// vert // out vec3 view_dir, world_dir; uniform vec4 view_corners[4], world_corners[4]; void main(void) { qgl_FragTexture = qgl_Texture; gl_Position = qgl_ftransform(); view_dir = view_corners [gl_VertexID].xyz; world_dir = world_corners[gl_VertexID].xyz; } // frag // in vec3 view_dir, world_dir; uniform vec2 dt; uniform float z_near; uniform sampler2D tex_coeff_brdf, tex_noise; uniform sampler2D tex_0, tex_1, tex_2, tex_3, tex_4, tex_5, tex_sh; //uniform sampler2DShadow tex_shadow[16]; #ifdef SHADOWS uniform vec2 shadow_size; uniform sampler2DArrayShadow tex_shadows_cone; uniform sampler2DArray tex_depths_cone; uniform samplerCubeArrayShadow tex_shadows_omni; uniform samplerCubeArray tex_depths_omni; uniform bool soft_shadows_enabled = false; uniform float soft_shadows_quality = 1.; uniform int soft_shadows_samples = 16, noise_size = 64; #endif uniform samplerCube tex_env; uniform int lights_start, lights_count; uniform vec4 fog_color = vec4(0.5, 0.5, 0.5, 1.); uniform float fog_decay = 10., fog_density = 0.; uniform mat3 view_mat; const float _pe = 2.4e-7; const vec3 luma = vec3(0.299, 0.587, 0.114); const float _min_rough = 1.e-8, max_lod = 8.; const float PI = 3.1416; ivec2 tc; vec4 pos, lpos, shp; vec3 li, si, ldir, halfV, bn, bn2, lwdir; vec3 normal, geom_normal, vds, vds2; float rough_diff, rough_spec, dist, NdotL, NdotH, spot, ldist, diff, spec, sdist; uint flags; vec4 mapScreenToShadow(in int light_index, in vec3 offset) { vec4 shp = qgl_light_position[light_index].shadow_matrix * (pos + vec4(offset, 0)); //shp.z += 0.5; return shp; } #ifdef SHADOWS #ifdef SPOT float getShadowCone(in vec3 uvz, in int layer) { /*vec2 uvpix = uvz.xy * shadow_size + vec2(0.5f); vec2 uvp = fract(uvpix), iuvp = vec2(1.f) - uvp; vec4 gt = textureGather(tex_shadows_cone, vec3(floor(uvpix.xy) / shadow_size, layer), 0); vec4 uvv; uvv[0] = iuvp.x * uvp.y; uvv[1] = uvp.x * uvp.y; uvv[2] = uvp.x * iuvp.y; uvv[3] = iuvp.x * iuvp.y; shadow_dz = max(max(uvz.z - gt[0], uvz.z - gt[1]), max(uvz.z - gt[2], uvz.z - gt[3])); return clamp(dot(step(vec4(uvz.z), gt), uvv), 0, 1);*/ float z = 1. - 1. / (uvz.z - z_near + 1.); return texture(tex_shadows_cone, vec4(uvz.xy, layer, z)); } #else float getShadowOmni(in vec4 uvwz, in int layer) { /*vec3 uvpix = uvwz.xyz * vec3(shadow_size.x) + vec3(0.5f); vec3 uvp = fract(uvpix), iuvp = vec3(1.f) - uvp; vec4 gt = textureGather(tex_shadows_omni, vec4(floor(uvpix.xyz) / vec3(shadow_size.x), layer), 0); vec4 uvv; uvv[0] = iuvp.y * uvp.z; uvv[1] = uvp.y * uvp.z; uvv[2] = uvp.y * iuvp.z; uvv[3] = iuvp.y * iuvp.z; return clamp(dot(step(vec4(uvwz.w), gt), uvv), 0, 1);*/ float d = 1. - 1. / (uvwz.w - z_near + 1.); return texture(tex_shadows_omni, vec4(uvwz.xyz, layer), d); //return step(uvwz.w, gt[3]); } #endif uint hash(uint x) { x += (x << 10u); x ^= (x >> 6u); x += (x << 3u); x ^= (x >> 11u); x += (x << 15u); return x; } uint hash( uvec2 v ) { return hash( v.x ^ hash(v.y) ); } uint hash( uvec3 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z) ); } uint hash( uvec4 v ) { return hash( v.x ^ hash(v.y) ^ hash(v.z) ^ hash(v.w) ); } float floatConstruct( uint m ) { const uint ieeeMantissa = 