Files
pip/picontainers.h

754 lines
36 KiB
C++

/*! \file picontainers.h
* \brief Generic containers based on STL
*
* This file declare all containers and useful macroses
* to use them
*/
/*
PIP - Platform Independent Primitives
Generic containers based on STL
Copyright (C) 2013 Ivan Pelipenko peri4ko@gmail.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PICONTAINERS_H
#define PICONTAINERS_H
#include "piincludes.h"
#ifdef DOXYGEN
/*! \def piForeach(i,c)
* \brief Macro for iterate any container
* \details Use this macros instead of standard "for"
* to get read/write access to each element of container.
* Pass direction is direct \n
* Example: \snippet picontainers.cpp foreach
*/
/*! \def piForeachC(i,c)
* \brief Macro for iterate any container only for read
* \details Use this macros instead of standard "for"
* to get read access to each element of container.
* Pass direction is direct \n
* Example: \snippet picontainers.cpp foreachC
*/
/*! \def piForeachR(i,c)
* \brief Macro for iterate any container with reverse direction
* \details Use this macros instead of standard "for"
* to get read/write access to each element of container.
* Pass direction is reverse \n
* Example: \snippet picontainers.cpp foreachR
*/
/*! \def piForeachCR(i,c)
* \brief Macro for iterate any container only for read with reverse direction
* \details Use this macros instead of standard "for"
* to get read access to each element of container.
* Pass direction is reverse \n
* Example: \snippet picontainers.cpp foreachCR
*/
#endif
#ifdef CC_GCC
template<typename Type>
class _PIForeachC {
public:
_PIForeachC(const Type & t, bool i = false): _t(t), _inv(i) {if (_inv) _rit = _t.rbegin(); else _it = _t.begin(); _break = false;}
typename Type::value_type _var;
typename Type::const_iterator _it;
typename Type::const_reverse_iterator _rit;
const Type & _t;
bool _break, _inv;
inline bool isEnd() {if (_inv) return _rit == _t.rend(); else return _it == _t.end();}
inline void operator ++() {if (_inv) _rit++; else _it++; _break = false;}
};
template<typename Type>
class _PIForeach {
public:
_PIForeach(Type & t, bool i = false): _t(t), _inv(i) {if (_inv) _rit = _t.rbegin(); else _it = _t.begin(); _break = false;}
typename Type::value_type _var;
typename Type::iterator _it;
typename Type::reverse_iterator _rit;
Type & _t;
bool _break, _inv;
inline bool isEnd() {if (_inv) return _rit == _t.rend(); else return _it == _t.end();}
inline void operator ++() {if (_inv) _rit++; else _it++; _break = false;}
};
#define piForeach(i,c) for(_PIForeach<typeof(c)> _for(c); !_for.isEnd(); ++_for) \
for(i = *_for._it; !_for._break; _for._break = true)
#define piForeachR(i,c) for(_PIForeach<typeof(c)> _for(c, true); !_for.isEnd(); ++_for) \
for(i = *_for._rit; !_for._break; _for._break = true)
#define piForeachA(i,c) for(_PIForeach<typeof(c)> _for(c); !_for.isEnd(); ++_for) \
for(typeof(_for._var) & i(*_for._it); !_for._break; _for._break = true)
#define piForeachAR(i,c) for(_PIForeach<typeof(c)> _for(c, true); !_for.isEnd(); ++_for) \
for(typeof(_for._var) & i(*_for._rit); !_for._break; _for._break = true)
#define piForeachC(i,c) for(_PIForeachC<typeof(c)> _for(c); !_for.isEnd(); ++_for) \
for(const i = *_for._it; !_for._break; _for._break = true)
#define piForeachCR(i,c) for(_PIForeachC<typeof(c)> _for(c, true); !_for.isEnd(); ++_for) \
for(const i = *_for._rit; !_for._break; _for._break = true)
#define piForeachCA(i,c) for(_PIForeachC<typeof(c)> _for(c); !_for.isEnd(); ++_for) \
for(const typeof(_for._var) & i(*_for._it); !_for._break; _for._break = true)
#define piForeachCAR(i,c) for(_PIForeachC<typeof(c)> _for(c, true); !_for.isEnd(); ++_for) \
for(const typeof(_for._var) & i(*_for._rit); !_for._break; _for._break = true)
#define piForeachRA piForeachAR
#define piForeachAC piForeachCA
#define piForeachCRA piForeachCAR
#define piForeachARC piForeachCAR
#define piForeachACR piForeachCAR
#define piForeachRCA piForeachCAR
#define piForeachRAC piForeachCAR
#else
struct _PIForeachBase {mutable bool _break;};
template<typename Type>
class _PIForeach: public _PIForeachBase {
public:
_PIForeach(Type & t, bool i = false): _t(t), _inv(i) {if (_inv) _rit = _t.rbegin(); else _it = _t.begin(); _break = false;}
