Files
qad/qglview/glrendererbase.cpp
2020-04-30 16:07:01 +03:00

322 lines
12 KiB
C++

/*
QGLView
Ivan Pelipenko peri4ko@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "glrendererbase.h"
#include "globject.h"
#include "qglview.h"
GLRendererBase::GLRendererBase(QGLView * view_): view(*view_) {
white_image = QImage(1, 1, QImage::Format_ARGB32);
white_image.fill(0xFFFFFFFF);
white_image_id = 0;
violent_image = QImage(1, 1, QImage::Format_ARGB32);
violent_image.fill(QColor(127, 127, 255));
violent_image_id = 0;
}
void GLRendererBase::setupLight(const Light & l, int inpass_index, int gl_index) {
QVector3D lp = l.worldPos(), ld = (l.itransform_ * QVector4D(l.direction, 0.)).toVector3D().normalized();
GLfloat pos[] = {0.f, 0.f, 0.f, 0.f};
GLfloat dir[] = {0.f, 0.f, 0.f};
GLfloat col[] = {0.f, 0.f, 0.f};
pos[0] = l.light_type == Light::Directional ? -l.direction.x() : lp.x();
pos[1] = l.light_type == Light::Directional ? -l.direction.y() : lp.y();
pos[2] = l.light_type == Light::Directional ? -l.direction.z() : lp.z();
pos[3] = l.light_type == Light::Directional ? 0. : 1.;
dir[0] = ld.x();
dir[1] = ld.y();
dir[2] = ld.z();
col[0] = l.visible_ ? l.color().redF() * l.intensity : 0.f;
col[1] = l.visible_ ? l.color().greenF() * l.intensity : 0.f;
col[2] = l.visible_ ? l.color().blueF() * l.intensity : 0.f;
glEnable(gl_index);
//glLightfv(gl_index, GL_AMBIENT, ambient);
glLightfv(gl_index, GL_DIFFUSE, col);
glLightfv(gl_index, GL_SPECULAR, col);
glLightfv(gl_index, GL_POSITION, pos);
glLightf(gl_index, GL_CONSTANT_ATTENUATION, l.decay_const);
glLightf(gl_index, GL_LINEAR_ATTENUATION, l.decay_linear);
glLightf(gl_index, GL_QUADRATIC_ATTENUATION, l.decay_quadratic);
if (l.light_type == Light::Cone) {
glLightfv(gl_index, GL_SPOT_DIRECTION, dir);
glLightf(gl_index, GL_SPOT_CUTOFF, l.angle_end / 2.f);
glLightf(gl_index, GL_SPOT_EXPONENT, (1.f - piClamp<float>((l.angle_end - l.angle_start) / (l.angle_end + 0.001f), 0., 1.f)) * 128.f);
} else {
glLightf(gl_index, GL_SPOT_CUTOFF, 180.);
}
}
void GLRendererBase::setupAmbientLight(const QColor & a, bool first_pass) {
GLfloat ambient[] = {0.0f, 0.0f, 0.0f, 1.f};
if (first_pass) {
ambient[0] = view.ambientColor_.redF();
ambient[1] = view.ambientColor_.greenF();
ambient[2] = view.ambientColor_.blueF();
}
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);
}
void GLRendererBase::setupShadersLights(int lights_count) {
/*foreach (QOpenGLShaderProgram * i, view.shaders_ppl) {
i->bind();
i->setUniformValue("lightsCount", lights_count);
i->setUniformValue("acc_light", lights_count > 0);
//i->setUniformValue("mat", mvm);
}*/
}
#define BIND_TEXTURE(ch, map) if (rp.prev_tex[ch] != mat.map.bitmap_id) { \
rp.prev_tex[ch] = mat.map.bitmap_id; \
glActiveTexture(GL_TEXTURE0 + ch); glBindTexture(GL_TEXTURE_2D, mat.map.bitmap_id); \
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, view.feature(QGLView::qglAnisotropicLevel).toInt());}
void GLRendererBase::setupTextures(GLObjectBase & o, GLRendererBase::RenderingParameters & rp, bool first_object) {
if (first_object) {
view.glReleaseTextures();
return;
}
setupShadersTextures(o, rp);
Material & mat(o.material_);
if (rp.light) {
if (o.accept_light) {if (!rp.prev_light) {glSetLightEnabled(true); rp.prev_light = true;}}
else {if (rp.prev_light) {glSetLightEnabled(false); rp.prev_light = false;}}
}
if (rp.fog) {
if (o.accept_fog) {if (!rp.prev_fog) {glSetFogEnabled(true); rp.prev_fog = true;}}
else {if (rp.prev_fog) {glSetFogEnabled(false); rp.prev_fog = false;}}
}
if (rp.textures) {
BIND_TEXTURE(0, map_diffuse)
BIND_TEXTURE(1, map_normal)
BIND_TEXTURE(2, map_relief)
BIND_TEXTURE(3, map_self_illumination)
BIND_TEXTURE(4, map_specularity)
BIND_TEXTURE(5, map_specular)