0x007FFFFFu; // binary32 mantissa bitmask const uint ieeeOne = 0x3F800000u; // 1.0 in IEEE binary32 m &= ieeeMantissa; // Keep only mantissa bits (fractional part) m |= ieeeOne; // Add fractional part to 1.0 float f = uintBitsToFloat( m ); // Range [1:2] return f - 1.; // Range [0:1] } float random( float x ) { return floatConstruct(hash(floatBitsToUint(x))); } float random( vec2 v ) { return floatConstruct(hash(floatBitsToUint(v))); } float random( vec3 v ) { return floatConstruct(hash(floatBitsToUint(v))); } float random( vec4 v ) { return floatConstruct(hash(floatBitsToUint(v))); } float random( int x ) { return floatConstruct(hash(x)); } float random( ivec2 v ) { return floatConstruct(hash(v)); } float random( ivec3 v ) { return floatConstruct(hash(v)); } float random( ivec4 v ) { return floatConstruct(hash(v)); } uvec2 noise_hash; void noise2init(vec2 v) { noise_hash = uvec2(hash(uint(v.x + 1)), hash(uint(v.y - 1))); } vec2 noise2() { noise2init(vec2(noise_hash)); //return vec2(floatConstruct(noise_hash.x), floatConstruct(noise_hash.y)) * 2 - vec2(1.); float r = floatConstruct(noise_hash.x); float a = floatConstruct(noise_hash.y) * 2 * PI; return r * vec2(cos(a), sin(a)); } float rand(vec2 co) { float a = 12.9898; float b = 78.233; float c = 43758.5453; float d = dot(co.xy, vec2(a, b)); float e = sin(mod(d, 3.14)) * c; return fract(e) - 0.5; } #endif // SHADOWS vec4 qgl_lightTexture(int index, vec2 coord, vec4 tex_shift) { coord *= qgl_light_parameter[index].map.scale; vec4 t = texture(qgl_texture_array[qgl_light_parameter[index].map.array_index], vec3(coord, qgl_light_parameter[index].map.map_index)); t += tex_shift; t.rgb *= qgl_light_parameter[index].map.amount + qgl_light_parameter[index].map.offset; return t; } void calcLight(in int index, in vec3 n, in vec3 v) { lpos = qgl_light_position[index].position; ldir = lpos.xyz - (pos.xyz * lpos.w); ldist = length(ldir); ldir = normalize(ldir); //ldir = vec3(0,0,1); halfV = normalize(ldir + v); NdotL = max(dot(n, ldir), 1E-8); NdotH = max(dot(n, halfV), 1E-8); spot = step(1.001E-8, NdotL) * qgl_light_parameter[index].decay_intensity.w; vec3 light_color = qgl_light_parameter[index].color.rgb; #ifdef SPOT float scos = max(dot(-ldir, qgl_light_position[index].direction.xyz), 0.); spot *= scos * step(qgl_light_parameter[index].angles.w, scos); spot *= smoothstep(qgl_light_parameter[index].angles.w, qgl_light_parameter[index].angles.y, scos); vec4 shp = mapScreenToShadow(index, vec3(0)); shp.xy /= shp.w; vec4 light_map_pix = qgl_lightTexture(index, shp.xy, vec4(0)); light_color *= light_map_pix.rgb; spot *= light_map_pix.a; #endif #ifdef SHADOWS if (int(round(qgl_light_parameter[index].flags)) == 1 && bitfieldExtract(flags, 3, 1) == 1 && (spot > 1E-4)) { #ifndef SPOT vec3 odir = -(view_mat * ldir); #endif int layer = index - lights_start; float shadow = 0.; //float bias = abs(tan(PI/2.