/*! \file pitimer.h * \brief Timer */ /* PIP - Platform Independent Primitives Timer Copyright (C) 2013 Ivan Pelipenko peri4ko@gmail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef PITIMER_H #define PITIMER_H #include #include #include "pithread.h" #include "pistring.h" #include "piobject.h" typedef void (*TimerEvent)(void * , int ); class PIP_EXPORT PISystemTime { public: //! Contructs system time with s = ns = 0 PISystemTime() {seconds = nanoseconds = 0;} //! Contructs system time with s = "s" and ns = "ns" PISystemTime(long s, long ns) {seconds = s; nanoseconds = ns; checkOverflows();} //! Contructs system time from another PISystemTime(const PISystemTime & t) {seconds = t.seconds; nanoseconds = t.nanoseconds;} //! Returns stored system time value in seconds double toSeconds() const {return double(seconds) + nanoseconds / 1.e+9;} //! Returns stored system time value in milliseconds double toMilliseconds() const {return seconds * 1.e+3 + nanoseconds / 1.e+6;} //! Returns stored system time value in microseconds double toMicroseconds() const {return seconds * 1.e+6 + nanoseconds / 1.e+3;} //! Returns stored system time value in nanoseconds double toNanoseconds() const {return seconds * 1.e+9 + double(nanoseconds);} //! Add to stored system time "v" seconds PISystemTime & addSeconds(double v) {*this += fromSeconds(v); return *this;} //! Add to stored system time "v" milliseconds PISystemTime & addMilliseconds(double v) {*this += fromMilliseconds(v); return *this;} //! Add to stored system time "v" microseconds PISystemTime & addMicroseconds(double v) {*this += fromMicroseconds(v); return *this;} //! Add to stored system time "v" nanoseconds PISystemTime & addNanoseconds(double v) {*this += fromNanoseconds(v); return *this;} //! Sleep for stored value. \warning Use this function to sleep for difference of system times or constructs system time. //! If you call this function on system time returned from \a currentSystemTime() thread will be sleep almost forever. void sleep() {piUSleep(piFloord(toMicroseconds()));} // wait self value, useful to wait some dT = (t1 - t0) //! Returns copy of this system time with absolutely values of s and ns PISystemTime abs() const {return PISystemTime(piAbsl(seconds), piAbsl(nanoseconds));} //! Returns sum of this system time with "t" PISystemTime operator +(const PISystemTime & t) {PISystemTime tt(*this); tt.seconds += t.seconds; tt.nanoseconds += t.nanoseconds; tt.checkOverflows(); return tt;} //! Returns difference between this system time and "t" PISystemTime operator -(const PISystemTime & t) {PISystemTime tt(*this); tt.seconds -= t.seconds; tt.nanoseconds -= t.nanoseconds; tt.checkOverflows(); return tt;} //! Add to stored value system time "t" PISystemTime & operator +=(const PISystemTime & t) {seconds += t.seconds; nanoseconds += t.nanoseconds; checkOverflows(); return *this;} //! Subtract from stored value system time "t" PISystemTime & operator -=(const PISystemTime & t) {seconds -= t.seconds; nanoseconds -= t.nanoseconds; checkOverflows(); return *this;} //! Compare system times bool operator ==(const PISystemTime & t) {return ((seconds == t.seconds) && (nanoseconds == t.nanoseconds));} //! Compare system times bool operator !