mutable typename Type::value_type _var;
mutable typename Type::iterator _it;
mutable typename Type::reverse_iterator _rit;
Type & _t;
bool _inv;
bool isEnd() {if (_inv) return _rit == _t.rend(); else return _it == _t.end();}
void operator ++() {if (_inv) _rit++; else _it++; _break = false;}
};
template<typename Type>
class _PIForeachC: public _PIForeachBase {
public:
_PIForeachC(const Type & t, bool i = false): _t(t), _inv(i) {if (_inv) _rit = _t.rbegin(); else _it = _t.begin(); _break = false;}
mutable typename Type::value_type _var;
mutable typename Type::const_iterator _it;
mutable typename Type::const_reverse_iterator _rit;
const Type & _t;
bool _inv;
bool isEnd() {if (_inv) return _rit == _t.rend(); else return _it == _t.end();}
void operator ++() {if (_inv) _rit++; else _it++; _break = false;}
};
template <typename T> inline _PIForeach<T> _PIForeachNew(T & t, bool i = false) {return _PIForeach<T>(t, i);}
template <typename T> inline _PIForeach<T> * _PIForeachCast(_PIForeachBase & c, T & ) {return static_cast<_PIForeach<T> * >(&c);}
template <typename T> inline _PIForeachC<T> _PIForeachNewC(const T & t, bool i = false) {return _PIForeachC<T>(t, i);}
template <typename T> inline _PIForeachC<T> * _PIForeachCastC(_PIForeachBase & c, const T & ) {return static_cast<_PIForeachC<T> * >(&c);}
#define piForeach(i,c) for(_PIForeachBase & _for = _PIForeachNew(c); !_PIForeachCast(_for, c)->isEnd(); ++(*_PIForeachCast(_for, c))) \
for(i = *(_PIForeachCast(_for, c)->_it); !_for._break; _for._break = true)
#define piForeachR(i,c) for(_PIForeachBase & _for = _PIForeachNew(c, true); !_PIForeachCast(_for, c)->isEnd(); ++(*_PIForeachCast(_for, c))) \
for(i = *(_PIForeachCast(_for, c)->_rit); !_for._break; _for._break = true)
#define piForeachC(i,c) for(_PIForeachBase & _for = _PIForeachNewC(c); !_PIForeachCastC(_for, c)->isEnd(); ++(*_PIForeachCastC(_for, c))) \
for(const i = *(_PIForeachCastC(_for, c)->_it); !_for._break; _for._break = true)
#define piForeachCR(i,c) for(_PIForeachBase & _for = _PIForeachNewC(c, false); !_PIForeachCastC(_for, c)->isEnd(); ++(*_PIForeachCastC(_for, c))) \
for(const i = *(_PIForeachCastC(_for, c)->_rit); !_for._break; _for._break = true)
#endif
#define piForeachRC piForeachCR
#define piForTimes(c) for(int _i##c = 0; _i##c < c; ++_i##c)
/*
template <typename T>
class PIVector {
public:
PIVector(uint size = 0, const T & f = T()): data_(0), size_(0), rsize_(0) {resize(size, f);}
PIVector(T * d, uint size): data_(0), size_(0), rsize_(0) {alloc(size); for (uint i = 0; i < size; ++i) data_[i] = d[i];}
~PIVector() {dealloc();}
typedef T value_type;
class iterator {
friend class PIVector<T>;
private:
iterator(PIVector<T> * v, int p): parent(v), pos(p) {}
PIVector<T> * parent;
int pos;
public:
iterator(): parent(0) {}
T & operator *() {return (*parent)[pos];}
const T & operator *() const {return (*parent)[pos];}
void operator ++() {++pos;}
void operator ++(int) {++pos;}
void operator --() {--pos;}
void operator --(int) {--pos;}
bool operator ==(const iterator & it) const {return (pos == it.pos);}
bool operator !=(const iterator & it) const {return (pos != it.pos);}
};
class const_iterator {
friend class PIVector<T>;
private:
const_iterator(const PIVector<T> * v, int p): parent(v), pos(p) {}
const PIVector<T> * parent;
int pos;
public:
const_iterator(): parent(0) {}
//T & operator *() {return (*parent)[pos];}
const T & operator *() const {return (*parent)[pos];}
void operator ++() {++pos;}
void operator ++(int) {++pos;}
void operator --() {--pos;}
void operator --(int) {--pos;}
bool operator ==(const const_iterator & it) const {return (pos == it.pos);}
bool operator !=(const const_iterator & it) const {return (pos != it.pos);}
};
class reverse_iterator {
friend class PIVector<T>;
private:
reverse_iterator(PIVector<T> * v, int p): parent(v), pos(p) {}
PIVector<T> * parent;
int pos;
public:
reverse_iterator(): parent(0) {}
T & operator *() {return (*parent)[pos];}
const T & operator *() const {return (*parent)[pos];}
void operator ++() {--pos;}
void operator ++(int) {--pos;}
void operator --() {++pos;}
void operator --(int) {++pos;}
bool operator ==(const reverse_iterator & it) const {return (pos == it.pos);}
