Files
pip/pitimer.cpp

580 lines
15 KiB
C++

/*
PIP - Platform Independent Primitives
Timer
Copyright (C) 2014 Ivan Pelipenko peri4ko@gmail.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pitimer.h"
#include "pisystemtests.h"
/*! \class PITimer
* \brief Timer
*
* \section PITimer_sec0 Synopsis
* This class implements timer function. PIP timers supports 3 way to tick notify,
* frequency delimiters and time measurements.
* \section PITimer_sec1 Notify variants
* Notify variants:
* * "slot" - static function with format void func(void * data, int delimiter);
* * event - \a void timeout(void * data, int delimiter);
* * virtual function - \a void tick(void * data, int delimiter).
* All this variant are equivalent, use most applicable.
* \section PITimer_sec2 Frequency delimiters
* Frequency delimiter is an integer number and "slot" function. If "slot" function is null
* timer main "slot" will be used. Each delimiter numbers tick timer will be execute
* delimiters or timer main "slot" function with \b delimiter value = delimiter number.
* Example: \snippet pitimer.cpp delimiter
* \section PITimer_sec3 Time measurements
* PITimer can be used as time measurer. Function \a reset() set time mark to current
* system time, then functions double elapsed_*() returns time elapsed from this mark.
* These functions can returns nano-, micro-, milli- and seconds with suffixes "n", "u", "m"
* and "s";
* Example: \snippet pitimer.cpp elapsed
*/
#ifdef PIP_TIMER_RT
PITimer::TimerPool * pool = 0;
#endif
PITimer::PITimer(TimerEvent slot, void * data_, bool threaded_)
#ifndef PIP_TIMER_RT
: PIThread() {
#else
: PIObject() {
#endif
ret_func = slot;
data = data_;
running_ = false;
interval_ = 0.;
#ifdef PIP_TIMER_RT
piMonitor.timers++;
ti = -1;
threaded = threaded_;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_value.sival_ptr = this;
se.sigev_notify_function = PITimer::timer_event;
se.sigev_notify_attributes = 0;
lockRun = false;
#else
deferred_ = false;
#endif
reset();
}
PITimer::PITimer(bool threaded_)
#ifndef PIP_TIMER_RT
: PIThread() {
#else
: PIObject() {
#endif
ret_func = 0;
data = 0;
running_ = false;
interval_ = 0.;
#ifdef PIP_TIMER_RT
piMonitor.timers++;
ti = -1;
threaded = threaded_;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_value.sival_ptr = this;
se.sigev_notify_function = PITimer::timer_event;
se.sigev_notify_attributes = 0;
lockRun = false;
#else
deferred_ = false;
#endif
reset();
}
PITimer::~PITimer() {
#ifdef PIP_TIMER_RT
piMonitor.timers--;
#endif
stop();
}
#ifdef PIP_TIMER_RT
void PITimer::start(double msecs) {
if (ti != -1 || msecs < 0 || running_) return;
interval_ = msecs;
if (!threaded) {
ticks = int(msecs);
if (pool == 0) pool = new TimerPool();
pool->add(this);
//cout << "not threaded timer start " << msecs << " msecs\n";
if (!pool->isRunning()) pool->start();
running_ = true;
return;
}
spec.it_interval.tv_nsec = ((int)(msecs * 1000) % 1000000) * 1000;
spec.it_interval.tv_sec = (time_t)(msecs / 1000);
spec.it_value = spec.it_interval;
ti = timer_create(CLOCK_REALTIME, &se, &timer);
//cout << "***create timer " << msecs << " msecs\n";
if (ti == -1) {
piCoutObj << "Can`t create timer for " << msecs << " msecs: " << errorString();
return;
}
timer_settime(timer, 0, &spec, 0);
running_ = true;
}
void PITimer::deferredStart(double interval_msecs, double delay_msecs) {
if (ti != -1 || interval_msecs < 0 || running_) return;