=(const PISystemTime & t) {return ((seconds != t.seconds) || (nanoseconds != t.nanoseconds));} //! Compare system times bool operator >(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds > t.nanoseconds; return seconds > t.seconds;} //! Compare system times bool operator <(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds < t.nanoseconds; return seconds < t.seconds;} //! Compare system times bool operator >=(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds >= t.nanoseconds; return seconds >= t.seconds;} //! Compare system times bool operator <=(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds <= t.nanoseconds; return seconds <= t.seconds;} //! Contructs system time from seconds "v" static PISystemTime fromSeconds(double v) {long s = piFloord(v); return PISystemTime(s, (v - s) * 1000000000);} //! Contructs system time from milliseconds "v" static PISystemTime fromMilliseconds(double v) {long s = piFloord(v / 1000.); return PISystemTime(s, (v / 1000. - s) * 1000000000);} //! Contructs system time from microseconds "v" static PISystemTime fromMicroseconds(double v) {long s = piFloord(v / 1000000.); return PISystemTime(s, (v / 1000000. - s) * 1000000000);} //! Contructs system time from nanoseconds "v" static PISystemTime fromNanoseconds(double v) {long s = piFloord(v / 1000000000.); return PISystemTime(s, (v / 1000000000. - s) * 1000000000);} //! Seconds of stored system time long seconds; //! Nanoseconds of stored system time long nanoseconds; private: void checkOverflows() {while (nanoseconds >= 1000000000) {nanoseconds -= 1000000000; seconds++;} while (nanoseconds < 0) {nanoseconds += 1000000000; seconds--;}} }; //! \relatesalso PICout \relatesalso PIByteArray \brief Output operator to PICout inline PICout operator <<(PICout s, const PISystemTime & v) {s.setControl(0, true); s.space(); s << "(" << v.seconds << " s, " << v.nanoseconds << " ns)"; s.restoreControl(); return s;} //! \relatesalso PISystemTime \relatesalso PIByteArray \brief Output operator to PIByteArray inline PIByteArray & operator <<(PIByteArray & s, const PISystemTime & v) {s << v.seconds << v.nanoseconds; return s;} //! \relatesalso PISystemTime \relatesalso PIByteArray \brief Input operator from PIByteArray inline PIByteArray & operator >>(PIByteArray & s, PISystemTime & v) {s >> v.seconds >> v.nanoseconds; return s;} struct PIP_EXPORT PITime { PITime() {hours = minutes = seconds = milliseconds = 0;} int milliseconds; int seconds; int minutes; int hours; PIString toString(const PIString & format = "h:mm:ss") const; }; PIP_EXPORT bool operator ==(const PITime & t0, const PITime & t1); PIP_EXPORT bool operator <(const PITime & t0, const PITime & t1); PIP_EXPORT bool operator >(const PITime & t0, const PITime & t1); inline bool operator !=(const PITime & t0, const PITime & t1) {return !(t0 == t1);} inline bool operator <=(const PITime & t0, const PITime & t1) {return !(t0 > t1);} inline bool operator >=(const PITime & t0, const PITime & t1) {return !(t0 < t1);} struct PIP_EXPORT PIDate { PIDate() {year = month = day = 0;} int day; int month; int year; PIString toString(const PIString & format = "d.MM.yyyy") const; }; PIP_EXPORT bool operator ==(const PIDate & t0, const PIDate & t1); PIP_EXPORT bool operator <(const PIDate & t0, const PIDate & t1); PIP_EXPORT bool operator >(const PIDate & t0, const PIDate & t1); inline bool operator !=(const PIDate & t0, const PIDate & t1) {return !(t0 == t1);} inline bool operator <=(const PIDate & t0, const PIDate & t1) {return !(t0 > t1);} inline bool operator >=(const PIDate & t0, const PIDate & t1) {return !(t0 < t1);} struct PIP_EXPORT PIDateTime { PIDateTime() {year = month = day = hours = minutes = seconds = 0;} PIDateTime(const PITime & time) {year = month = day = 0; hours = time.hours; minutes = time.minutes; seconds = time.seconds; milliseconds = time.milliseconds;} PIDateTime(const PIDate & date) {year = date.year; month = date.month; day = date.day; hours = minutes = seconds = milliseconds = 0;} PIDateTime(const PIDate & date, const PITime & time) {year = date.year; month = date.month; day = date.day; hours = time.hours; minutes = time.minutes; seconds = time.seconds; milliseconds = time.milliseconds;} int milliseconds; int seconds; int minutes; int hours; int day; int