bool operator !=(const reverse_iterator & it) const {return (pos != it.pos);}
};
class const_reverse_iterator {
friend class PIVector<T>;
private:
const_reverse_iterator(const PIVector<T> * v, int p): parent(v), pos(p) {}
const PIVector<T> * parent;
int pos;
public:
const_reverse_iterator(): parent(0) {}
//T & operator *() {return (*parent)[pos];}
const T & operator *() const {return (*parent)[pos];}
void operator ++() {--pos;}
void operator ++(int) {--pos;}
void operator --() {++pos;}
void operator --(int) {++pos;}
bool operator ==(const const_reverse_iterator & it) const {return (pos == it.pos);}
bool operator !=(const const_reverse_iterator & it) const {return (pos != it.pos);}
};
iterator begin() {return iterator(this, 0);}
iterator end() {return iterator(this, size_);}
const_iterator begin() const {return const_iterator(this, 0);}
const_iterator end() const {return const_iterator(this, size_);}
reverse_iterator rbegin() {return reverse_iterator(this, size_ - 1);}
reverse_iterator rend() {return reverse_iterator(this, -1);}
const_reverse_iterator rbegin() const {return const_reverse_iterator(this, size_ - 1);}
const_reverse_iterator rend() const {return const_reverse_iterator(this, -1);}
uint size() const {return size_;}
int size_s() const {return size_;}
int length() const {return size_;}
bool isEmpty() const {return (size_ == 0);}
T & operator [](int index) {return data_[index];}
T & at(uint index) {return data_[index];}
const T & operator [](int index) const {return data_[index];}
const T & at(uint index) const {return data_[index];}
T & back() {return data_[size_ - 1];}
const T & back() const {return data_[size_ - 1];}
T & front() {return data_[0];}
const T & front() const {return data_[0];}
bool operator ==(const PIVector<T> & t) const {if (size_ != t.size_) return false; for (uint i = 0; i < size_; ++i) if (t[i] != data_[i]) return false; return true;}
bool operator !=(const PIVector<T> & t) const {if (size_ != t.size_) return true; for (uint i = 0; i < size_; ++i) if (t[i] != data_[i]) return true; return false;}
bool contains(const T & v) const {for (uint i = 0; i < size_; ++i) if (v == data_[i]) return true; return false;}
T * data(int index = 0) {return &(data_[index]);}
const T * data(int index = 0) const {return &(data_[index]);}
PIVector<T> & clear() {resize(0); return *this;}
PIVector<T> & fill(const T & f = T()) {
if (sizeof(T) == 1) memset(data_, f, size_);
else for (uint i = 0; i < size_; ++i) memcpy(&(data_[i]), &f, sizeof(T));
return *this;
}
PIVector<T> & assign(const T & f = T()) {return fill(f);}
PIVector<T> & resize(uint new_size, const T & f = T()) {
if (new_size < size_) {
size_ = new_size;
return *this;
}
if (new_size > size_) {
os = size_;
alloc(new_size);
uint ds = size_ - os;
//if (sizeof(T) == 1) memset(&(data_[os]), f, ds);
for (uint i = 0; i < ds; ++i) data_[os + i] = f;
return *this;
}
return *this;
}
PIVector<T> & insert(int index, const T & v = T()) {
push_back(v);
if (index >= int(size_ - 1)) return *this;
os = size_ - index;
T * pd = new T[os * sizeof(T)];
memcpy(pd, &(data_[index]), os * sizeof(T));
memcpy(&(data_[index + 1]), pd, os * sizeof(T));
delete[] pd;
data_[index] = v;
return *this;
}
PIVector<T> & remove(int index, int count = 1) {
if (index + count >= int(size_)) {
resize(index);
return *this;
}
os = size_ - index - count;
T * pd = new T[os * sizeof(T)];
memcpy(pd, &(data_[index + count]), os * sizeof(T));
memcpy(&(data_[index]), pd, os * sizeof(T));
delete[] pd;
resize(size_ - count);
return *this;
}
typedef int (*CompareFunc)(const T * , const T * );
static int compare_func(const T * t0, const T * t1) {return (*t0) == (*t1) ? 0 : ((*t0) < (*t1) ? -1 : 1);}
PIVector<T> & sort(CompareFunc compare = compare_func) {qsort(data_, size_, sizeof(T), (int(*)(const void * , const void * ))compare); return *this;}
PIVector<T> & removeOne(const T & v) {for (uint i = 0; i < size_; ++i) if (data_[i] == v) {remove(i); return *this;} return *this;}
PIVector<T> & removeAll(const T & v) {for (uint i = 0; i < size_; ++i) if (data_[i] == v) {remove(i); --i;} return *this;}
PIVector<T> & push_back(const T & v) {alloc(size_ + 1); data_[size_ - 1] = v; return *this;}
PIVector<T> & append(const T & v) {return push_back(v);}
