Files
pip/libs/main/thread/pitimer.cpp
2020-08-19 00:47:05 +03:00

659 lines
14 KiB
C++

/*
PIP - Platform Independent Primitives
Timer
Ivan Pelipenko peri4ko@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pitimer.h"
#include "piincludes_p.h"
#ifdef PIP_TIMER_RT
# include <csignal>
#endif
/*! \class PITimer
* \brief Timer
*
* \section PITimer_sec0 Synopsis
* This class implements timer function. PIP timers supports 3 way to tick notify,
* frequency delimiters and time measurements.
* \section PITimer_sec1 Notify variants
* Notify variants:
* * "slot" - static function with format void func(void * data, int delimiter);
* * event - \a tickEvent();
* * virtual function - \a tick().
*
* All these variants are equivalent, use most applicable.
* \section PITimer_sec2 Frequency delimiters
* Frequency delimiter is an integer number and "slot" function. If "slot" function is null
* timer main "slot" will be used. Each delimiter numbers tick timer will be execute
* delimiters or timer main "slot" function with \b delimiter value = delimiter number.
* Example: \snippet pitimer.cpp delimiter
* \section PITimer_sec3 Time measurements
* PITimer can be used as time measurer. Function \a reset() set time mark to current
* system time, then functions double elapsed_*() returns time elapsed from this mark.
* These functions can returns nano-, micro-, milli- and seconds with suffixes "n", "u", "m"
* and "s"
* Example: \snippet pitimer.cpp elapsed
*/
_PITimerBase::_PITimerBase() {
interval_ = 1000;
deferred_delay = 0.;
running_ = deferred_ = deferred_mode = false;
tfunc = 0;
parent = 0;
}
void _PITimerBase::setInterval(double i) {
interval_ = i;
if (isRunning()) {
//piCout << "change interval runtime";
stop(true);
start();
}
}
bool _PITimerBase::start(double interval_ms) {
if (isRunning()) stop(true);
deferred_ = false;
setInterval(interval_ms);
//piCout << "_PITimerBase::startTimer"<<interval_ms<<"...";
running_ = startTimer(interval_ms);
return running_;
}
void _PITimerBase::startDeferred(double interval_ms, PIDateTime start_datetime) {
if (isRunning()) stop(true);
deferred_ = true;
deferred_mode = true;
deferred_datetime = start_datetime;
setInterval(interval_ms);
running_ = startTimer(interval_ms);
}
void _PITimerBase::startDeferred(double interval_ms, double delay_ms) {
if (isRunning()) stop(true);
deferred_ = true;
deferred_mode = false;
deferred_delay = delay_ms;
setInterval(interval_ms);
running_ = startTimer(interval_ms);
}
bool _PITimerBase::stop(bool wait) {
//piCout << GetCurrentThreadId() << "_PITimerBase::stop" << wait << isRunning();
if (!isRunning()) return true;
//piCout << "_PITimerBase::stopTimer ...";
running_ = !stopTimer(wait);
return !running_;
}
class _PITimerImp_Thread: public _PITimerBase {
public:
_PITimerImp_Thread();
virtual ~_PITimerImp_Thread();
protected:
void prepareStart(double interval_ms);
bool threadFunc(); // returns true if repeat is needed
int wait_dt, wait_dd, wait_tick;
private:
virtual bool startTimer(double interval_ms);
virtual bool stopTimer(bool wait);
static void threadFuncS(void * d) {((_PITimerImp_Thread*)d)->threadFunc();}
void adjustTimes();
PIThread thread_;
PISystemTime st_time, st_inc, st_wait, st_odt;
};
#ifdef PIP_TIMER_RT
struct _PITimerImp_RT_Private_;
class _PITimerImp_RT: public _PITimerBase {
public:
_PITimerImp_RT();
virtual ~_PITimerImp_RT();
protected:
