525 lines
15 KiB
C++
525 lines
15 KiB
C++
/*! \file pimathvector.h
|
|
* \ingroup Math
|
|
* \~\brief
|
|
* \~english Math vector
|
|
* \~russian Математический вектор
|
|
*/
|
|
/*
|
|
PIP - Platform Independent Primitives
|
|
PIMathVector
|
|
Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef PIMATHVECTOR_H
|
|
#define PIMATHVECTOR_H
|
|
|
|
#include "pimathbase.h"
|
|
|
|
|
|
template<uint Cols, uint Rows, typename Type>
|
|
class PIMathMatrixT;
|
|
|
|
#define PIMATHVECTOR_ZERO_CMP Type(1E-100)
|
|
|
|
|
|
/// Vector templated
|
|
|
|
#define PIMV_FOR for (uint i = 0; i < Size; ++i)
|
|
|
|
template<uint Size, typename Type = double>
|
|
class PIP_EXPORT PIMathVectorT {
|
|
typedef PIMathVectorT<Size, Type> _CVector;
|
|
static_assert(std::is_arithmetic<Type>::value, "Type must be arithmetic");
|
|
static_assert(Size > 0, "Size must be > 0");
|
|
public:
|
|
PIMathVectorT(const Type & v = Type()) {PIMV_FOR c[i] = v;}
|
|
PIMathVectorT(const PIVector<Type> & val) {
|
|
assert(Size == val.size());
|
|
PIMV_FOR c[i] = val[i];
|
|
}
|
|
PIMathVectorT(std::initializer_list<Type> init_list) {
|
|
assert(Size == init_list.size());
|
|
PIMV_FOR c[i] = init_list.begin()[i];
|
|
}
|
|
static _CVector fromTwoPoints(const _CVector & st, const _CVector & fn) {
|
|
_CVector tv;
|
|
PIMV_FOR tv[i] = fn[i] - st[i];
|
|
return tv;
|
|
}
|
|
|
|
constexpr uint size() const {return Size;}
|
|
_CVector & fill(const Type & v) {PIMV_FOR c[i] = v; return *this;}
|
|
_CVector & move(const Type & v) {PIMV_FOR c[i] += v; return *this;}
|
|
_CVector & move(const _CVector & v) {PIMV_FOR c[i] += v[i]; return *this;}
|
|
_CVector & swapElements(uint f, uint s) {
|
|
piSwap<Type>(c[f], c[s]);
|
|
return *this;
|
|
}
|
|
Type lengthSqr() const {
|
|
Type tv(0);
|
|
PIMV_FOR tv += c[i] * c[i];
|
|
return tv;
|
|
}
|
|
Type length() const {return std::sqrt(lengthSqr());}
|
|
Type manhattanLength() const {
|
|
Type tv(0);
|
|
PIMV_FOR tv += piAbs<Type>(c[i]);
|
|
return tv;
|
|
}
|
|
Type angleCos(const _CVector & v) const {
|
|
Type tv = v.length() * length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
return dot(v) / tv;
|
|
}
|
|
Type angleSin(const _CVector & v) const {
|
|
Type tv = angleCos(v);
|
|
return std::sqrt(Type(1) - tv * tv);
|
|
}
|
|
Type angleRad(const _CVector & v) const {return std::acos(angleCos(v));}
|
|
Type angleDeg(const _CVector & v) const {return toDeg(angleRad(v));}
|
|
Type angleElevation(const _CVector & v) const {return 90.0 - angleDeg(v - *this);}
|
|
_CVector projection(const _CVector & v) {
|
|
Type tv = v.length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
return v * (dot(v) / tv);
|
|
}
|
|
_CVector & normalize() {
|
|
Type tv = length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
if (tv == Type(1)) return *this;
|
|
PIMV_FOR c[i] /= tv;
|
|
return *this;
|
|
}
|
|
_CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;}
|
|
bool isNull() const {PIMV_FOR if (c[i] != Type(0)) return false; return true;}
|
|
bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);}
|
|
|
|
Type & operator [](uint index) {return c[index];}
|
|
const Type & operator [](uint index) const {return c[index];}