*(1 - abs(dot(normal, ldir)))) + 1) * z_near * 1; float bias = (1. + 1. / abs(dot(geom_normal, ldir))) * z_near * 2.; //bias = bias * bias + z_near; if (soft_shadows_enabled) { float depth = 1.; #ifdef SPOT const int gm_size = 2; for (int i = -gm_size; i <= gm_size; ++i) { for (int j = -gm_size; j <= gm_size; ++j) { //depth = min(depth, textureOffset(tex_depths_cone, vec3(shp.xy, layer), ivec2(i, j)).x); depth = min(depth, texture(tex_depths_cone, vec3(shp.xy + vec2(i, j) / vec2(shadow_size.x), layer)).x); } } #else const int gm_size = 2; for (int i = -gm_size; i <= gm_size; ++i) { for (int j = -gm_size; j <= gm_size; ++j) { for (int k = -gm_size; k <= gm_size; ++k) { depth = min(depth, texture(tex_depths_omni, vec4(odir + vec3(i, j, k) / vec3(shadow_size.x), layer)).r); } } } shp.z = ldist; #endif depth = 1. / (1. - depth) - 1. + z_near; float dz = max(0., shp.z - depth); float ds = qgl_light_parameter[index].size * dz / (ldist - dz); //float ds = (ldist / 2.) / qgl_light_parameter[index].size; float srate = abs(ds / pos.z) * 10. * soft_shadows_quality; //qgl_FragColor.rgb = vec3(srate); int samples = clamp(int(round(srate * float(soft_shadows_samples))), 1, soft_shadows_samples); vds = ds * bn.xyz; vds2 = ds * bn2.xyz; vec2 so; ivec2 sotc = tc; noise2init(vec2(hash(ivec2(tc.x * 2. + 1., tc.y)), hash(ivec2(tc.x, (tc.y * 2. + 1.))))); for (int i = 0; i < samples; ++i) { so = noise2(); #ifdef SPOT //vec4 nc = texelFetch(tex_noise, sotc % noise_size, 0); //sotc += ivec2(nc.ba * 256) % noise_size; //so = (nc.rg - vec2(0.5)); //so = vec2(rand(vec2(shp.x + i, shp.y)), rand(vec2(shp.x + i + 1, shp.y))); vec4 shp = mapScreenToShadow(index, vds * so.x + vds2 * so.y); shp.xy /= shp.w; shp.z -= bias; shadow += getShadowCone(shp.xyz, layer); #else //so = vec2(rand(vec2(odir.x + i, odir.y)), rand(vec2(odir.x + i + 1, odir.y)))*1.25; vec3 old = lpos.xyz - ((pos.xyz + vec3(vds * so.x + vds2 * so.y)) * lpos.w); odir = -(view_mat * old); shadow += getShadowOmni(vec4(odir, length(old) - bias), layer); #endif } spot *= min(1., 2. * shadow / samples); //spot *= shadow / soft_shadows_samples; //spot *= shadow / soft_shadows_samples + 1; } else { #ifdef SPOT shp.xy; shp.z -= bias; spot *= getShadowCone(shp.xyz, layer); #else spot *= getShadowOmni(vec4(odir, ldist - bias), layer); #endif } //shp.z -= bias; //shadow += getShadowCone(shp.xyz, layer, vec2(0)); } #endif // SHADOWS vec3 dist_decay = vec3(1., ldist, ldist*ldist); spot /= dot(qgl_light_parameter[index].decay_intensity.xyz, dist_decay); float NdotLs = NdotL*NdotL; float NdotHs = NdotH*NdotH; float ndlc = (1. - NdotLs) / NdotLs; diff = 2. / (1. + sqrt(1. + (1. - rough_diff) * ndlc)); //diff = texture(tex_coeffs[0], vec2(roughness, (NdotLs))).r; li += spot * diff * light_color; ndlc = (1. - NdotHs) / NdotHs; float der = NdotHs * (rough_spec + ndlc); spec = rough_spec / (der*der) / PI; //spec = texture(tex_coeffs[1], vec2(roughness, (NdotHs))).r; si += spot * spec * light_color; } void main(void) { tc = ivec2(gl_FragCoord.xy); vec4 v1 = texelFetch(tex_1, tc, 0); float z = v1.w; if (z == 1.) { discard; } pos.w = 1.; pos.xyz = view_dir * z; vec3 v = normalize(-pos.xyz); vec4 v0 = texelFetch(tex_0, tc, 0), v2 = texelFetch(tex_2, tc, 0), v3 = texelFetch(tex_3, tc, 0), v4 = texelFetch(tex_4, tc, 0), v5 = texelFetch(tex_5, tc, 0); vec3 diffuse = v0.rgb; normal = v1.xyz; geom_normal = v5.xyz; vec3 emission = v3.rgb; float alpha = v0.a; float metalness = v2.r; float