interval_ = interval_msecs;
spec.it_interval.tv_nsec = ((int)(interval_msecs * 1000) % 1000000) * 1000;
spec.it_interval.tv_sec = (time_t)(interval_msecs / 1000);
spec.it_value.tv_nsec = ((int)(delay_msecs * 1000) % 1000000) * 1000;
spec.it_value.tv_sec = (time_t)(delay_msecs / 1000);
ti = timer_create(CLOCK_REALTIME, &se, &timer);
//cout << "***create timer\n";
if (ti == -1) {
piCoutObj << "Can`t create timer for " << interval_msecs << " msecs: " << errorString();
return;
}
timer_settime(timer, 0, &spec, 0);
running_ = true;
}
void PITimer::deferredStart(double interval_msecs, const PIDateTime & start_datetime) {
if (ti != -1 || interval_msecs < 0 || running_) return;
interval_ = interval_msecs;
spec.it_interval.tv_nsec = ((int)(interval_msecs * 1000) % 1000000) * 1000;
spec.it_interval.tv_sec = (time_t)(interval_msecs / 1000);
struct tm dtm;
memset(&dtm, 0, sizeof(dtm));
dtm.tm_sec = start_datetime.seconds;
dtm.tm_min = start_datetime.minutes;
dtm.tm_hour = start_datetime.hours;
dtm.tm_mday = start_datetime.day;
dtm.tm_mon = start_datetime.month - 1;
dtm.tm_year = start_datetime.year - 1900;
spec.it_value.tv_nsec = 0;
spec.it_value.tv_sec = mktime(&dtm);
ti = timer_create(CLOCK_REALTIME, &se, &timer);
//cout << "***create timer\n";
if (ti == -1) {
piCoutObj << "Can`t create timer for " << interval_msecs << " msecs: " << errorString();
return;
}
timer_settime(timer, TIMER_ABSTIME, &spec, 0);
running_ = true;
}
void PITimer::TimerPool::remove(PITimer * t) {
mutex.lock();
for (int i = 0; i < timers.size_s(); ++i)
if (timers[i].first == t) {
timers.remove(i);
mutex.unlock();
return;
}
mutex.unlock();
}
void PITimer::TimerPool::begin() {
//cout << "pool begin\n";
/*struct sigaction sa;
sa.sa_flags = 0;
sa.sa_handler = empty_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGALRM, &sa, 0) == -1) {
piCoutObj << "sigaction error: " << errorString();
stop();
return;
}*/
sigemptyset(&ss);
sigaddset(&ss, SIGALRM);
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_SIGNAL;
se.sigev_signo = SIGALRM;
spec.it_interval.tv_nsec = 1000000;
spec.it_interval.tv_sec = 0;
spec.it_value = spec.it_interval;
//cout << "***create pool timer\n";
if (timer_create(CLOCK_REALTIME, &se, &timer) == -1) {
piCoutObj << "Can`t create timer for pool: " << errorString();
stop();
return;
}
if (timer_settime(timer, 0, &spec, 0) == -1) {
piCoutObj << "Can`t set timer for pool: " << errorString();
stop();
return;
}
ti = 1;
}
void PITimer::TimerPool::run() {
//cout << "wait ...\n";
sigwait(&ss, &si);
//cout << "ok\n";
mutex.lock();
//cout << "* pool tick , pool = " << this <<", timers = " << timers.size()<<"\n";
for (int i = 0; i < timers.size_s(); ++i) {
TimerPair & ct(timers[i]);
sv.sival_ptr = ct.first;
ct.second++;
//cout << "** pool tick for " << ct.first << ", cnt " << ct.second << ", " << ct.first->ticks << "\n";
if (ct.second >= ct.first->ticks) {
//cout << "*** timer "<<ct.first<<" tick start\n";
PITimer::timer_event(sv);
//cout << "*** timer "<<ct.first<<" tick end\n";
ct.second = 0;
}
}
mutex.unlock();
}
void PITimer::stop() {
if (!running_) return;
running_ = false;
if (!threaded) {
if (pool != 0) {
pool->remove(this);
if (pool->isEmpty()) pool->terminate();
}
}
if (ti != -1) timer_delete(timer);
ti = -1;
interval_ = 0.;
}
void PITimer::timer_event(sigval e) {
PITimer * ct = (PITimer * )e.sival_ptr;
if (!ct->running_) return;
if (ct->lockRun) ct->lock();