|
|
Type at(uint index) const {return c[index];}
|
|
|
|
_CVector & operator =(const Type & v) {PIMV_FOR c[i] = v; return *this;}
|
|
|
|
bool operator ==(const _CVector & v) const {PIMV_FOR if (c[i] != v[i]) return false; return true;}
|
|
bool operator !=(const _CVector & v) const {return !(*this == c);}
|
|
|
|
void operator +=(const _CVector & v) {PIMV_FOR c[i] += v[i];}
|
|
void operator -=(const _CVector & v) {PIMV_FOR c[i] -= v[i];}
|
|
void operator *=(const Type & v) {PIMV_FOR c[i] *= v;}
|
|
void operator /=(const Type & v) {
|
|
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
|
|
PIMV_FOR c[i] /= v;
|
|
}
|
|
_CVector operator -() const {
|
|
_CVector tv;
|
|
PIMV_FOR tv[i] = -c[i];
|
|
return tv;
|
|
}
|
|
_CVector operator +(const _CVector & v) const {
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] += v[i];
|
|
return tv;
|
|
}
|
|
_CVector operator -(const _CVector & v) const {
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] -= v[i];
|
|
return tv;
|
|
}
|
|
_CVector operator *(const Type & v) const {
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] *= v;
|
|
return tv;
|
|
}
|
|
_CVector operator /(const Type & v) const {
|
|
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
|
|
_CVector tv = _CVector(*this);
|
|
PIMV_FOR tv[i] /= v;
|
|
return tv;
|
|
}
|
|
|
|
_CVector cross(const _CVector & v) const {
|
|
static_assert(Size == 3, "cross product avalible only for 3D vectors");
|
|
_CVector tv;
|
|
tv[0] = c[1]*v[2] - v[1]*c[2];
|
|
tv[1] = v[0]*c[2] - c[0]*v[2];
|
|
tv[2] = c[0]*v[1] - v[0]*c[1];
|
|
return tv;
|
|
}
|
|
Type dot(const _CVector & v) const {
|
|
Type tv(0);
|
|
PIMV_FOR tv += c[i] * v[i];
|
|
return tv;
|
|
}
|
|
_CVector mul(const _CVector & v) const {
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] *= v[i];
|
|
return tv;
|
|
}
|
|
_CVector mul(const Type & v) const {
|
|
return (*this) * v;
|
|
}
|
|
_CVector div(const _CVector & v) const {
|
|
_CVector tv(*this);
|
|
PIMV_FOR {
|
|
assert(piAbs<Type>(v[i]) > PIMATHVECTOR_ZERO_CMP);
|
|
tv[i] /= v[i];
|
|
}
|
|
return tv;
|
|
}
|
|
_CVector div(const Type & v) const {
|
|
return (*this) / v;
|
|
}
|
|
|
|
PIMathMatrixT<1, Size, Type> transposed() const {
|
|
PIMathMatrixT<1, Size, Type> ret;
|
|
PIMV_FOR ret[0][i] = c[i];
|
|
return ret;
|
|
}
|
|
|
|
Type distToLine(const _CVector & lp0, const _CVector & lp1) {
|
|
_CVector a(lp0, lp1);
|
|
Type tv = a.length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
_CVector b(lp0, *this);
|
|
return piAbs<Type>(a[0]*b[1] - a[1]*b[0]) / tv;
|
|
}
|
|
|
|
template<uint Size1, typename Type1> /// vector {Size, Type} to vector {Size1, Type1}
|
|
PIMathVectorT<Size1, Type1> turnTo() const {
|
|
PIMathVectorT<Size1, Type1> tv;
|
|
uint sz = piMin<uint>(Size, Size1);
|
|
for (uint i = 0; i < sz; ++i) tv[i] = c[i];
|
|
return tv;
|
|
}
|
|
|
|
static _CVector cross(const _CVector & v1, const _CVector & v2) {
|
|
return v1.cross(v2);
|
|
}
|
|
static _CVector dot(const _CVector & v1, const _CVector & v2) {
|
|
return v1.dot(v2);
|
|
}
|
|
static _CVector mul(const _CVector & v1, const _CVector & v2) {
|
|
return v1.mul(v2);
|
|
}
|
|
