Files
pip/tests/concurrent/BlockingDequeueUnitTest.cpp
Stepan Fomenko 9e5a5970a3 Improved PIBlockingDeque constructors
- resolve creation from constant (see test construct_from_constant_is_max_size_eq_capacity)
- add tests for constructors
2020-08-11 12:30:28 +03:00

511 lines
16 KiB
C++

#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "testutil.h"
#include "piblockingdequeue.h"
using ::testing::_;
using ::testing::Return;
using ::testing::Eq;
using ::testing::Ne;
using ::testing::Matcher;
using ::testing::Expectation;
using ::testing::Sequence;
using ::testing::NiceMock;
class MockConditionVar {
public:
bool isWaitCalled = false;
bool isWaitForCalled = false;
bool isTrueCondition = false;
int timeout = -1;
MOCK_METHOD1(wait, void(PIMutex&));
MOCK_METHOD2(wait, void(PIMutex&, const std::function<bool()>&));
MOCK_METHOD2(waitFor, bool(PIMutex&, int));
MOCK_METHOD3(waitFor, bool(PIMutex&, int, const std::function<bool()>&));
MOCK_METHOD0(notifyOne, void());
};
struct QueueElement {
bool is_empty;
int value;
int copy_count;
QueueElement(): is_empty(true), value(0), copy_count(0) { }
explicit QueueElement(int value): is_empty(false), value(value), copy_count(0) { }
QueueElement(const QueueElement& other) {
this->is_empty = other.is_empty;
this->value = other.value;
this->copy_count = 0;
const_cast<int&>(other.copy_count)++;
}
QueueElement(QueueElement&& other) noexcept : QueueElement() {
std::swap(is_empty, other.is_empty);
std::swap(value, other.value);
std::swap(copy_count, other.copy_count);
}
bool operator==(const QueueElement &rhs) const {
return is_empty == rhs.is_empty &&
value == rhs.value;
}
bool operator!=(const QueueElement &rhs) const {
return !(rhs == *this);
}
friend std::ostream& operator<<(std::ostream& os, const QueueElement& el) {
return os << "{ is_empty:" << el.is_empty << ", value:" << el.value << ", copy_count:" << el.copy_count << " }";
}
};
template<typename T>
class MockDequeBase {
public:
MOCK_METHOD1_T(push_back_rval, void(T));
MOCK_METHOD1_T(push_back, void(const T&));
MOCK_METHOD0(size, size_t());
MOCK_METHOD0_T(front, T());
MOCK_METHOD0(pop_front, void());
void push_back(T&& t) {
push_back_rval(t);
}
};
template<typename T>
class MockDeque: public NiceMock<MockDequeBase<T>> {};
class PIBlockingDequeuePrepare: public PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> {
public:
typedef PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> SuperClass;
explicit PIBlockingDequeuePrepare(size_t capacity = SIZE_MAX): SuperClass(capacity) { }
template<typename Iterable,
typename std::enable_if<!std::is_arithmetic<Iterable>::value, int>::type = 0>
explicit PIBlockingDequeuePrepare(const Iterable& other): SuperClass(other) { }
MockConditionVar* getCondVarAdd() { return this->cond_var_add; }
MockConditionVar* getCondVarRem() { return this->cond_var_rem; }
MockDeque<QueueElement>& getQueue() { return this->data_queue; }
size_t getMaxSize() { return max_size; }
};
class BlockingDequeueUnitTest: public ::testing::Test {
public:
int timeout = 100;
size_t capacity;
PIBlockingDequeuePrepare dequeue;
QueueElement element;
BlockingDequeueUnitTest(): capacity(1), dequeue(capacity), element(11) {}
void offer2_is_wait_predicate(bool isCapacityReach);
void put_is_wait_predicate(bool isCapacityReach);
void take_is_wait_predicate(bool isEmpty);
};
TEST_F(BlockingDequeueUnitTest, construct_default_is_max_size_eq_size_max) {
PIBlockingDequeuePrepare dequeue;
ASSERT_EQ(dequeue.getMaxSize(), SIZE_MAX);
}
TEST_F(BlockingDequeueUnitTest, construct_from_constant_is_max_size_eq_capacity) {
PIBlockingDequeuePrepare dequeue(2);
ASSERT_EQ(dequeue.getMaxSize(), 2);
}
TEST_F(BlockingDequeueUnitTest, construct_from_capacity_is_max_size_eq_capacity) {
ASSERT_EQ(dequeue.getMaxSize(), capacity);
}
TEST_F(BlockingDequeueUnitTest, construct_from_iterable) {
std::vector<QueueElement> iterable;
iterable.emplace_back(11);
iterable.emplace_back(22);
PIBlockingDequeuePrepare dequeue(iterable);
}
void BlockingDequeueUnitTest::put_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), wait(_, _))
.WillOnce([&](PIMutex& m, const std::function<bool()>& predicate){ conditionVarPredicate = predicate; });
dequeue.put(element);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_true) {
put_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_false_when_capacity_reach) {
put_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_copy) {
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.put(element);
}
TEST_F(BlockingDequeueUnitTest, put_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.put(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, put_is_notify_about_insert) {
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.WillOnce(Return());
dequeue.put(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_copy) {
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_insert_when_capacity_reach) {
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_true_when_insert) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
ASSERT_TRUE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_false_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
ASSERT_FALSE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_notify_about_insert) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.WillOnce(Return());
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_notify_about_insert_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.Times(0);
dequeue.offer(element);
}
void BlockingDequeueUnitTest::offer2_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce([&](PIMutex& m, int timeout, const std::function<bool()>& predicate) {
conditionVarPredicate = predicate;
return isCapacityReach;
});
dequeue.offer(element, timeout);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_true) {
offer2_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_false_when_capacity_reach) {
offer2_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_copy) {