month; int year; PIDateTime normalized() const {return PIDateTime::fromSecondSinceEpoch(toSecondSinceEpoch());} void normalize() {*this = normalized();} PIString toString(const PIString & format = "h:mm:ss d.MM.yyyy") const; time_t toSecondSinceEpoch() const; PISystemTime toSystemTime() const {return PISystemTime(int(toSecondSinceEpoch()), milliseconds * 1000000);} void operator +=(const PIDateTime & d1) {year += d1.year; month += d1.month; day += d1.day; hours += d1.hours; minutes += d1.minutes; seconds += d1.seconds; normalize();} void operator -=(const PIDateTime & d1) {year -= d1.year; month -= d1.month; day -= d1.day; hours -= d1.hours; minutes -= d1.minutes; seconds -= d1.seconds; normalize();} static PIDateTime fromSecondSinceEpoch(const time_t sec); static PIDateTime fromSystemTime(const PISystemTime & st) {PIDateTime dt = fromSecondSinceEpoch(st.seconds); dt.milliseconds = piClampi(st.nanoseconds / 1000000, 0, 999); return dt;} }; inline PIDateTime operator +(const PIDateTime & d0, const PIDateTime & d1) {PIDateTime td = d0; td += d1; return td.normalized();} inline PIDateTime operator -(const PIDateTime & d0, const PIDateTime & d1) {PIDateTime td = d0; td -= d1; return td.normalized();} PIP_EXPORT bool operator ==(const PIDateTime & t0, const PIDateTime & t1); PIP_EXPORT bool operator <(const PIDateTime & t0, const PIDateTime & t1); PIP_EXPORT bool operator >(const PIDateTime & t0, const PIDateTime & t1); inline bool operator !=(const PIDateTime & t0, const PIDateTime & t1) {return !(t0 == t1);} inline bool operator <=(const PIDateTime & t0, const PIDateTime & t1) {return !(t0 > t1);} inline bool operator >=(const PIDateTime & t0, const PIDateTime & t1) {return !(t0 < t1);} class PIP_EXPORT PITimer #ifndef PIP_TIMER_RT : public PIThread #else : public PIObject #endif { PIOBJECT(PITimer) public: //! \brief Constructs timer with execution function \b slot and common data \b data. PITimer(TimerEvent slot = 0, void * data = 0, bool threaded = true); PITimer(bool threaded); virtual ~PITimer(); //! \brief Set custom data. void setData(void * data_) {data = data_;} //! \brief Set timer execution function. void setSlot(TimerEvent slot) {ret_func = slot;} //! \brief Returns current loop delay. double interval() const {return interval_;} EVENT_HANDLER0(void, reset) { # ifdef WINDOWS //t_st = GetCurrentTime(); pc_st = __PIQueryPerformanceCounter(); # elif defined(MAC_OS) clock_get_time(__pi_mac_clock, &t_st); # else clock_gettime(0, &t_st); # endif } EVENT_HANDLER1(void, start, int, msecs) {start(double(msecs));} EVENT_HANDLER1(void, start, double, msecs); EVENT_HANDLER2(void, deferredStart, double, interval_msecs, double, delay_msecs); EVENT_HANDLER2(void, deferredStart, double, interval_msecs, const PIDateTime &, start_datetime); #ifndef PIP_TIMER_RT EVENT_HANDLER0(void, stop) {running_ = false; PIThread::stop();} #else EVENT_HANDLER0(void, stop); EVENT_HANDLER0(bool, waitForFinish) {return waitForFinish(-1);} EVENT_HANDLER1(bool, waitForFinish, int, timeout_msecs); bool isRunning() const {return running_;} void needLockRun(bool need) {lockRun = need;} EVENT_HANDLER0(void, lock) {mutex_.lock();} EVENT_HANDLER0(void, unlock) {mutex_.unlock();} #endif //! \brief Add frequency delimiter \b delim with optional delimiter slot \b slot. void addDelimiter(int delim, TimerEvent slot = 0) {ret_funcs << TimerSlot(slot, delim);} //! \brief Remove all frequency delimiters \b delim. void removeDelimiter(int delim) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].delim == delim) {ret_funcs.remove(i); i--;}} //! \brief Remove all frequency delimiters with slot \b slot. void removeDelimiter(TimerEvent slot) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].slot == slot) {ret_funcs.remove(i); i--;}} //! \brief