roughness = v2.g; float reflectivity = v2.b; float NdotV = dot(normal, v); float roughness3 = roughness*roughness*roughness; bn = normalize(cross(normal, vec3(1.,0.,0.)) + cross(normal, vec3(0.,1.,0.))); bn2 = normalize(cross(normal, bn)); bn = cross(normal, bn2); rough_diff = max(roughness, _min_rough); rough_spec = max(roughness3, _min_rough); float shlick = clamp(metalness + (1. - metalness) * pow(1. - NdotV, 5.), 0., 1.); flags = uint(round(v2.w)); //qgl_FragColor.rgba = vec4(0); li = vec3(0.);//qgl_AmbientLight.color.rgb * qgl_AmbientLight.intensity; si = vec3(0.); if (bitfieldExtract(flags, 0, 1) == 1) { for (int i = 0; i < lights_count; ++i) calcLight(lights_start + i, normal, v); } else { li = vec3(1.); } si *= shlick; li *= (1. - shlick); alpha = min(1., alpha * (1. + shlick)); vec2 brdf = texture(tex_coeff_brdf, vec2(NdotV*0.99, roughness*0.995)).rg; float env_spec = shlick * brdf.x + brdf.y; vec3 spec_col = mix(vec3(1.), diffuse, metalness); vec3 env_dir = view_mat * reflect(-v, normal); vec3 env_col = textureLod(tex_env, env_dir, sqrt(roughness) * max_lod).rgb * spec_col; vec3 res_col = max(vec3(0.), li * diffuse + si * spec_col + emission); res_col = mix(res_col, env_col, env_spec * reflectivity); if (bitfieldExtract(flags, 1, 1) == 1) { float plen = length(pos.xyz); float fog = 1. - exp(-plen / fog_decay); fog = clamp(fog * fog_color.a * fog_density, 0., 1.); res_col = mix(res_col, fog_color.rgb, fog); } qgl_FragColor = vec4(res_col, alpha); //qgl_FragColor = vec4(diffuse.rgb, 0.25); //qgl_FragColor.a = alpha; //qgl_FragColor.rgb = vec3(geom_normal.rgb); //qgl_FragColor.rgba = vec4(vec3(0), 0.5); #ifdef SPOT //vec4 shp = mapScreenToShadow(0, vec3(0)); //shp.xy /= shp.w; //float depth = texture(tex_depths_cone, vec3(shp.xy, 0)).r; ////depth = 1 / (1 - depth) - 1 + z_near; //float dz = max(0, shp.z - depth); //shp.z -= bias; //for (int xi = -2; xi <= 2; ++xi) { // for (int yi = -2; yi <= 2; ++yi) { //qgl_FragColor.rgb = vec3(step(shp.z, texture(tex_shadows_cone, vec3(shp.xy, 0)).r)); //qgl_FragColor.r = texture(tex_shadows_cone, vec3(0)).r; //qgl_FragColor.rgb = vec3(abs(depth) + 1); //float _d = texture(tex_depths_cone, vec3(shp.xy, 0)).r; //_d = 1 / (1 - _d) - 1 + z_near; //qgl_FragColor.rgb = vec3(texelFetch(tex_noise, tc % noise_size, 0).b);//vec4(res_col, alpha); //shp.z += 0.095; //qgl_FragColor.rgb = vec3(texture(tex_sh, shp.xy).rgb); //qgl_FragColor.rgb = vec3(textureProj(tex_shadow[0], shp)); //vec4 rp = qgl_ViewProjMatrix*vec4(qgl_FragTexture.xy,z,1); //qgl_FragColor.rgb = vec3(texture(tex_shadows_cone, vec3(gl_FragCoord.xy/1000, 0)).r); #else //vec3 odir = -(view_mat * ldir); //float otex = texture(tex_shadows_omni, vec4(odir, 0), 0.8); //qgl_FragColor.rgb = vec3(otex); //qgl_FragColor.rgb = vec3(ldist/50); //qgl_FragColor.rgb = vec3(abs(otex - ldist) * 1.); //qgl_FragColor.rgb = vec3(tan((1-abs(dot(view_mat*normal, odir))))); #endif //vec3 specular = prefilteredColor * (F * envBRDF.x + envBRDF.y); //qgl_FragColor.rgb = vec3(shlick * brdf.x + brdf.y); //qgl_FragColor.rgb = vec3(alpha); //qgl_FragColor.rgb = vec3(textureLod(tex_env, world_dir, 0).rgb); //qgl_FragColor.a = 1.; }