static _CVector mul(const Type & v1, const _CVector & v2) {
|
|
return v2 * v1;
|
|
}
|
|
static _CVector mul(const _CVector & v1, const Type & v2) {
|
|
return v1 * v2;
|
|
}
|
|
static _CVector div(const _CVector & v1, const _CVector & v2) {
|
|
return v1.div(v2);
|
|
}
|
|
static _CVector div(const _CVector & v1, const Type & v2) {
|
|
return v1 / v2;
|
|
}
|
|
|
|
private:
|
|
Type c[Size];
|
|
|
|
};
|
|
|
|
template<uint Size, typename Type>
|
|
inline PIMathVectorT<Size, Type> operator *(const Type & x, const PIMathVectorT<Size, Type> & v) {
|
|
return v * x;
|
|
}
|
|
|
|
template<uint Size, typename Type>
|
|
inline PICout operator <<(PICout s, const PIMathVectorT<Size, Type> & v) {s << "{"; PIMV_FOR {s << v[i]; if (i < Size - 1) s << ", ";} s << "}"; return s;}
|
|
|
|
|
|
typedef PIMathVectorT<2u, int> PIMathVectorT2i;
|
|
typedef PIMathVectorT<3u, int> PIMathVectorT3i;
|
|
typedef PIMathVectorT<4u, int> PIMathVectorT4i;
|
|
typedef PIMathVectorT<2u, double> PIMathVectorT2d;
|
|
typedef PIMathVectorT<3u, double> PIMathVectorT3d;
|
|
typedef PIMathVectorT<4u, double> PIMathVectorT4d;
|
|
|
|
|
|
#undef PIMV_FOR
|
|
|
|
/// Vector
|
|
|
|
#define PIMV_FOR for (uint i = 0; i < c.size(); ++i)
|
|
|
|
template<typename Type>
|
|
class PIP_EXPORT PIMathVector {
|
|
typedef PIMathVector<Type> _CVector;
|
|
template <typename P, typename Type1>
|
|
friend PIBinaryStream<P> & operator <<(PIBinaryStream<P> & s, const PIMathVector<Type1> & v);
|
|
template <typename P, typename Type1>
|
|
friend PIBinaryStream<P> & operator >>(PIBinaryStream<P> & s, PIMathVector<Type1> & v);
|
|
public:
|
|
PIMathVector(const uint size = 0, const Type & new_value = Type()) {c.resize(size, new_value);}
|
|
PIMathVector(const PIVector<Type> & val) {c = val;}
|
|
PIMathVector(PIVector<Type> && val) : c(std::move(val)) {}
|
|
PIMathVector(std::initializer_list<Type> init_list) {c = PIVector<Type>(init_list);}
|
|
|
|
template<uint Size>
|
|
PIMathVector(const PIMathVectorT<Size, Type> & val) {c.resize(Size); PIMV_FOR c[i] = val[i];}
|
|
|
|
static PIMathVector fromTwoPoints(const _CVector & st, const _CVector & fn) {
|
|
assert(st.size() == fn.size());
|
|
_CVector v(st.size());
|
|
for (uint i = 0; i < v.size(); ++i) v.c[i] = fn[i] - st[i];
|
|
}
|
|
|
|
static PIMathVector zeros(const uint size) {return PIMathVector(size, Type());}
|
|
static PIMathVector ones(const uint size) {return PIMathVector(size, Type(1));}
|
|
static PIMathVector arange(const Type start, const Type stop, const Type step = Type(1)) {
|
|
PIVector<Type> v;
|
|
for (Type i = start; i < stop; i+= step) v << i;
|
|
return PIMathVector(std::move(v));
|
|
}
|
|
|
|
uint size() const {return c.size();}
|
|
_CVector & resize(uint size, const Type & new_value = Type()) {
|
|
c.resize(size, new_value);
|
|
return *this;
|
|
}
|
|
_CVector resized(uint size, const Type & new_value = Type()) {
|
|
_CVector tv = _CVector(*this);
|
|
tv.resize(size, new_value);
|
|
return tv;
|
|
}
|
|
_CVector & fill(const Type & v) {
|
|
c.fill(v);
|
|
return *this;
|
|
}
|
|
_CVector & move(const Type & v) {
|
|
PIMV_FOR c[i] += v;
|
|
return *this;
|
|
}
|
|
_CVector & move(const _CVector & v) {