private:
virtual bool startTimer(double interval_ms);
virtual bool stopTimer(bool wait);
int ti;
_PITimerImp_RT_Private_ * priv;
};
#endif
class _PITimerImp_Pool: public _PITimerImp_Thread {
public:
_PITimerImp_Pool();
virtual ~_PITimerImp_Pool() {stop(true);}
private:
class Pool: public PIThread {
public:
static Pool * instance();
void add(_PITimerImp_Pool * t);
void remove(_PITimerImp_Pool * t);
void run();
PIVector<_PITimerImp_Pool * > timers, to_remove;
private:
explicit Pool();
virtual ~Pool();
};
virtual bool startTimer(double interval_ms);
virtual bool stopTimer(bool wait);
};
_PITimerImp_Thread::_PITimerImp_Thread() {
thread_.setName("__S__PITimerImp_Thread::thread");
wait_dt = 100;
wait_dd = 200;
wait_tick = 10;
//piCout << "_PITimerImp_Thread" << this << ", thread& =" << &thread_;
//piCout << "new _PITimerImp_Thread";
}
_PITimerImp_Thread::~_PITimerImp_Thread() {
stop(true);
}
void _PITimerImp_Thread::prepareStart(double interval_ms) {
if (interval_ms <= 0.) {
piCout << "Achtung! Start PITimer with interval <= 0!";
piCout << "Achtung! Parent" << parent;
assert(interval_ms > 0.);
}
st_inc = PISystemTime::fromMilliseconds(interval_ms);
st_odt = st_inc * 5;
if (st_odt.toSeconds() < 1.) st_odt = PISystemTime::fromSeconds(1.);
if (deferred_) {
if (!deferred_mode)
st_time = PISystemTime::current(true) + PISystemTime::fromMilliseconds(deferred_delay);
st_time -= st_inc;
} else
st_time = PISystemTime::current(true) + st_inc;
}
bool _PITimerImp_Thread::startTimer(double interval_ms) {
prepareStart(interval_ms);
thread_.setData(this);
return thread_.start(threadFuncS);
}
bool _PITimerImp_Thread::stopTimer(bool wait) {
#ifndef FREERTOS
thread_.stop(wait);
#else
thread_.stop();
if (wait)
if (!thread_.waitForFinish(10))
if (thread_.isRunning())
thread_.terminate();
#endif
return true;
}
bool _PITimerImp_Thread::threadFunc() {
if (!running_) return false;
if (deferred_) {
PISystemTime dwt;
int wth(wait_dt);
if (deferred_mode) {
dwt = deferred_datetime.toSystemTime() - PISystemTime::current();
wth = wait_dd;
} else
dwt = st_time - PISystemTime::current(true);
if (wth > 0) {
if (dwt.toMilliseconds() > wth + 1.) {
piMSleep(wth);
return false;
} else {
dwt.sleep();
deferred_ = false;
st_time = PISystemTime::current(true);
}
} else {
if (dwt.toMilliseconds() > 0.1)
return false;
}
}
st_wait = st_time - PISystemTime::current(true);
//piCout << "wait" << this << st_wait;
if (st_wait.abs() > st_odt || st_wait.seconds <= -5) {
//piCout << &thread_ << "adjust" << "...";
adjustTimes();
//piCout << &thread_ << "adjust" << "ok";
return true;
}
if (wait_tick > 0) {
if (st_wait.toMilliseconds() > wait_tick + 1.) {
piMSleep(wait_tick);
return false;
} else {
//piCout << &thread_ << "sleep for" << st_wait;
st_wait.sleep();
}
} else {
if (st_wait.toMilliseconds() > 0.1)
return false;
}
st_time += st_inc;
if (!parent->isPIObject()) {
piCout << "Achtung! PITimer \"parent\" is not PIObject!";
return false;
}
//piCout << &thread_ << "tfunc" << "...";
tfunc(parent);
//piCout << &thread_ << "tfunc" << "ok";
return true;
}
void _PITimerImp_Thread::adjustTimes() {
PISystemTime cst = PISystemTime::current(true);
if (st_time < cst) {
int rs = (cst - st_time).toSeconds() / st_inc.toSeconds();
if (rs >= 100)
st_time = cst + st_inc;
else {
while (st_time < cst)
st_time += st_inc;
}
} else {
int rs = (st_time - cst).toSeconds() / st_inc.toSeconds();