PIVector<T> & operator <<(const T & v) {return push_back(v);}
PIVector<T> & push_front(const T & v) {insert(0, v); return *this;}
PIVector<T> & prepend(const T & v) {return push_front(v);}
//PIVector<T> & operator <<(const T & v) {return push_back(v);}
PIVector<T> & pop_back() {if (size_ == 0) return *this; resize(size_ - 1); return *this;}
PIVector<T> & pop_front() {if (size_ == 0) return *this; remove(0); return *this;}
private:
uint asize(uint s) {if (s == 0) return 0; if (rsize_ + rsize_ >= s && rsize_ < s) return rsize_ + rsize_; uint t = 0, s_ = s - 1; while (s_ >> t) ++t; return (1 << t);}
void dealloc() {if (data_ != 0) delete[] data_; data_ = 0;}
void alloc(uint new_size) {
if (new_size <= rsize_) {
size_ = new_size;
return;
}
os = size_;
size_ = new_size;
uint as = asize(new_size);
if (as == rsize_) return;
T * pd = 0;
if (os > 0) {
pd = new T[os * sizeof(T)];
memcpy(pd, data_, os * sizeof(T));
}
rsize_ = as;
dealloc();
data_ = new T[rsize_ * sizeof(T)];
if (os > 0) {
memcpy(data_, pd, size_ * sizeof(T));
delete[] pd;
}
}
T * data_;
uint size_, rsize_, os;
};
*/
/*! \brief Dynamic array for any type
* \details This class used to store dynamic array of any
* type of data. In memory data stored linear. You can insert
* item in any place of remove some items from any place.
* For quick add elements there is stream operator <<.
* This class based on std::vector, expanding his
* functionality.
*/
template<typename Type, typename Allocator = std::allocator<Type> >
class PIP_EXPORT PIVector: public vector<Type, Allocator> {
typedef PIVector<Type, Allocator> _CVector;
typedef vector<Type, Allocator> _stlc;
public:
//! Contructs an empty vector
PIVector() {piMonitor.containers++;}
//! Contructs vector with single element "value"
PIVector(const Type & value) {piMonitor.containers++; _stlc::push_back(value);}
//! Contructs vector with two elements "v0" and "v1"
PIVector(const Type & v0, const Type & v1) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1);}
//! Contructs vector with three elements "v0", "v1" and "v2"
PIVector(const Type & v0, const Type & v1, const Type & v2) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1); _stlc::push_back(v2);}
//! Contructs vector with four elements "v0", "v1", "v2" and "v3"
PIVector(const Type & v0, const Type & v1, const Type & v2, const Type & v3) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1); _stlc::push_back(v2); _stlc::push_back(v3);}
/*! \brief Contructs vector with size "size" filled elements "value"
* \details Example: \snippet picontainers.cpp PIVector::PIVector */
PIVector(uint size, const Type & value = Type()) {piMonitor.containers++; _stlc::resize(size, value);}
~PIVector() {piMonitor.containers--;}
/*! \brief Read-only access to element by index "index"
* \details Example: \snippet picontainers.cpp PIVector::at_c
* \sa \a operator[] */
const Type & at(uint index) const {return (*this)[index];}
/*! \brief Full access to element by index "index"
* \details Example: \snippet picontainers.cpp PIVector::at
* \sa \a operator[] */
Type & at(uint index) {return (*this)[index];}
/*! \brief Read-only pointer to element by index "index"
* \details Example: \snippet picontainers.cpp PIVector::data_c */
const Type * data(uint index = 0) const {return &(*this)[index];}
/*! \brief Pointer to element by index "index"
* \details Example: \snippet picontainers.cpp PIVector::data */
Type * data(uint index = 0) {return &(*this)[index];}
#ifdef DOXYGEN
//! Elements count
uint size() const;
#endif
//! Elements count
int size_s() const {return static_cast<int>(_stlc::size());}
//! Return \c "true" if vector is empty, i.e. size = 0
bool isEmpty() const {return _stlc::empty();}
//! Return \c "true" if vector has at least one element equal "t"
bool has(const Type & t) const {for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (t == *i) return true; return false;}
//! Return how many times element "t" appears in vector
int etries(const Type & t) const {int ec = 0; for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (t == *i) ++ec; return ec;}
typedef int (*CompareFunc)(const Type * , const Type * );
//! Standard compare function for type "Type". Return 0 if t0 = t1, -1 if t0 < t1 and 1 if t0 > t1.
