Files
pip/libs/main/thread/piblockingqueue.h
2022-03-14 21:19:31 +03:00

220 lines
6.9 KiB
C++

/*
PIP - Platform Independent Primitives
Stephan Fomenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIBLOCKINGQUEUE_H
#define PIBLOCKINGQUEUE_H
#include "pideque.h"
#include "piconditionvar.h"
/**
* \brief A Queue that supports operations that wait for the queue to become non-empty when retrieving an element, and
* wait for space to become available in the queue when storing an element.
*/
template <typename T>
class PIBlockingQueue: private PIQueue<T> {
public:
/**
* \brief Constructor
*/
explicit inline PIBlockingQueue(size_t capacity = SIZE_MAX,
PIConditionVariable* cond_var_add = new PIConditionVariable(),
PIConditionVariable* cond_var_rem = new PIConditionVariable())
: cond_var_add(cond_var_add), cond_var_rem(cond_var_rem), max_size(capacity) { }
/**
* \brief Copy constructor. Initialize queue with copy of other queue elements. Not thread-safe for other queue.
*/
explicit inline PIBlockingQueue(const PIDeque<T>& other) : cond_var_add(new PIConditionVariable()), cond_var_rem(new PIConditionVariable()) {
mutex.lock();
max_size = SIZE_MAX;
PIDeque<T>::append(other);
mutex.unlock();
}
/**
* \brief Thread-safe copy constructor. Initialize queue with copy of other queue elements.
*/
inline PIBlockingQueue(PIBlockingQueue<T> & other) : cond_var_add(new PIConditionVariable()), cond_var_rem(new PIConditionVariable()) {
other.mutex.lock();
mutex.lock();
max_size = other.max_size;
PIDeque<T>::append(static_cast<PIDeque<T>&>(other));
mutex.unlock();
other.mutex.unlock();
}
~PIBlockingQueue() {
delete cond_var_add;
delete cond_var_rem;
}
/**
* \brief Inserts the specified element into this queue, waiting if necessary for space to become available.
*
* @param v the element to add
*/
PIBlockingQueue<T> & put(const T & v) {
mutex.lock();
cond_var_rem->wait(mutex, [&]() { return PIDeque<T>::size() < max_size; });
PIDeque<T>::push_back(v);
mutex.unlock();
cond_var_add->notifyOne();
return *this;
}
PIBlockingQueue<T> & enqueue(const T & v) {return put(v);}
/**
* \brief Inserts the specified element at the end of this queue if it is possible to do so immediately without
* exceeding the queue's capacity, returning true upon success and false if this queue is full.
*
* @param v the element to add
* @param timeoutMs the timeout waiting for inserting if que is full, if timeout = 0, then returns immediately
* @return true if the element was added to this queue, else false
*/
bool offer(const T & v, int timeoutMs = 0) {
bool isOk;
mutex.lock();
if (timeoutMs == 0)
isOk = PIDeque<T>::size() < max_size;
else
isOk = cond_var_rem->waitFor(mutex, timeoutMs, [&]() { return PIDeque<T>::size() < max_size; } );
if (isOk) PIDeque<T>::push_back(v);
mutex.unlock();
if (isOk) cond_var_add->notifyOne();
return isOk;
}
/**
* \brief Retrieves and removes the head of this queue, waiting if necessary until an element becomes available.
*
* @return the head of this queue
*/
T take() {
T t;
mutex.lock();
cond_var_add->wait(mutex, [&]() { return !PIDeque<T>::isEmpty(); });
t = T(PIDeque<T>::take_front());
mutex.unlock();
cond_var_rem->notifyOne();
return t;
}
T dequeue() {return take();}
/**
* \brief Retrieves and removes the head of this queue, waiting up to the specified wait time if necessary for an
* element to become available.
*
* @param timeoutMs how long to wait before giving up, in milliseconds
* @param defaultVal value, which returns if the specified waiting time elapses before an element is available
* @param isOk flag, which indicates result of method execution. It will be set to false if timeout, or true if
* return value is retrieved value
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
*/
T poll(int timeoutMs = 0, const T & defaultVal = T(), bool * isOk = nullptr) {
T t = defaultVal;
bool isNotEmpty;
mutex.lock();
if (timeoutMs == 0)
isNotEmpty = !PIDeque<T>::isEmpty();
else
isNotEmpty = cond_var_add->waitFor(mutex, timeoutMs, [&]() { return !PIDeque<T>::isEmpty(); });
if (isNotEmpty) t = PIDeque<T>::take_front();
mutex.unlock();
if (isNotEmpty) cond_var_rem->notifyOne();
if (isOk) *isOk = isNotEmpty;
return t;
}
/**
* \brief Returns the number of elements that this queue can ideally (in the absence of memory or resource
* constraints) contains. This is always equal to the initial capacity of this queue less the current size of this queue.
*
* @return the capacity
*/
size_t capacity() {
size_t c;
mutex.lock();
c = max_size;
mutex.unlock();
return c;
}
/**
* \brief Returns the number of additional elements that this queue can ideally (in the absence of memory or resource
* constraints) accept. This is always equal to the initial capacity of this queue less the current size of this queue.
*
* @return the remaining capacity
*/
size_t remainingCapacity() {
mutex.lock();
size_t c = max_size - PIDeque<T>::size();
mutex.unlock();
return c;
}
/**
* \brief Returns the number of elements in this collection.
*/
size_t size() {
mutex.lock();
size_t s = PIDeque<T>::size();
mutex.unlock();
return s;
}
/**
* \brief Removes all available elements from this queue and adds them to other given queue.
*/
size_t drainTo(PIDeque<T>& other, size_t maxCount = SIZE_MAX) {
mutex.lock();
size_t count = ((maxCount > PIDeque<T>::size()) ? PIDeque<T>::size() : maxCount);
for (size_t i = 0; i < count; ++i) other.push_back(PIDeque<T>::take_front());
mutex.unlock();
return count;
}
/**
* \brief Removes all available elements from this queue and adds them to other given queue.
*/
size_t drainTo(PIBlockingQueue<T>& other, size_t maxCount = SIZE_MAX) {
mutex.lock();
other.mutex.lock();
size_t count = maxCount > PIDeque<T>::size() ? PIDeque<T>::size() : maxCount;
size_t otherRemainingCapacity = other.max_size - static_cast<PIDeque<T> >(other).size();
if (count > otherRemainingCapacity) count = otherRemainingCapacity;
for (size_t i = 0; i < count; ++i) other.push_back(PIDeque<T>::take_front());
other.mutex.unlock();
mutex.unlock();
return count;
}
private:
PIMutex mutex;
PIConditionVariable * cond_var_add, * cond_var_rem;
size_t max_size;
};
#endif // PIBLOCKINGQUEUE_H