Files
pip/libs/main/math/pimathvector.h

493 lines
14 KiB
C++

/*! \file pimathvector.h
* \brief PIMathVector
*/
/*
PIP - Platform Independent Primitives
PIMathVector
Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PIMATHVECTOR_H
#define PIMATHVECTOR_H
#include "pimathbase.h"
template<uint Cols, uint Rows, typename Type>
class PIMathMatrixT;
#define PIMATHVECTOR_ZERO_CMP Type(1E-100)
/// Vector templated
#define PIMV_FOR for (uint i = 0; i < Size; ++i)
template<uint Size, typename Type = double>
class PIP_EXPORT PIMathVectorT {
typedef PIMathVectorT<Size, Type> _CVector;
static_assert(std::is_arithmetic<Type>::value, "Type must be arithmetic");
static_assert(Size > 0, "Size must be > 0");
public:
PIMathVectorT(const Type & v = Type()) {PIMV_FOR c[i] = v;}
PIMathVectorT(const PIVector<Type> & val) {
assert(Size == val.size());
PIMV_FOR c[i] = val[i];
}
PIMathVectorT(std::initializer_list<Type> init_list) {
assert(Size == init_list.size());
PIMV_FOR c[i] = init_list.begin()[i];
}
static _CVector fromTwoPoints(const _CVector & st, const _CVector & fn) {
_CVector tv;
PIMV_FOR tv[i] = fn[i] - st[i];
return tv;
}
uint size() const {return Size;}
_CVector & fill(const Type & v) {PIMV_FOR c[i] = v; return *this;}
_CVector & move(const Type & v) {PIMV_FOR c[i] += v; return *this;}
_CVector & move(const _CVector & v) {PIMV_FOR c[i] += v[i]; return *this;}
Type lengthSqr() const {
Type tv(0);
PIMV_FOR tv += c[i] * c[i];
return tv;
}
Type length() const {return sqrt(lengthSqr());}
Type manhattanLength() const {
Type tv(0);
PIMV_FOR tv += piAbs<Type>(c[i]);
return tv;
}
Type angleCos(const _CVector & v) const {
Type tv = v.length() * length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
return dot(v) / tv;
}
Type angleSin(const _CVector & v) const {
Type tv = angleCos(v);
return sqrt(Type(1) - tv * tv);
}
Type angleRad(const _CVector & v) const {return acos(angleCos(v));}
Type angleDeg(const _CVector & v) const {return toDeg(angleRad(v));}
Type angleElevation(const _CVector & v) const {return 90.0 - angleDeg(v - *this);}
_CVector projection(const _CVector & v) {
Type tv = v.length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
return v * (dot(v) / tv);
}
_CVector & normalize() {
Type tv = length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
if (tv == Type(1)) return *this;
PIMV_FOR c[i] /= tv;
return *this;
}
_CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;}
bool isNull() const {PIMV_FOR if (c[i] != Type(0)) return false; return true;}
bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);}
Type & at(uint index) {return c[index];}
Type at(uint index) const {return c[index];}
Type & operator [](uint index) {return c[index];}
Type operator [](uint index) const {return c[index];}
_CVector & operator =(const Type & v) {PIMV_FOR c[i] = v; return *this;}
bool operator ==(const _CVector & v) const {PIMV_FOR if (c[i] != v[i]) return false; return true;}
bool operator !=(const _CVector & v) const {return !(*this == c);}
void operator +=(const _CVector & v) {PIMV_FOR c[i] += v[i];}
void operator -=(const _CVector & v) {PIMV_FOR c[i] -= v[i];}
void operator *=(const Type & v) {PIMV_FOR c[i] *= v;}
void operator /=(const Type & v) {
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
PIMV_FOR c[i] /= v;
}