static int compare_func(const Type * t0, const Type * t1) {return (*t0) == (*t1) ? 0 : ((*t0) < (*t1) ? -1 : 1);}
#ifdef DOXYGEN
/*! \brief Resize vector to size "size"
* \details Elements removed from end of vector if new size < old size, or added new elements = "new_type" if new size > old size.\n
* Example: \snippet picontainers.cpp PIVector::resize
* \sa \a size(), \a clear() */
void resize(uint size, const Type & new_type = Type());
//! Increase vector size with "size" elements
PIVector<Type, Allocator> & enlarge(uint size);
//! Clear vector. Equivalent to call <tt>"resize(0)"</tt>
void clear();
/*! \brief Sort vector using quick sort algorithm and standard compare function
* \details Example: \snippet picontainers.cpp PIVector::sort_0
* With custom compare function: \snippet picontainers.cpp PIVector::sort_1 */
PIVector<Type, Allocator> & sort(CompareFunc compare = compare_func) {qsort(&at(0), _stlc::size(), sizeof(Type), (int(*)(const void * , const void * ))compare); return *this;}
/*! \brief Fill vector with elements "t" leave size is unchanged and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::fill */
PIVector<Type, Allocator> & fill(const Type & t) {_stlc::assign(_stlc::size(), t); return *this;}
//! Last element of vector
Type & back();
//! Last element of vector
const Type & back() const;
//! First element of vector
Type & front();
//! First element of vector
const Type & front() const;
//! Add new element "t" at the end of vector and return reference to vector
PIVector<Type, Allocator> & push_back(const Type & t);
//! Add new element "t" at the beginning of vector and return reference to vector
PIVector<Type, Allocator> & push_front(const Type & t) {_stlc::insert(_stlc::begin(), t); return *this;}
//! Remove one element from the end of vector and return reference to vector
PIVector<Type, Allocator> & pop_back();
//! Remove one element from the beginning of vector and return reference to vector
PIVector<Type, Allocator> & pop_front() {_stlc::erase(_stlc::begin()); return *this;}
//! Remove one element from the end of vector and return it
Type take_back() {Type t(_stlc::back()); _stlc::pop_back(); return t;}
//! Remove one element from the beginning of vector and return it
Type take_front() {Type t(_stlc::front()); pop_front(); return t;}
/*! \brief Remove one element by index "index" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::remove_0
* \sa \a removeOne(), \a removeAll() */
PIVector<Type, Allocator> & remove(uint index) {_stlc::erase(_stlc::begin() + index); return *this;}
/*! \brief Remove "count" elements by first index "index" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::remove_1
* \sa \a removeOne(), \a removeAll() */
PIVector<Type, Allocator> & remove(uint index, uint count) {_stlc::erase(_stlc::begin() + index, _stlc::begin() + index + count); return *this;}
/*! \brief Remove no more than one element equal "v" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::removeOne
* \sa \a remove(), \a removeAll() */
PIVector<Type, Allocator> & removeOne(const Type & v) {for (typename _stlc::iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (v == *i) {_stlc::erase(i); return *this;} return *this;}
/*! \brief Remove all elements equal "v" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::removeAll
* \sa \a remove(), \a removeOne() */ */
PIVector<Type, Allocator> & removeAll(const Type & v) {for (typename _stlc::iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (v == *i) {_stlc::erase(i); --i;} return *this;}
/*! \brief Insert element "t" after index "pos" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::insert_0 */
PIVector<Type, Allocator> & insert(uint pos, const Type & t) {_stlc::insert(_stlc::begin() + pos, t); return *this;}
/*! \brief Insert other vector "t" after index "pos" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::insert_1 */
PIVector<Type, Allocator> & insert(uint pos, const PIVector<Type, Allocator> & t) {_stlc::insert(_stlc::begin() + pos, t.begin(), t.end()); return *this;}
/*! \brief Full access to element by index "index"
* \details Example: \snippet picontainers.cpp PIVector::()
* \sa \a at() */
Type & operator [](uint index);
/*! \brief Read-only access to element by index "index"
* \details Example: \snippet picontainers.cpp PIVector::()_c
* \sa \a at() */
const Type & operator [](uint index) const;
//! Add new element "t" at the end of vector and return reference to vector
PIVector<Type, Allocator> & operator <<(const Type & t) {_stlc::push_back(t); return *this;}
//! Add vector "t" at the end of vector and return reference to vector