|
|
assert(c.size() == v.size());
|
|
PIMV_FOR c[i] += v[i];
|
|
return *this;
|
|
}
|
|
_CVector & swapElements(uint f, uint s) {
|
|
piSwap<Type>(c[f], c[s]);
|
|
return *this;
|
|
}
|
|
Type lengthSqr() const {
|
|
Type tv(0);
|
|
PIMV_FOR tv += c[i] * c[i];
|
|
return tv;
|
|
}
|
|
Type length() const {return std::sqrt(lengthSqr());}
|
|
Type manhattanLength() const {
|
|
Type tv(0);
|
|
PIMV_FOR tv += piAbs<Type>(c[i]);
|
|
return tv;
|
|
}
|
|
Type angleCos(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
Type tv = v.length() * length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
return dot(v) / tv;
|
|
}
|
|
Type angleSin(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
Type tv = angleCos(v);
|
|
return std::sqrt(Type(1) - tv * tv);
|
|
}
|
|
Type angleRad(const _CVector & v) const {return std::acos(angleCos(v));}
|
|
Type angleDeg(const _CVector & v) const {return toDeg(angleRad(v));}
|
|
_CVector projection(const _CVector & v) {
|
|
assert(c.size() == v.size());
|
|
Type tv = v.length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
return v * (dot(v) / tv);
|
|
}
|
|
_CVector & normalize() {
|
|
Type tv = length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
if (tv == Type(1)) return *this;
|
|
PIMV_FOR c[i] /= tv;
|
|
return *this;
|
|
}
|
|
_CVector normalized() {
|
|
_CVector tv(*this);
|
|
tv.normalize();
|
|
return tv;
|
|
}
|
|
bool isNull() const {
|
|
PIMV_FOR if (c[i] != Type(0)) return false;
|
|
return true;
|
|
}
|
|
bool isValid() const {return !c.isEmpty();}
|
|
bool isOrtho(const _CVector & v) const {return dot(v) == Type(0);}
|
|
|
|
Type & operator [](uint index) {return c[index];}
|
|
const Type & operator [](uint index) const {return c[index];}
|
|
Type at(uint index) const {return c[index];}
|
|
|
|
_CVector & operator =(const Type & v) {PIMV_FOR c[i] = v; return *this;}
|
|
|
|
bool operator ==(const _CVector & v) const {return c == v.c;}
|
|
bool operator !=(const _CVector & v) const {return c != v.c;}
|
|
|
|
void operator +=(const _CVector & v) {
|
|
assert(c.size() == v.size());
|
|
PIMV_FOR c[i] += v[i];
|
|
}
|
|
void operator -=(const _CVector & v) {
|
|
assert(c.size() == v.size());
|
|
PIMV_FOR c[i] -= v[i];
|
|
}
|
|
void operator *=(const Type & v) {PIMV_FOR c[i] *= v;}
|
|
void operator /=(const Type & v) {
|
|
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
|
|
PIMV_FOR c[i] /= v;
|
|
}
|
|
_CVector operator -() const {
|
|
_CVector tv(c.size());
|
|
PIMV_FOR tv[i] = -c[i];
|
|
return tv;
|
|
}
|
|
_CVector operator +(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] += v[i];
|
|
return tv;
|
|
}
|
|
_CVector operator -(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] -= v[i];
|
|
return tv;
|
|
}
|
|
_CVector operator *(const Type & v) const {
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] *= v;
|
|
return tv;
|
|
}
|
|
_CVector operator /(const Type & v) const {
|
|
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] /= v;
|
|
return tv;
|
|
}
|
|
_CVector cross(const _CVector & v) const {
|
|
assert(c.size() == 3);
|
|
assert(v.size() == 3);
|
|
_CVector tv(3);
|
|
tv[0] = c[1]*v[2] - v[1]*c[2];
|
|