if (ct->ret_func != 0) ct->ret_func(ct->data, 1);
ct->timeout(ct->data, 1);
ct->tick(ct->data, 1);
piForeach (TimerSlot & i, ct->ret_funcs) {
if (i.delim > ++(i.tick)) continue;
i.tick = 0;
if (i.slot != 0) i.slot(ct->data, i.delim);
else if (ct->ret_func != 0) ct->ret_func(ct->data, i.delim);
ct->timeout(ct->data, i.delim);
ct->tick(ct->data, i.delim);
}
if (ct->lockRun) ct->unlock();
}
bool PITimer::waitForFinish(int timeout_msecs) {
if (timeout_msecs < 0) {
while (running_)
msleep(1);
return true;
}
int cnt = 0;
while (running_ && cnt < timeout_msecs) {
msleep(1);
++cnt;
}
return cnt < timeout_msecs;
}
#else
void PITimer::start(double msecs) {
if (msecs < 0 || running_) return;
interval_ = msecs;
inc_time = PISystemTime::fromMilliseconds(msecs);
st_time = PISystemTime::current() + inc_time;
deferred_ = false;
running_ = true;
PIThread::start();
}
void PITimer::deferredStart(double interval_msecs, double delay_msecs) {
//piCoutObj << "defStart exec with" << delay_msecs << interval_msecs;
if (interval_msecs < 0 || running_) return;
interval_ = interval_msecs;
PISystemTime cst = PISystemTime::current();
inc_time = PISystemTime::fromMilliseconds(interval_msecs);
st_time = PISystemTime::current() + PISystemTime::fromMilliseconds(delay_msecs);
if (st_time < cst) st_time = cst;
running_ = deferred_ = true;
PIThread::start();
//piCoutObj << "timer start def";
}
void PITimer::deferredStart(double interval_msecs, const PIDateTime & start_datetime) {
//piCoutObj << "defStart exec to" << start_datetime.toString() << interval_msecs;
if (interval_msecs < 0 || running_) return;
interval_ = interval_msecs;
PISystemTime cst = PISystemTime::current();
inc_time = PISystemTime::fromMilliseconds(interval_msecs);
st_time = start_datetime.toSystemTime();
if (st_time < cst) st_time = cst;
running_ = deferred_ = true;
PIThread::start();
//piCoutObj << "timer start def";
}
void PITimer::run() {
if (!running_) return;
while (deferred_) {
PISystemTime tst = st_time - PISystemTime::current();
if (tst.seconds > 0) {
piMSleep(100);
if (!running_) return;
continue;
}
if (tst.nanoseconds > 100000000) {
piMSleep(100);
if (!running_) return;
continue;
}
tst.sleep();
deferred_ = false;
if (!running_) return;
}
#ifdef WINDOWS
tt_st = __PIQueryPerformanceCounter();
#else
(st_time - PISystemTime::current()).sleep();
st_time += inc_time;
#endif
//if (lockRun) lock();
if (ret_func != 0) ret_func(data, 1);
timeout(data, 1);
tick(data, 1);
piForeach (TimerSlot & i, ret_funcs) {
if (i.delim > ++(i.tick)) continue;
i.tick = 0;
if (i.slot != 0) i.slot(data, i.delim);
else if (ret_func != 0) ret_func(data, i.delim);
timeout(data, i.delim);
tick(data, i.delim);
}
#ifdef WINDOWS
tt_cur = __PIQueryPerformanceCounter();
double cdelay = interval_ - ((tt_cur - tt_st) / double(__pi_perf_freq) * 1.E+3);
if (cdelay > 0.) Sleep(piRoundd(cdelay));
#endif
//if (lockRun) unlock();
}
#endif
double PITimer::elapsed_n() {
#ifdef WINDOWS
pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq) * 1.E+9) : -1.);
//t_cur = GetCurrentTime();
//return (t_cur - t_st) * 1000000.;
#else
# ifdef MAC_OS
clock_get_time(__pi_mac_clock, &t_cur);
# else
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec - t_st.tv_sec) * 1.e+9 + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns);
#endif
}
double PITimer::elapsed_u() {
#ifdef WINDOWS
pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq) * 1.E+6) : -1.);