_CVector operator -() const {
_CVector tv;
PIMV_FOR tv[i] = -c[i];
return tv;
}
_CVector operator +(const _CVector & v) const {
_CVector tv(*this);
PIMV_FOR tv[i] += v[i];
return tv;
}
_CVector operator -(const _CVector & v) const {
_CVector tv(*this);
PIMV_FOR tv[i] -= v[i];
return tv;
}
_CVector operator *(const Type & v) const {
_CVector tv(*this);
PIMV_FOR tv[i] *= v;
return tv;
}
_CVector operator /(const Type & v) const {
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
_CVector tv = _CVector(*this);
PIMV_FOR tv[i] /= v;
return tv;
}
_CVector cross(const _CVector & v) const {
static_assert(Size == 3, "cross product avalible only for 3D vectors");
_CVector tv;
tv[0] = c[1]*v[2] - v[1]*c[2];
tv[1] = v[0]*c[2] - c[0]*v[2];
tv[2] = c[0]*v[1] - v[0]*c[1];
return tv;
}
Type dot(const _CVector & v) const {
Type tv(0);
PIMV_FOR tv += c[i] * v[i];
return tv;
}
_CVector mul(const _CVector & v) const {
_CVector tv(*this);
PIMV_FOR tv[i] *= v[i];
return tv;
}
_CVector mul(const Type & v) const {
return (*this) * v;
}
_CVector div(const _CVector & v) const {
_CVector tv(*this);
PIMV_FOR {
assert(piAbs<Type>(v[i]) > PIMATHVECTOR_ZERO_CMP);
tv[i] /= v[i];
}
return tv;
}
_CVector div(const Type & v) const {
return (*this) / v;
}
PIMathMatrixT<1, Size, Type> transposed() const {
PIMathMatrixT<1, Size, Type> ret;
PIMV_FOR ret[0][i] = c[i];
return ret;
}
Type distToLine(const _CVector & lp0, const _CVector & lp1) {
_CVector a(lp0, lp1);
Type tv = a.length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
_CVector b(lp0, *this);
return piAbs<Type>(a[0]*b[1] - a[1]*b[0]) / tv;
}
template<uint Size1, typename Type1> /// vector {Size, Type} to vector {Size1, Type1}
PIMathVectorT<Size1, Type1> turnTo() const {
PIMathVectorT<Size1, Type1> tv;
uint sz = piMin<uint>(Size, Size1);
for (uint i = 0; i < sz; ++i) tv[i] = c[i];
return tv;
}
static _CVector cross(const _CVector & v1, const _CVector & v2) {
return v1.cross(v2);
}
static _CVector dot(const _CVector & v1, const _CVector & v2) {
return v1.dot(v2);
}
static _CVector mul(const _CVector & v1, const _CVector & v2) {
return v1.mul(v2);
}
static _CVector mul(const Type & v1, const _CVector & v2) {
return v2 * v1;
}
static _CVector mul(const _CVector & v1, const Type & v2) {
return v1 * v2;
}
static _CVector div(const _CVector & v1, const _CVector & v2) {
return v1.div(v2);
}
static _CVector div(const _CVector & v1, const Type & v2) {
return v1 / v2;
}
private:
Type c[Size];
};
template<uint Size, typename Type>
inline PIMathVectorT<Size, Type> operator *(const Type & x, const PIMathVectorT<Size, Type> & v) {
return v * x;
}
template<uint Size, typename Type>
inline PICout operator <<(PICout s, const PIMathVectorT<Size, Type> & v) {s << "{"; PIMV_FOR {s << v[i]; if (i < Size - 1) s << ", ";} s << "}"; return s;}
typedef PIMathVectorT<2u, int> PIMathVectorT2i;
typedef PIMathVectorT<3u, int> PIMathVectorT3i;
typedef PIMathVectorT<4u, int> PIMathVectorT4i;
typedef PIMathVectorT<2u, double> PIMathVectorT2d;
typedef PIMathVectorT<3u, double> PIMathVectorT3d;
typedef PIMathVectorT<4u, double> PIMathVectorT4d;
#undef PIMV_FOR
/// Vector
#define PIMV_FOR for (uint i = 0; i < c.size(); ++i)
template<typename Type>
class PIP_EXPORT PIMathVector {
typedef PIMathVector<Type> _CVector;