tv[1] = c[2]*v[0] - v[2]*c[0];
|
|
tv[2] = c[0]*v[1] - v[0]*c[1];
|
|
return tv;
|
|
}
|
|
Type dot(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
Type tv(0);
|
|
PIMV_FOR tv += c[i] * v[i];
|
|
return tv;
|
|
}
|
|
_CVector mul(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
_CVector tv(*this);
|
|
PIMV_FOR tv[i] *= v[i];
|
|
return tv;
|
|
}
|
|
_CVector mul(const Type & v) const {
|
|
return (*this) * v;
|
|
}
|
|
_CVector div(const _CVector & v) const {
|
|
assert(c.size() == v.size());
|
|
_CVector tv(*this);
|
|
PIMV_FOR {
|
|
assert(piAbs<Type>(v[i]) > PIMATHVECTOR_ZERO_CMP);
|
|
tv[i] /= v[i];
|
|
}
|
|
return tv;
|
|
}
|
|
_CVector div(const Type & v) const {
|
|
return (*this) / v;
|
|
}
|
|
|
|
Type distToLine(const _CVector & lp0, const _CVector & lp1) {
|
|
assert(c.size() == lp0.size());
|
|
assert(c.size() == lp1.size());
|
|
_CVector a = _CVector::fromTwoPoints(lp0, lp1);
|
|
Type tv = a.length();
|
|
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
|
|
_CVector b = _CVector::fromTwoPoints(lp0, *this);
|
|
return piAbs<Type>(a[0]*b[1] - a[1]*b[0]) / tv;
|
|
}
|
|
|
|
PIVector<Type> toVector() const {return c;}
|
|
|
|
void forEach(std::function<void(const Type &)> f) const {
|
|
c.forEach(f);
|
|
}
|
|
_CVector & forEach(std::function<void(Type &)> f) {
|
|
c.forEach(f);
|
|
return *this;
|
|
}
|
|
|
|
inline Type * data() {return c.data();}
|
|
inline const Type * data() const {return c.data();}
|
|
|
|
|
|
static _CVector cross(const _CVector & v1, const _CVector & v2) {
|
|
return v1.cross(v2);
|
|
}
|
|
static _CVector dot(const _CVector & v1, const _CVector & v2) {
|
|
return v1.dot(v2);
|
|
}
|
|
static _CVector mul(const _CVector & v1, const _CVector & v2) {
|
|
return v1.mul(v2);
|
|
}
|
|
static _CVector mul(const Type & v1, const _CVector & v2) {
|
|
return v2 * v1;
|
|
}
|
|
static _CVector mul(const _CVector & v1, const Type & v2) {
|
|
return v1 * v2;
|
|
}
|
|
static _CVector div(const _CVector & v1, const _CVector & v2) {
|
|
return v1.div(v2);
|
|
}
|
|
static _CVector div(const _CVector & v1, const Type & v2) {
|
|
return v1 / v2;
|
|
}
|
|
private:
|
|
PIVector<Type> c;
|
|
};
|
|
|
|
template<typename Type>
|
|
inline PIMathVector<Type> operator *(const Type & x, const PIMathVector<Type> & v) {
|
|
return v * x;
|
|
}
|
|
|
|
#undef PIMV_FOR
|
|
|
|
#ifdef PIP_STD_IOSTREAM
|
|
template<typename Type>
|
|
inline std::ostream & operator <<(std::ostream & s, const PIMathVector<Type> & v) {s << "{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;}
|
|
#endif
|
|
|
|
template<typename Type>
|
|
inline PICout operator <<(PICout s, const PIMathVector<Type> & v) {s << "Vector{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;}
|
|
|
|
template <typename P, typename T>
|
|
inline PIBinaryStream<P> & operator <<(PIBinaryStream<P> & s, const PIMathVector<T> & v) {s << v.c; return s;}
|
|
template <typename P, typename T>
|
|
inline PIBinaryStream<P> & operator >>(PIBinaryStream<P> & s, PIMathVector<T> & v) {s >> v.c; return s;}
|
|
|
|
|
|
typedef PIMathVector<int> PIMathVectori;
|
|
typedef PIMathVector<double> PIMathVectord;
|
|
|
|
#endif // PIMATHVECTOR_H
|