if (rs >= 100)
st_time = cst - st_inc;
else {
cst += st_inc;
while (st_time > cst)
st_time -= st_inc;
}
}
}
#ifdef PIP_TIMER_RT
void threadFuncS(sigval sv) {((_PITimerImp_RT * )sv.sival_ptr)->tfunc(((_PITimerImp_RT * )sv.sival_ptr)->parent);}
struct _PITimerImp_RT_Private_ {
itimerspec spec;
timer_t tt;
sigevent se;
};
_PITimerImp_RT::_PITimerImp_RT() {
//piCout << "new _PITimerImp_RT";
priv = new _PITimerImp_RT_Private_();
priv->tt = 0;
ti = -1;
memset(&(priv->se), 0, sizeof(priv->se));
priv->se.sigev_notify = SIGEV_THREAD;
priv->se.sigev_value.sival_ptr = this;
priv->se.sigev_notify_function = threadFuncS;
priv->se.sigev_notify_attributes = 0;
}
_PITimerImp_RT::~_PITimerImp_RT() {
stop(true);
delete priv;
}
bool _PITimerImp_RT::startTimer(double interval_ms) {
int flags(0);
priv->spec.it_interval.tv_nsec = ((int)(interval_ms * 1000) % 1000000) * 1000;
priv->spec.it_interval.tv_sec = (time_t)(interval_ms / 1000);
if (deferred_) {
if (deferred_mode) {
PISystemTime dtm = deferred_datetime.toSystemTime();
priv->spec.it_value.tv_nsec = dtm.nanoseconds;
priv->spec.it_value.tv_sec = dtm.seconds;
flags = TIMER_ABSTIME;
} else {
priv->spec.it_value.tv_nsec = ((int)(deferred_delay * 1000) % 1000000) * 1000;
priv->spec.it_value.tv_sec = (time_t)(deferred_delay / 1000);
}
} else {
priv->spec.it_value = priv->spec.it_interval;
}
ti = timer_create(CLOCK_REALTIME, &(priv->se), &(priv->tt));
//cout << "***create timer " << msecs << " msecs\n";
if (ti == -1) {
piCout << "Can`t create RT timer for " << interval_ms << " msecs: " << errorString();
return false;
}
timer_settime(priv->tt, flags, &(priv->spec), 0);
return true;
}
bool _PITimerImp_RT::stopTimer(bool wait) {
if (ti < 0) return true;
timer_delete(priv->tt);
ti = -1;
priv->tt = 0;
return true;
}
#endif
_PITimerImp_Pool::_PITimerImp_Pool(): _PITimerImp_Thread() {
wait_dt = wait_dd = wait_tick = 0;
//piCout << "new _PITimerImp_Pool";
}
_PITimerImp_Pool::Pool::Pool(): PIThread() {
setName("__S__PITimerImp_Pool::Pool");
needLockRun(true);
#ifndef FREERTOS
timers.reserve(64);
start(PIP_MIN_MSLEEP*5);
#else
start(PIP_MIN_MSLEEP);
#endif
}
_PITimerImp_Pool::Pool::~Pool() {
stop();
if (!waitForFinish(500))
terminate();
unlock();
timers.clear();
}
_PITimerImp_Pool::Pool * _PITimerImp_Pool::Pool::instance() {
static Pool pool;
return &pool;
}
void _PITimerImp_Pool::Pool::add(_PITimerImp_Pool * t) {
//piCout << "add ...";
lock();
to_remove.removeAll(t);
if (!timers.contains(t))
timers << t;
unlock();
//piCout << "add done";
}
void _PITimerImp_Pool::Pool::remove(_PITimerImp_Pool * t) {
//piCout << "remove ...";
lock();
to_remove << t;
unlock();
//piCout << "remove done";
}
void _PITimerImp_Pool::Pool::run() {
if (!to_remove.isEmpty()) {
piForeach (_PITimerImp_Pool * t, to_remove)
timers.removeAll(t);
to_remove.clear();
}
piForeach (_PITimerImp_Pool * t, timers)
t->threadFunc();
}
bool _PITimerImp_Pool::startTimer(double interval_ms) {
prepareStart(interval_ms);
Pool::instance()->add(this);
return true;
}
bool _PITimerImp_Pool::stopTimer(bool wait) {
Pool::instance()->remove(this);
return true;
}
PITimer::PITimer(): PIObject() {
#ifdef FREERTOS
imp_mode = PITimer::Thread;
#else
imp_mode = PITimer::Thread;
#endif
initFirst();
}
PITimer::PITimer(PITimer::TimerImplementation ti): PIObject() {
imp_mode = ti;
initFirst();
}
PITimer::PITimer(TimerEvent slot, void * data, PITimer::TimerImplementation ti): PIObject() {