template<typename TypeOp> friend PIByteArray & operator <<(PIByteArray & s, const PIMathVector<TypeOp> & v);
template<typename TypeOp> friend PIByteArray & operator >>(PIByteArray & s, PIMathVector<TypeOp> & v);
public:
PIMathVector(const uint size = 0, const Type & new_value = Type()) {c.resize(size, new_value);}
PIMathVector(const PIVector<Type> & val) {c = val;}
PIMathVector(std::initializer_list<Type> init_list) {c = PIVector<Type>(init_list);}
template<uint Size>
PIMathVector(const PIMathVectorT<Size, Type> & val) {c.resize(Size); PIMV_FOR c[i] = val[i];}
static PIMathVector fromTwoPoints(const _CVector & st, const _CVector & fn) {
assert(st.size() == fn.size());
_CVector v(st.size());
for (uint i = 0; i < v.size(); ++i) v.c[i] = fn[i] - st[i];
}
uint size() const {return c.size();}
_CVector & resize(uint size, const Type & new_value = Type()) {
c.resize(size, new_value);
return *this;
}
_CVector resized(uint size, const Type & new_value = Type()) {
_CVector tv = _CVector(*this);
tv.resize(size, new_value);
return tv;
}
_CVector & fill(const Type & v) {
c.fill(v);
return *this;
}
_CVector & move(const Type & v) {
PIMV_FOR c[i] += v;
return *this;
}
_CVector & move(const _CVector & v) {
assert(c.size() == v.size());
PIMV_FOR c[i] += v[i];
return *this;
}
_CVector & swapElements(uint fe, uint se) {
piSwap<Type>(c[fe], c[se]);
return *this;
}
Type lengthSqr() const {
Type tv(0);
PIMV_FOR tv += c[i] * c[i];
return tv;
}
Type length() const {return sqrt(lengthSqr());}
Type manhattanLength() const {
Type tv(0);
PIMV_FOR tv += piAbs<Type>(c[i]);
return tv;
}
Type angleCos(const _CVector & v) const {
assert(c.size() == v.size());
Type tv = v.length() * length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
return dot(v) / tv;
}
Type angleSin(const _CVector & v) const {
assert(c.size() == v.size());
Type tv = angleCos(v);
return sqrt(Type(1) - tv * tv);
}
Type angleRad(const _CVector & v) const {return acos(angleCos(v));}
Type angleDeg(const _CVector & v) const {return toDeg(angleRad(v));}
_CVector projection(const _CVector & v) {
assert(c.size() == v.size());
Type tv = v.length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
return v * (dot(v) / tv);
}
_CVector & normalize() {
Type tv = length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
if (tv == Type(1)) return *this;
PIMV_FOR c[i] /= tv;
return *this;
}
_CVector normalized() {
_CVector tv(*this);
tv.normalize();
return tv;
}
bool isNull() const {
PIMV_FOR if (c[i] != Type(0)) return false;
return true;
}
bool isValid() const {return !c.isEmpty();}
bool isOrtho(const _CVector & v) const {return dot(v) == Type(0);}
Type & at(uint index) {return c[index];}
Type at(uint index) const {return c[index];}
Type & operator [](uint index) {return c[index];}
Type operator [](uint index) const {return c[index];}
bool operator ==(const _CVector & v) const {return c == v.c;}
bool operator !=(const _CVector & v) const {return c != v.c;}
void operator +=(const _CVector & v) {
assert(c.size() == v.size());
PIMV_FOR c[i] += v[i];
}
void operator -=(const _CVector & v) {
assert(c.size() == v.size());
PIMV_FOR c[i] -= v[i];
}
void operator *=(const Type & v) {PIMV_FOR c[i] *= v;}
void operator /=(const Type & v) {
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
PIMV_FOR c[i] /= v;
}