PIVector<Type, Allocator> & operator <<(const PIVector<Type, Allocator> & t) {for (typename _stlc::const_iterator i = t.begin(); i != t.end(); i++) _stlc::push_back(*i); return *this;}
//! Compare with vector "t"
bool operator ==(const PIVector<Type, Allocator> & t) {for (uint i = 0; i < _stlc::size(); ++i) if (t[i] != at(i)) return false; return true;}
//! Compare with vector "t"
bool operator !=(const PIVector<Type, Allocator> & t) {for (uint i = 0; i < _stlc::size(); ++i) if (t[i] != at(i)) return true; return false;}
bool contains(const Type & v) const {for (uint i = 0; i < _stlc::size(); ++i) if (v == at(i)) return true; return false;}
#else
_CVector & enlarge(uint size_) {int ns = size_s() + size_; if (ns <= 0) _stlc::clear(); else _stlc::resize(ns); return *this;}
_CVector & sort(CompareFunc compare = compare_func) {qsort(&at(0), _stlc::size(), sizeof(Type), (int(*)(const void * , const void * ))compare); return *this;}
_CVector & fill(const Type & t) {_stlc::assign(_stlc::size(), t); return *this;}
_CVector & pop_front() {_stlc::erase(_stlc::begin()); return *this;}
_CVector & push_front(const Type & t) {_stlc::insert(_stlc::begin(), t); return *this;}
Type take_front() {Type t(_stlc::front()); pop_front(); return t;}
Type take_back() {Type t(_stlc::back()); _stlc::pop_back(); return t;}
_CVector & remove(uint index) {_stlc::erase(_stlc::begin() + index); return *this;}
_CVector & remove(uint index, uint count) {_stlc::erase(_stlc::begin() + index, _stlc::begin() + index + count); return *this;}
_CVector & removeOne(const Type & v) {for (typename _stlc::iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (v == *i) {_stlc::erase(i); return *this;} return *this;}
_CVector & removeAll(const Type & v) {for (typename _stlc::iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (v == *i) {_stlc::erase(i); --i;} return *this;}
_CVector & insert(uint pos, const Type & t) {_stlc::insert(_stlc::begin() + pos, t); return *this;}
_CVector & insert(uint pos, const _CVector & t) {_stlc::insert(_stlc::begin() + pos, t.begin(), t.end()); return *this;}
_CVector & operator <<(const Type & t) {_stlc::push_back(t); return *this;}
_CVector & operator <<(const _CVector & t) {for (typename _stlc::const_iterator i = t.begin(); i != t.end(); i++) _stlc::push_back(*i); return *this;}
bool operator ==(const _CVector & t) {for (uint i = 0; i < _stlc::size(); ++i) if (t[i] != at(i)) return false; return true;}
bool operator !=(const _CVector & t) {for (uint i = 0; i < _stlc::size(); ++i) if (t[i] != at(i)) return true; return false;}
bool contains(const Type & v) const {for (uint i = 0; i < _stlc::size(); ++i) if (v == at(i)) return true; return false;}
#endif
};
/*! \brief Output operator for std::ostream
* \relates PIVector
* \details Example: \snippet picontainers.cpp PIVector::ostream<< */
template<typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIVector<Type> & v) {s << "{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;}
/*! \brief Output operator for PICout
* \relates PIVector
* \details Example: \snippet picontainers.cpp PIVector::PICout<< */
template<typename Type>
inline PICout operator <<(PICout s, const PIVector<Type> & v) {s.space(); s.setControl(0, true); s << "{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; s.restoreControl(); return s;}
template<typename Type, typename Allocator = std::allocator<Type> >
class PIP_EXPORT PIList: public list<Type, Allocator> {
typedef PIList<Type, Allocator> _CList;
typedef list<Type, Allocator> _stlc;
public:
PIList() {piMonitor.containers++;}
PIList(const Type & value) {piMonitor.containers++; _stlc::resize(1, value);}
PIList(const Type & v0, const Type & v1) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1);}
PIList(const Type & v0, const Type & v1, const Type & v2) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1); _stlc::push_back(v2);}
PIList(const Type & v0, const Type & v1, const Type & v2, const Type & v3) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1); _stlc::push_back(v2); _stlc::push_back(v3);}
PIList(uint size, const Type & value = Type()) {piMonitor.containers++; _stlc::resize(size, value);}
~PIList() {piMonitor.containers--;}
Type & operator [](uint index) {return (*this)[index];}
Type & operator [](uint index) const {return (*this)[index];}
const Type * data(uint index = 0) const {return &(*this)[index];}
Type * data(uint index = 0) {return &(*this)[index];}
int size_s() const {return static_cast<int>(_stlc::size());}
bool isEmpty() const {return _stlc::empty();}