imp_mode = ti;
initFirst();
data_t = data;
ret_func = slot;
}
PITimer::PITimer(std::function<void ()> slot, PITimer::TimerImplementation ti) {
imp_mode = ti;
initFirst();
ret_func = [slot](void *, int){slot();};
}
PITimer::PITimer(std::function<void (void *)> slot, void * data, PITimer::TimerImplementation ti) {
imp_mode = ti;
initFirst();
data_t = data;
ret_func = [slot](void *d, int){slot(d);};
}
PITimer::~PITimer() {
destroy();
}
double PITimer::interval() const {
init();
return imp->interval_;
}
void PITimer::setInterval(double ms) {
init();
setProperty("interval", ms);
imp->setInterval(ms);
}
bool PITimer::isRunning() const {
init();
return imp->running_;
}
bool PITimer::isStopped() const {
init();
return !imp->running_;
}
void PITimer::initFirst() {
lockRun = false;
callEvents = true;
data_t = 0;
ret_func = 0;
imp = 0;
setProperty("interval", 0.);
}
void PITimer::init() const {
if (imp) return;
switch (imp_mode) {
case PITimer::Pool: imp = new _PITimerImp_Pool(); break;
case PITimer::ThreadRT:
#ifdef PIP_TIMER_RT
imp = new _PITimerImp_RT();
break;
#else
piCoutObj << "Warning: \"ThreadRT\" is not available at this system! Using \"Thread\".";
#endif
case PITimer::Thread: imp = new _PITimerImp_Thread(); break;
default: piCout << "Fatal: invalid implementation() of" << this << "!"; assert(0);
}
if (!imp) return;
//piCout << this << "init" << imp;
imp->tfunc = tickImpS;
imp->parent = const_cast<PITimer*>(this);
}
void PITimer::destroy() {
if (!imp) return;
//piCout << this << "destroy" << imp;
imp->stop(false); ///BUG: WTF FreeRTOS segfault on this!
delete imp;
imp = 0;
}
void PITimer::tickImp() {
if (!isRunning()) return;
if (lockRun) lock();
if (ret_func) ret_func(data_t, 1);
tick(data_t, 1);
tickEvent(data_t, 1);
if (callEvents) maybeCallQueuedEvents();
piForeach (Delimiter & i, delims) {
if (i.delim > ++(i.tick)) continue;
i.tick = 0;
if (i.slot) i.slot(data_t, i.delim);
else if (ret_func) ret_func(data_t, i.delim);
tick(data_t, i.delim);
tickEvent(data_t, i.delim);
}
if (lockRun) unlock();
}
bool PITimer::start() {
init();
//piCout << this << "start" << imp;
return imp->start();
}
bool PITimer::start(double interval_ms_d) {
init();
//piCout << this << "start" << imp << interval_ms_d;
setProperty("interval", interval_ms_d);
return imp->start(interval_ms_d);
}
bool PITimer::start(int interval_ms_i) {
return start((double)interval_ms_i);
}
void PITimer::startDeferred(double delay_ms) {
init();
imp->startDeferred(delay_ms);
}
void PITimer::startDeferred(double interval_ms, double delay_ms) {
init();
imp->startDeferred(interval_ms, delay_ms);
}
void PITimer::startDeferred(PIDateTime start_datetime) {
startDeferred(imp->interval_, start_datetime);
}
void PITimer::startDeferred(double interval_ms, PIDateTime start_datetime) {
init();
imp->startDeferred(interval_ms, start_datetime);
}
bool PITimer::restart() {
init();
imp->stop(true);
return imp->start();
}
bool PITimer::stop() {
return stop(true);
}
bool PITimer::stop(bool wait) {
init();
//piCout << this << "stop" << imp << wait;
return imp->stop(wait);
}
bool PITimer::waitForFinish(int timeout_msecs) {
if (timeout_msecs < 0) {
while (isRunning())
msleep(PIP_MIN_MSLEEP);
return true;
}
PITimeMeasurer tm;
while (isRunning() && tm.elapsed_m() < timeout_msecs)
msleep(PIP_MIN_MSLEEP);
return tm.elapsed_m() < timeout_msecs;
}