_CVector operator -() const {
_CVector tv(c.size());
PIMV_FOR tv[i] = -c[i];
return tv;
}
_CVector operator +(const _CVector & v) const {
assert(c.size() == v.size());
_CVector tv(*this);
PIMV_FOR tv[i] += v[i];
return tv;
}
_CVector operator -(const _CVector & v) const {
assert(c.size() == v.size());
_CVector tv(*this);
PIMV_FOR tv[i] -= v[i];
return tv;
}
_CVector operator *(const Type & v) const {
_CVector tv(*this);
PIMV_FOR tv[i] *= v;
return tv;
}
_CVector operator /(const Type & v) const {
assert(piAbs<Type>(v) > PIMATHVECTOR_ZERO_CMP);
_CVector tv(*this);
PIMV_FOR tv[i] /= v;
return tv;
}
_CVector cross(const _CVector & v) const {
assert(c.size() == 3);
assert(v.size() == 3);
_CVector tv(3);
tv[0] = c[1]*v[2] - v[1]*c[2];
tv[1] = c[2]*v[0] - v[2]*c[0];
tv[2] = c[0]*v[1] - v[0]*c[1];
return tv;
}
Type dot(const _CVector & v) const {
assert(c.size() == v.size());
Type tv(0);
PIMV_FOR tv += c[i] * v[i];
return tv;
}
_CVector mul(const _CVector & v) const {
assert(c.size() == v.size());
_CVector tv(*this);
PIMV_FOR tv[i] *= v[i];
return tv;
}
_CVector mul(const Type & v) const {
return (*this) * v;
}
_CVector div(const _CVector & v) const {
assert(c.size() == v.size());
_CVector tv(*this);
PIMV_FOR {
assert(piAbs<Type>(v[i]) > PIMATHVECTOR_ZERO_CMP);
tv[i] /= v[i];
}
return tv;
}
_CVector div(const Type & v) const {
return (*this) / v;
}
Type distToLine(const _CVector & lp0, const _CVector & lp1) {
assert(c.size() == lp0.size());
assert(c.size() == lp1.size());
_CVector a = _CVector::fromTwoPoints(lp0, lp1);
Type tv = a.length();
assert(piAbs<Type>(tv) > PIMATHVECTOR_ZERO_CMP);
_CVector b = _CVector::fromTwoPoints(lp0, *this);
return piAbs<Type>(a[0]*b[1] - a[1]*b[0]) / tv;
}
PIVector<Type> toVector() const {return c;}
inline Type * data() {return c.data();}
inline const Type * data() const {return c.data();}
static _CVector cross(const _CVector & v1, const _CVector & v2) {
return v1.cross(v2);
}
static _CVector dot(const _CVector & v1, const _CVector & v2) {
return v1.dot(v2);
}
static _CVector mul(const _CVector & v1, const _CVector & v2) {
return v1.mul(v2);
}
static _CVector mul(const Type & v1, const _CVector & v2) {
return v2 * v1;
}
static _CVector mul(const _CVector & v1, const Type & v2) {
return v1 * v2;
}
static _CVector div(const _CVector & v1, const _CVector & v2) {
return v1.div(v2);
}
static _CVector div(const _CVector & v1, const Type & v2) {
return v1 / v2;
}
private:
PIVector<Type> c;
};
template<typename Type>
inline PIMathVector<Type> operator *(const Type & x, const PIMathVector<Type> & v) {
return v * x;
}
#undef PIMV_FOR
#ifdef PIP_STD_IOSTREAM
template<typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathVector<Type> & v) {s << "{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;}
#endif
template<typename Type>
inline PICout operator <<(PICout s, const PIMathVector<Type> & v) {s << "Vector{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;}
template<typename Type>
inline PIByteArray & operator <<(PIByteArray & s, const PIMathVector<Type> & v) {s << v.c; return s;}
template<typename Type>
inline PIByteArray & operator >>(PIByteArray & s, PIMathVector<Type> & v) {s >> v.c; return s;}
typedef PIMathVector<int> PIMathVectori;
typedef PIMathVector<double> PIMathVectord;
#endif // PIMATHVECTOR_H