bool has(const Type & t) const {for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (t == *i) return true; return false;}
int etries(const Type & t) const {int ec = 0; for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (t == *i) ++ec; return ec;}
_CList & fill(const Type & t) {_stlc::assign(_stlc::size(), t); return *this;}
_CList & remove(uint index) {_stlc::erase(_stlc::begin() + index); return *this;}
_CList & remove(uint index, uint count) {_stlc::erase(_stlc::begin() + index, _stlc::begin() + index + count); return *this;}
_CList & insert(uint pos, const Type & t) {_stlc::insert(_stlc::begin() + pos, t); return *this;}
_CList & operator <<(const Type & t) {_stlc::push_back(t); return *this;}
PIVector<Type> toVector() {PIVector<Type> v; for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) v << *i; return v;}
};
template<typename Type, typename Compare = std::less<Type>, typename Allocator = std::allocator<Type> >
class PIP_EXPORT PISet: public set<Type, Compare, Allocator> {
typedef PISet<Type, Compare, Allocator> _CSet;
typedef set<Type, Compare, Allocator> _stlc;
public:
PISet() {piMonitor.containers++;}
PISet(const Type & value) {piMonitor.containers++; _stlc::resize(1, value);}
PISet(const Type & v0, const Type & v1) {piMonitor.containers++; _stlc::insert(v0); _stlc::insert(v1);}
PISet(const Type & v0, const Type & v1, const Type & v2) {piMonitor.containers++; _stlc::insert(v0); _stlc::insert(v1); _stlc::insert(v2);}
PISet(const Type & v0, const Type & v1, const Type & v2, const Type & v3) {piMonitor.containers++; _stlc::insert(v0); _stlc::insert(v1); _stlc::insert(v2); _stlc::insert(v3);}
~PISet() {piMonitor.containers--;}
int size_s() const {return static_cast<int>(_stlc::size());}
bool isEmpty() const {return _stlc::empty();}
_CSet & remove(uint index) {_stlc::erase(_stlc::begin() + index); return *this;}
_CSet & remove(uint index, uint count) {_stlc::erase(_stlc::begin() + index, _stlc::begin() + index + count); return *this;}
_CSet & operator <<(const Type & t) {_stlc::insert(t); return *this;}
bool operator [](const Type & t) {return _stlc::find(t);}
PIVector<Type> toVector() {PIVector<Type> v; for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) v << *i; return v;}
};
template<typename Type>
class PIP_EXPORT PIStack: public PIVector<Type> {
typedef PIStack<Type> _CStack;
public:
PIStack() {;}
PIStack(const Type & value) {_CStack::resize(1, value);}
PIStack(const Type & v0, const Type & v1) {_CStack::push_back(v0); _CStack::push_back(v1);}
PIStack(const Type & v0, const Type & v1, const Type & v2) {_CStack::push_back(v0); _CStack::push_back(v1); _CStack::push_back(v2);}
PIStack(const Type & v0, const Type & v1, const Type & v2, const Type & v3) {_CStack::push_back(v0); _CStack::push_back(v1); _CStack::push_back(v2); _CStack::push_back(v3);}
_CStack & push(const Type & v) {_CStack::push_back(v); return *this;}
Type pop() {Type t = Type(); if (_CStack::size() == 0) return t; t = _CStack::back(); _CStack::pop_back(); return t;}
Type & top() {return _CStack::back();}
const Type & top() const {return _CStack::back();}
PIVector<Type> toVector() {PIVector<Type> v; for (typename _CStack::const_iterator i = _CStack::begin(); i != _CStack::end(); ++i) v << *i; return v;}
};
template<typename Type, typename Allocator = std::allocator<Type> >
class PIP_EXPORT PIDeque: public deque<Type, Allocator> {
typedef PIDeque<Type, Allocator> _CDeque;
typedef deque<Type, Allocator> _stlc;
public:
PIDeque() {piMonitor.containers++;}
PIDeque(const Type & value) {piMonitor.containers++; _stlc::resize(1, value);}
PIDeque(const Type & v0, const Type & v1) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1);}
PIDeque(const Type & v0, const Type & v1, const Type & v2) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1); _stlc::push_back(v2);}
PIDeque(const Type & v0, const Type & v1, const Type & v2, const Type & v3) {piMonitor.containers++; _stlc::push_back(v0); _stlc::push_back(v1); _stlc::push_back(v2); _stlc::push_back(v3);}
~PIDeque() {piMonitor.containers--;}
int size_s() const {return static_cast<int>(_stlc::size());}
bool isEmpty() const {return _stlc::empty();}
bool has(const Type & t) const {for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (t == *i) return true; return false;}
int etries(const Type & t) const {int ec = 0; for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) if (t == *i) ++ec; return ec;}
_CDeque & operator <<(const Type & t) {_CDeque::push_back(t); return *this;}
PIVector<Type> toVector() {PIVector<Type> v; for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); ++i) v << *i; return v;}