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.offer(std::move(copyElement), timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_insert_when_timeout) {
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce(Return(false));
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_true_when_insert) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(true));
ASSERT_TRUE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_false_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(false));
ASSERT_FALSE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_notify_about_insert) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_notify_about_insert_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(false));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.Times(0);
dequeue.offer(element, timeout);
}
void BlockingDequeueUnitTest::take_is_wait_predicate(bool isEmpty) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarAdd(), wait(_, _))
.WillOnce([&](PIMutex& m, const std::function<bool()>& predicate) { conditionVarPredicate = predicate; });
dequeue.take();
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isEmpty ? 0 : 1));
ASSERT_EQ(conditionVarPredicate(), !isEmpty);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_true) {
take_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_false_when_queue_empty) {
take_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, take_is_get_and_remove) {
Expectation front = EXPECT_CALL(dequeue.getQueue(), front())
.WillOnce(Return(element));
EXPECT_CALL(dequeue.getQueue(), pop_front())
.After(front)
.WillOnce(Return());
QueueElement takenElement = dequeue.take();
ASSERT_EQ(element, takenElement);
}
TEST_F(BlockingDequeueUnitTest, take_is_notify_about_remove) {
EXPECT_CALL(*dequeue.getCondVarRem(), notifyOne)
.WillOnce(Return());
dequeue.take();
}
/*
// TODO change take_is_block_when_empty to prevent segfault
TEST(DISABLED_BlockingDequeueUnitTest, take_is_block_when_empty) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
// May cause segfault because take front of empty queue
dequeue.take();
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, take_is_not_block_when_not_empty) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.take();
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitCalled);
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, take_is_value_eq_to_offer_value) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.take(), 111);
}
TEST(BlockingDequeueUnitTest, take_is_last) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
EXPECT_TRUE(dequeue.offer(111));
EXPECT_TRUE(dequeue.offer(222));
ASSERT_EQ(dequeue.take(), 111);
ASSERT_EQ(dequeue.take(), 222);
}
TEST(BlockingDequeueUnitTest, poll_is_not_block_when_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.poll(111, &isOk);
EXPECT_FALSE(dequeue.getCondVarAdd()->isWaitForCalled);
}
TEST(BlockingDequeueUnitTest, poll_is_default_value_when_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.poll(111, &isOk), 111);
}
TEST(BlockingDequeueUnitTest, poll_is_offer_value_when_not_empty) {
size_t capacity = 1;
bool isOk;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.poll(-1, &isOk), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_block_when_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.poll(timeout, 111);
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
EXPECT_EQ(timeout, dequeue.getCondVarAdd()->timeout);
ASSERT_FALSE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_default_value_when_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.poll(timeout, 111), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_not_block_when_not_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.poll(timeout, -1);
EXPECT_TRUE(dequeue.getCondVarAdd()->isWaitForCalled);
ASSERT_TRUE(dequeue.getCondVarAdd()->isTrueCondition);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_offer_value_when_not_empty) {
size_t capacity = 1;
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.poll(timeout, -1), 111);
}
TEST(BlockingDequeueUnitTest, poll_timeouted_is_last) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(222);
ASSERT_EQ(dequeue.poll(10, -1), 111);
ASSERT_EQ(dequeue.poll(10, -1), 222);
}
TEST(BlockingDequeueUnitTest, capacity_is_eq_constructor_capacity) {
size_t capacity = 10;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.capacity(), capacity);
}
TEST(BlockingDequeueUnitTest, remainingCapacity_is_dif_of_capacity_and_size) {
size_t capacity = 2;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.remainingCapacity(), capacity);
dequeue.offer(111);
ASSERT_EQ(dequeue.remainingCapacity(), capacity - 1);
}
TEST(BlockingDequeueUnitTest, remainingCapacity_is_zero_when_capacity_reach) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(111);
ASSERT_EQ(dequeue.remainingCapacity(), 0);
}
TEST(BlockingDequeueUnitTest, size_is_eq_to_num_of_elements) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_EQ(dequeue.size(), 0);
dequeue.offer(111);
ASSERT_EQ(dequeue.size(), 1);
}
TEST(BlockingDequeueUnitTest, size_is_eq_to_capacity_when_capacity_reach) {
size_t capacity = 1;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(111);
dequeue.offer(111);
ASSERT_EQ(dequeue.size(), capacity);
}
TEST(BlockingDequeueUnitTest, drainTo_is_elements_moved) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
blockingDequeue.drainTo(deque);
ASSERT_EQ(blockingDequeue.size(), 0);
// FIXME
// ASSERT_TRUE(deque == refDeque);
}
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_size_when_all_moved) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque), refDeque.size());
}
TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_maxCount) {
size_t capacity = 10;
std::deque<int> refDeque;
for (size_t i = 0; i < capacity / 2; ++i) refDeque.push_back(i * 10);
PIBlockingDequeuePrepare<int> blockingDequeue(refDeque);
PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque, refDeque.size() - 1), refDeque.size() - 1);
}
*/