glActiveTexture(GL_TEXTURE0);
}
}
#undef BIND_TEXTURE
void GLRendererBase::setupLights(int pass, int lights_per_pass) {
int light_start, light_end, lmax;
light_start = pass * lights_per_pass;
light_end = qMin<int>((pass + 1) * lights_per_pass, view.lights_.size());
setupAmbientLight(view.ambientColor_, pass == 0);
if (!view.lights_.isEmpty()) {
setupShadersLights(light_end - light_start);
for (int i = light_start; i < light_end; ++i)
setupLight(*view.lights_[i], i - light_start, GL_LIGHT0 + i - light_start);
lmax = light_start + 8;
for (int i = light_end; i < lmax; ++i)
glDisable(GL_LIGHT0 + i - light_start);
} else {
setupShadersLights(0);
for (int i = 0; i < 8; ++i)
glDisable(GL_LIGHT0 + i);
}
}
void GLRendererBase::applyFilteringParameters() {
if (view.isFeatureEnabled(QGLView::qglLinearFiltering)) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, view.feature(QGLView::qglAnisotropicLevel).toInt());
}
void GLRendererBase::renderObjects(int pass, int light_pass, void * shaders, bool textures, bool light, bool fog) {
RenderingParameters rpl;
rpl.pass = pass;
rpl.light_pass = light_pass;
rpl.shaders = shaders;
rpl.textures = textures;
rpl.light = rpl.prev_light = light;
rpl.fog = rpl.prev_fog = fog;
rpl.view_matrix = rp.view_matrix;
rpl.prev_view_matrix = rp.prev_view_matrix;
rpl.proj_matrix = rp.proj_matrix;
rpl.prev_proj_matrix = rp.prev_proj_matrix;
rpl.cam_offset_matrix = view.camera()->offsetMatrix();
//qDebug() << "view:" << rp.view_matrix;
for (int i = 0; i < 32; ++i) rpl.prev_tex[i] = 0;
setupTextures(view.objects_, rpl, true);
glSetLightEnabled(rpl.prev_light);
glSetFogEnabled(rpl.prev_fog);
glSetCapEnabled(GL_TEXTURE_2D, rpl.textures);
glSetCapEnabled(GL_BLEND, pass == GLObjectBase::Transparent);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_TEXTURE_CUBE_MAP);
glPushMatrix();
renderSingleObject(view.objects_, rpl);
glPopMatrix();
}
void GLRendererBase::renderSingleObject(GLObjectBase & o, RenderingParameters & rpl) {
if (!o.isInit())
o.init();
if (!o.isTexturesLoaded())
o.loadTextures();
if (!o.visible_) return;
if (rpl.pass == o.pass_) {
Material & mat(o.material_);
QMatrix4x4 curview = rpl.view_matrix * rpl.cam_offset_matrix * o.itransform_, prevview = rpl.prev_view_matrix * rpl.cam_offset_matrix * o.itransform_;
setupTextures(o, rpl, false);
mat.apply((QOpenGLShaderProgram*)rpl.shaders);
glSetPolygonMode(o.render_mode != GLObjectBase::View ? o.render_mode : (view.rmode != GLObjectBase::View ? view.rmode : GL_FILL));
glLineWidth(o.line_width > 0.f ? o.line_width : view.lineWidth_);
glPointSize(o.line_width > 0.f ? o.line_width : view.lineWidth_);
o.update();
if (o.pass_ == GLObjectBase::Transparent) {
glActiveTexture(GL_TEXTURE0 + 3);
if (mat.reflectivity > 0.f) {
glEnable(GL_TEXTURE_CUBE_MAP);
if (!mat.map_reflection.isEmpty()) mat.map_reflection.bind();
else glDisable(GL_TEXTURE_CUBE_MAP);
} else glDisable(GL_TEXTURE_CUBE_MAP);
if (rpl.light_pass > 0) glDisable(GL_TEXTURE_CUBE_MAP);
GLfloat gm[16], bc[4] = {mat.reflectivity, mat.reflectivity, mat.reflectivity, mat.reflectivity};
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SRC2_RGB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_COLOR);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, bc);
glGetFloatv(GL_MODELVIEW_MATRIX, gm);
glMatrixMode(GL_TEXTURE);
///glLoadTransposeMatrixf(gm);
glScalef(-1., -1., -1.);
glMatrixMode(GL_MODELVIEW);
glActiveTexture(GL_TEXTURE0);
}
if (rpl.shaders) {
//qDebug() << o.name() << curview << curview.determinant();
setUniformMatrices((QOpenGLShaderProgram*)rpl.shaders, rpl.proj_matrix, curview, rpl.prev_proj_matrix, prevview);
} else {
glMatrixMode(GL_MODELVIEW);
setGLMatrix(curview);
}
o.draw((QOpenGLShaderProgram*)rpl.shaders);