//t_cur = GetCurrentTime();
//return (t_cur - t_st) * 1000.;
#else
# ifdef MAC_OS
clock_get_time(__pi_mac_clock, &t_cur);
# else
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec - t_st.tv_sec) * 1.e+6 + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns) / 1.e+3;
#endif
}
double PITimer::elapsed_m() {
#ifdef WINDOWS
pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq) * 1.E+3) : -1.);
//t_cur = GetCurrentTime();
//return (double)(t_cur - t_st);
#else
# ifdef MAC_OS
clock_get_time(__pi_mac_clock, &t_cur);
# else
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec - t_st.tv_sec) * 1.e+3 + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns) / 1.e+6;
#endif
}
double PITimer::elapsed_s() {
#ifdef WINDOWS
pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq)) : -1.);
//t_cur = GetCurrentTime();
//return (t_cur - t_st) / 1000.;
#else
# ifdef MAC_OS
clock_get_time(__pi_mac_clock, &t_cur);
# else
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec - t_st.tv_sec) + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns) / 1.e+9;
#endif
}
double PITimer::reset_time_n() {
#ifdef WINDOWS
return t_st * 1.e+6;
#else
return t_st.tv_sec * 1.e+9 + t_st.tv_nsec;
#endif
}
double PITimer::reset_time_u() {
#ifdef WINDOWS
return t_st * 1.e+3;
#else
return t_st.tv_sec * 1.e+6 + t_st.tv_nsec / 1.e+3;
#endif
}
double PITimer::reset_time_m() {
#ifdef WINDOWS
return (double)t_st;
#else
return t_st.tv_sec * 1.e+3 + t_st.tv_nsec / 1.e+6;
#endif
}
double PITimer::reset_time_s() {
#ifdef WINDOWS
return t_st / 1000.;
#else
return t_st.tv_sec + t_st.tv_nsec / 1.e+9;
#endif
}
PISystemTime PITimer::reset_time() {
#ifdef WINDOWS
return PISystemTime(t_st / 1000, (t_st % 1000) * 1000000);
#else
return PISystemTime(t_st.tv_sec, t_st.tv_nsec);
#endif
}
double PITimer::elapsed_system_n() {
#ifdef WINDOWS
llong pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq) * 1.E+9) : -1.);
//long t_cur = GetCurrentTime();
//return (t_cur * 1000000.);
#else
# ifdef MAC_OS
mach_timespec_t t_cur;
clock_get_time(__pi_mac_clock, &t_cur);
# else
timespec t_cur;
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec * 1.e+9 + t_cur.tv_nsec);
#endif
}
double PITimer::elapsed_system_u() {
#ifdef WINDOWS
llong pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq) * 1.E+6) : -1.);
//long t_cur = GetCurrentTime();
//return (t_cur * 1000.);
#else
# ifdef MAC_OS
mach_timespec_t t_cur;
clock_get_time(__pi_mac_clock, &t_cur);
# else
timespec t_cur;
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec * 1.e+6 + (t_cur.tv_nsec / 1.e+3));
#endif
}
double PITimer::elapsed_system_m() {
#ifdef WINDOWS
llong pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq) * 1.E+3) : -1.);
//long t_cur = GetCurrentTime();
//return (double)t_cur;
#else
# ifdef MAC_OS
mach_timespec_t t_cur;
clock_get_time(__pi_mac_clock, &t_cur);
# else
timespec t_cur;
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec * 1.e+3 + (t_cur.tv_nsec / 1.e+6));
#endif
}
double PITimer::elapsed_system_s() {
#ifdef WINDOWS
llong pc_cur = __PIQueryPerformanceCounter();
return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq)) : -1.);
//long t_cur = GetCurrentTime();
//return (t_cur / 1000.);
#else
# ifdef MAC_OS
mach_timespec_t t_cur;
clock_get_time(__pi_mac_clock, &t_cur);
# else
timespec t_cur;
clock_gettime(0, &t_cur);
# endif
return (t_cur.tv_sec + (t_cur.tv_nsec / 1.e+9));
#endif
}