (seg - 1) * eang;
cp.setX(radius * cos(a));
cp.setY(radius * sin(a));
cp.setZ(0.);
norm = cp.normalized();
v << cp;
cp.setZ(height);
v << cp;
t << QVector2D((double)i / (seg - 1), 0.f);
t << QVector2D((double)i / (seg - 1), 1.f);
n << norm; n << norm;
int si = v.size() - 1;
if (i > 0) {
ind << Vector3i(si - 2, si - 1, si);
ind << Vector3i(si - 1, si - 2, si - 3);
}
}
Mesh * cap = Primitive::disc(segments, radius, end_angle);
cap->flipNormals();
ret->append(cap);
cap->translatePoints(QVector3D(0., 0., height));
cap->flipNormals();
ret->append(cap);
delete cap;
if (end_angle < 360.) {
Mesh * cap = Primitive::plane(radius, height);
cap->rotatePoints(90, 1, 0, 0);
//cap->rotatePoints(-90, 0, 0, 1);
cap->translatePoints(radius/2, 0, height/2);
ret->append(cap);
cap->flipNormals();
cap->rotatePoints(end_angle, 0, 0, 1);
ret->append(cap);
delete cap;
}
return ret;
}
Mesh * Primitive::arrow(int segments, float thick, float angle) {
double cone_r = 1.5 * thick;
double cone_h = 2. * cone_r / tan(angle * deg2rad);
Mesh * ret = new Mesh();
Mesh * m = Primitive::cylinder(segments, thick / 2., 1. - cone_h);
ret->append(m);
delete m;
m = Primitive::cone(segments, cone_r, cone_h);
m->translatePoints(QVector3D(0., 0., 1. - cone_h));
ret->append(m);
delete m;
return ret;
}
Mesh * Primitive::torus(int segments_main, int segments_second, float radius_main, float radius_second, float end_angle) {
Mesh * ret = new Mesh();
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector3i> & ind(ret->indicesTriangles());
QVector<QVector3D> cv, cn;
QVector<QVector2D> ct;
segments_second = qMax(segments_second + 1, 4);
for (int i = 0; i < segments_second; i++) {
double x = (double)i / (segments_second - 1);
double a = x * M_2PI;
cv << QVector3D(radius_second * cos(a), 0., radius_second * sin(a));
cn << cv.back().normalized();
ct << QVector2D(0., x);
cv.back() += QVector3D(radius_main, 0., 0.);
}
segments_main = qMax(segments_main + 1, 4);
int ccnt = cv.size(), pcnt = 0;
for (int i = 0; i < segments_main; i++) {
double x = (double)i / (segments_main - 1);
QMatrix4x4 rm;
rm.rotate(x * end_angle, 0., 0., 1.);
for (int j = 0; j < ccnt; j++) {
ct[j].setX(x);
v << rm.map(cv[j]);
n << rm.map(cn[j]);
}
t.append(ct);
if (i > 0) {
for (int j = 0; j < ccnt - 1; j++) {
ind << Vector3i(pcnt + j, pcnt + j + 1, pcnt + j - ccnt);
ind << Vector3i(pcnt + j + 1, pcnt + j + 1 - ccnt, pcnt + j - ccnt);
}
}
pcnt = v.size();
}
if (end_angle < 360.) {
Mesh * cap = Primitive::disc(segments_second-1, radius_second);
cap->rotatePoints(90, 1, 0, 0);
cap->translatePoints(radius_main, 0, 0);
ret->append(cap);
cap->flipNormals();
cap->rotatePoints(end_angle, 0, 0, 1);
ret->append(cap);
delete cap;
}
return ret;
}
Mesh * Primitive::cubeFrame(float width, float length, float height) {
Mesh * ret = new Mesh(GL_LINES);
QVector3D scale(width, length, height);
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector2i> & i(ret->indicesLines());
float hs = 0.5f;
v << QVector3D(-hs, -hs, -hs) << QVector3D(-hs, hs, -hs) << QVector3D( hs, hs, -hs) << QVector3D( hs, -hs, -hs);
v << QVector3D(-hs, -hs, hs) << QVector3D(-hs, hs, hs) << QVector3D( hs, hs, hs) << QVector3D( hs, -hs, hs);
for (int j = 0; j < 8; ++j) {
v[j] *= scale;
t << QVector2D(0, 0);
n << QVector3D(0,0,1);
}
for (int j = 0; j < 4; ++j) {
i << Vector2i(j, (j + 1) % 4);
i << Vector2i(j, j + 4);
i << Vector2i(j + 4, (j + 1) % 4 + 4);
}
return ret;
}
Mesh * Primitive::ellipsoidFrame(int segments_wl, int segments_h, float radius) {
Mesh * ret = new Mesh(GL_LINES);
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector2i> & ind(ret->indicesLines());
int hseg = segments_h + 1, wlseg = segments_wl + 1;
double crw, crl, a, ch, twl;
QVector3D cp;
for (int i = 0; i <= hseg; i++) {
ch = -cos((double)i / hseg * M_PI);
cp.setZ(ch * radius);
twl = sqrt(1. - ch * ch);
crw = twl * radius;
crl = twl * radius;
int cvcnt = wlseg * 2;
for (int j = 0; j < cvcnt; j++) {
a = (double)j / (cvcnt - 1) * M_2PI;
cp.setX(crl * cos(a));
cp.setY(crw * sin(a));
v << cp;
t << QVector2D((double)j / (cvcnt - 1), ch/2.f + 0.5f);
n << cp.normalized();
int si = v.size() - 1;
if (j > 0 && i > 0) {
ind << Vector2i(si, si - 1);
ind << Vector2i(si - cvcnt, si);
}
}
}
return ret;
}
Mesh * Primitive::coneFrame(int segments, float radius, float height) {
Mesh * ret = new Mesh(GL_LINES);
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector2i> & ind(ret->indicesLines());
int seg = qMax(segments + 1, 4);
QVector3D cp;
for (int i = 0; i < seg; i++) {
double a = (double)i / (seg - 1) * M_2PI;
cp.setX(radius * cos(a));
cp.setY(radius * sin(a));
if (i > 0) {
v << QVector3D(0, 0, height);
t << QVector2D((double)(i - 1) / (seg - 1), 1.f);
double ta = ((double)i - 0.5) / (seg - 1) * M_2PI;
n << coneNormal(radius, height, ta);
}
v << cp;
t << QVector2D((double)i / (seg - 1), 0.f);
n << coneNormal(radius, height, a);
int si = v.size() - 1;
if (i > 0) {
ind << Vector2i(si - 1, si);
ind << Vector2i(si - 2, si);
}
}
return ret;
}
Mesh * Primitive::lineFrame(QVector3D p0, QVector3D p1) {
Mesh * ret = new Mesh(GL_LINES);
QVector<QVector3D> & v(ret->vertices ());
QVector<QVector3D> & n(ret->normals ());
QVector<QVector2D> & t(ret->texcoords());
QVector< Vector2i> & ind(ret->indicesLines());
v << p0 << p1;
n << QVector3D(0,0,1) << QVector3D(0,0,1);
t << QVector2D(0,0) << QVector2D(1,0);
ind << Vector2i(0, 1);
return ret;
}