}
foreach (GLObjectBase * i, o.children_)
renderSingleObject(*i, rpl);
}
void GLRendererBase::renderShadow(Light * l, QOpenGLShaderProgram * prog, QMatrix4x4 mat) {
Camera cam;
QVector3D wp = l->worldPos();
cam.setPos(wp);
cam.setAim(wp + (l->worldTransform() * QVector4D(l->direction)).toVector3D());
cam.setDepthStart(view.camera()->depthStart());
cam.setDepthEnd(view.camera()->depthEnd());
cam.setFOV(l->angle_end);
cam.apply(1.);
/*cam.rotateXY(l->angle_end);
QVector3D rdir = l->direction * cos(l->angle_end / 2. * deg2rad);
l->dir0 = cam.direction() - rdir;
cam.rotateXY(-l->angle_end);
cam.rotateZ(l->angle_end);
l->dir1 = cam.direction() - rdir;*/
//qDebug() << rdir << l->dir0 << l->dir1;
RenderingParameters rpl;
rpl.pass = GLObjectBase::Solid;
rpl.shaders = prog;
rpl.textures = rpl.light = rpl.fog = false;
rpl.view_matrix = getGLMatrix(GL_MODELVIEW_MATRIX);
rpl.proj_matrix = getGLMatrix(GL_PROJECTION_MATRIX);
rpl.cam_offset_matrix = cam.offsetMatrix();
QMatrix4x4 mbias;
mbias.scale(0.5, 0.5, 0.5);
mbias.translate(1., 1., 1.);
l->shadow_matrix = mbias*rpl.proj_matrix*rpl.view_matrix*rpl.cam_offset_matrix*mat;//;// * mbias;
//qDebug() << mbias;
//glPushMatrix();
renderSingleShadow(view.objects_, rpl);
//glPopMatrix();
}
void GLRendererBase::renderSingleShadow(GLObjectBase & o, RenderingParameters & rpl) {
if (!o.isInit())
o.init();
if (!o.visible_) return;
if (rpl.shaders) {
//qDebug() << o.name() << curview << curview.determinant();
setUniformMatrices((QOpenGLShaderProgram*)rpl.shaders, rpl.proj_matrix, rpl.view_matrix * rpl.cam_offset_matrix * o.itransform_);
} else {
glMatrixMode(GL_MODELVIEW);
setGLMatrix(rpl.view_matrix * rpl.cam_offset_matrix * o.itransform_);
}
glPolygonMode(GL_FRONT_AND_BACK, o.render_mode != GLObjectBase::View ? o.render_mode : (view.rmode != GLObjectBase::View ? view.rmode : GL_FILL));
glLineWidth(o.line_width > 0.f ? o.line_width : view.lineWidth_);
glPointSize(o.line_width > 0.f ? o.line_width : view.lineWidth_);
o.draw((QOpenGLShaderProgram*)rpl.shaders, true);
foreach (GLObjectBase * i, o.children_)
renderSingleShadow(*i, rpl);
}
GLRendererBase::RenderingParameters::RenderingParameters() {
shaders = nullptr;
cur_shader = nullptr;
}
void GLRendererBase::RenderingParameters::prepare() {
proj_matrix = getGLMatrix(GL_PROJECTION_MATRIX);
view_matrix = getGLMatrix(GL_MODELVIEW_MATRIX);
viewproj_matrix = proj_matrix * view_matrix;
normal_matrix = view_matrix.normalMatrix();
proj_matrix_i = proj_matrix.inverted();
view_matrix_i = view_matrix.inverted();
viewproj_matrix_i = viewproj_matrix.inverted();
}
void GLRendererBase::RenderingParameters::setUniform(QOpenGLShaderProgram * prog) {
if (!prog) return;
prog->setUniformValue("qgl_ModelViewMatrix", view_matrix);
prog->setUniformValue("qgl_ProjectionMatrix", proj_matrix);
prog->setUniformValue("qgl_ModelViewProjectionMatrix", viewproj_matrix);
prog->setUniformValue("qgl_NormalMatrix", normal_matrix);
prog->setUniformValue("qgl_ModelViewMatrixInverse", view_matrix_i);
prog->setUniformValue("qgl_ProjectionMatrixInverse", proj_matrix_i);
prog->setUniformValue("qgl_ModelViewProjectionMatrixInverse", viewproj_matrix_i);
prog->setUniformValue("qgl_ModelViewMatrixTranspose", view_matrix.transposed());
prog->setUniformValue("qgl_ProjectionMatrixTranspose", proj_matrix.transposed());
prog->setUniformValue("qgl_ModelViewProjectionMatrixTranspose", viewproj_matrix.transposed());
prog->setUniformValue("qgl_ModelViewMatrixInverseTranspose", view_matrix_i.transposed());
prog->setUniformValue("qgl_ProjectionMatrixInverseTranspose", proj_matrix_i.transposed());
prog->setUniformValue("qgl_ModelViewProjectionMatrixInverseTranspose", viewproj_matrix_i.transposed());
}