};
template<typename Type>
class PIP_EXPORT PIQueue: public PIDeque<Type> {
typedef PIQueue<Type> _CQueue;
public:
PIQueue() {;}
PIQueue(const Type & value) {_CQueue::resize(1, value);}
PIQueue(const Type & v0, const Type & v1) {_CQueue::push_front(v0); _CQueue::push_front(v1);}
PIQueue(const Type & v0, const Type & v1, const Type & v2) {_CQueue::push_front(v0); _CQueue::push_front(v1); _CQueue::push_front(v2);}
PIQueue(const Type & v0, const Type & v1, const Type & v2, const Type & v3) {_CQueue::push_front(v0); _CQueue::push_front(v1); _CQueue::push_front(v2); _CQueue::push_front(v3);}
_CQueue & enqueue(const Type & v) {_CQueue::push_front(v); return *this;}
Type dequeue() {Type t = Type(); if (_CQueue::size() == 0) return t; t = _CQueue::back(); _CQueue::pop_back(); return t;}
Type & head() {return _CQueue::back();}
const Type & head() const {return _CQueue::back();}
PIVector<Type> toVector() {PIVector<Type> v; for (typename _CQueue::const_iterator i = _CQueue::begin(); i != _CQueue::end(); ++i) v << *i; return v;}
};
template<typename Type0, typename Type1>
class PIP_EXPORT PIPair {
public:
PIPair() {first = Type0(); second = Type1();}
PIPair(const Type0 & value0, const Type1 & value1) {first = value0; second = value1;}
Type0 first;
Type1 second;
};
template<typename Type0, typename Type1>
inline bool operator <(const PIPair<Type0, Type1> & value0, const PIPair<Type0, Type1> & value1) {return value0.first < value1.first;}
template<typename Type0, typename Type1>
inline std::ostream & operator <<(std::ostream & s, const PIPair<Type0, Type1> & v) {s << "(" << v.first << ", " << v.second << ")"; return s;}
template<typename Type0, typename Type1>
inline PICout operator <<(PICout s, const PIPair<Type0, Type1> & v) {s.space(); s.setControl(0, true); s << "(" << v.first << ", " << v.second << ")"; s.restoreControl(); return s;}
template<typename Key, typename Type>
class PIP_EXPORT PIMap: public map<Key, Type> {
typedef PIMap<Key, Type> _CMap;
typedef map<Key, Type> _stlc;
typedef std::pair<Key, Type> _stlpair;
public:
PIMap() {;}
PIMap(const Key & key_, const Type & value_) {insert(key_, value_);}
bool isEmpty() const {return _stlc::empty();}
bool contains(const Key & key_) const {return _stlc::count(key_) > 0;}
_CMap & insert(const Key & key_, const Type & value_) {_stlc::insert(_stlpair(key_, value_)); return *this;}
_CMap & insert(PIPair<Key, Type> entry_) {_stlc::insert(_stlpair(entry_.first, entry_.second)); return *this;}
Key key(Type value_) const {for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); i++) if (i->second == value_) return i->first; return Key();}
Type & value(const Key & key_) {typename _stlc::iterator it = _stlc::find(key_); if (it == _stlc::end()) it->second = Type(); return it->second;}
Type value(const Key & key_) const {return _stlc::find(key_)->second;}
};
template<typename Key, typename Type>
class PIP_EXPORT PIMultiMap: public multimap<Key, Type> {
typedef PIMultiMap<Key, Type> _CMultiMap;
typedef multimap<Key, Type> _stlc;
typedef std::pair<Key, Type> _stlpair;
public:
PIMultiMap() {;}
PIMultiMap(const Key & key_, const Type & value_) {insert(key_, value_);}
_CMultiMap & insert(const Key & key_, const Type & value_) {_stlc::insert(_stlpair(key_, value_)); return *this;}
_CMultiMap & insert(PIPair<Key, Type> entry_) {_stlc::insert(_stlpair(entry_.first, entry_.second)); return *this;}
bool isEmpty() const {return _stlc::empty();}
bool contains(const Key & key_) const {return _stlc::count(key_) > 0;}
Key key(Type value_) const {for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); i++) if (i->second == value_) return i->first; return Key();}
PIVector<Key> keys(Type value_) const {
PIVector<Key> ret;
for (typename _stlc::const_iterator i = _stlc::begin(); i != _stlc::end(); i++)
if (i->second == value_)
ret << i->first;
return ret;
}
Type & value(const Key & key_) {return _stlc::find(key_)->second;}
Type value(const Key & key_) const {return _stlc::find(key_)->second;}
PIVector<Type> values(const Key & key_) const {
std::pair<typename _stlc::const_iterator, typename _stlc::const_iterator> range = _stlc::equal_range(key_);
PIVector<Type> ret;
for (typename _stlc::const_iterator i = range.first; i != range.second; ++i)
ret << i->second;
return ret;
}
Type & operator [](const Key & key_) {if (!contains(key_)) return _stlc::insert(_stlpair(key_, Type()))->second; return _stlc::find(key_)->second;}
Type operator [](const Key & key_) const {return _stlc::find(key_)->second;}
};
#endif // PICONTAINERS_H