Remove all frequency delimiters \b delim with slot \b slot. void removeDelimiter(int delim, TimerEvent slot) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].slot == slot && ret_funcs[i].delim == delim) {ret_funcs.remove(i); i--;}} void setDelimiterValue(int delim, int value) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].delim == delim) ret_funcs[i].tick = value;} void setDelimiterValue(TimerEvent slot, int value) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].slot == slot) ret_funcs[i].tick = value;} void setDelimiterValue(int delim, TimerEvent slot, int value) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].slot == slot && ret_funcs[i].delim == delim) ret_funcs[i].tick = value;} int delimiterValue(int delim) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].delim == delim) return ret_funcs[i].tick; return -1;} int delimiterValue(int delim, TimerEvent slot) {for (int i = 0; i < ret_funcs.size_s(); ++i) if (ret_funcs[i].slot == slot && ret_funcs[i].delim == delim) return ret_funcs[i].tick; return -1;} EVENT_HANDLER0(void, clearDelimiters) {ret_funcs.clear();} //! \brief Returns nanoseconds elapsed from last \a reset() execution or from timer creation. double elapsed_n(); // nanoseconds //! \brief Returns microseconds elapsed from last \a reset() execution or from timer creation. double elapsed_u(); // microseconds //! \brief Returns milliseconds elapsed from last \a reset() execution or from timer creation. double elapsed_m(); // milliseconds //! \brief Returns seconds elapsed from last \a reset() execution or from timer creation. double elapsed_s(); // seconds double reset_time_n(); // nanoseconds double reset_time_u(); // microseconds double reset_time_m(); // milliseconds double reset_time_s(); // seconds //! \brief Returns time mark of last \a reset() execution or timer creation. PISystemTime reset_time(); //! \brief Returns nanoseconds representation of current system time. static double elapsed_system_n(); // nanoseconds //! \brief Returns microseconds representation of current system time. static double elapsed_system_u(); // microseconds //! \brief Returns milliseconds representation of current system time. static double elapsed_system_m(); // milliseconds //! \brief Returns seconds representation of current system time. static double elapsed_system_s(); // seconds #ifdef PIP_TIMER_RT class TimerPool: public PIThread { public: TimerPool(): PIThread() {/*cout << "+++++new pool\n"; */ti = -1;} ~TimerPool() {stop();} void add(PITimer * t) {mutex.lock(); timers << TimerPair(t, 0); mutex.unlock();} void remove(PITimer * t); bool isEmpty() const {return timers.isEmpty();} typedef PIPair TimerPair; private: static void empty_handler(int) {} void begin(); void run(); void end() {/*cout << "pool end\n"; */if (ti != -1) timer_delete(timer); ti = -1;} int ti, si; sigset_t ss; sigevent se; sigval sv; itimerspec spec; timer_t timer; PIVector timers; PIMutex mutex; }; static void timer_event(sigval e); int ticks; #endif EVENT2(timeout, void * , data, int, delimiter) //! \handlers //! \{ /** \fn void reset() * \brief Set internal time mark to current system time * \details This function used for set start time mark. Later * you can find out elapsed time from this time mark to any * moment of time with \a elapsed_s(), \a elapsed_m(), * \a elapsed_u() or \a elapsed_n() function. * \sa \a elapsed_s(), \a elapsed_m(), \a elapsed_u(), \a elapsed_n() */ /** \fn void start(int msecs) * \brief Start timer with \b msecs loop delay * \details Start execution of timer functions with frequency = 1 / msecs Hz. */ /** \fn void start(double msecs) * \brief Start timer with \b msecs loop delay * \details Start execution of timer functions with frequency = 1. / msecs Hz. * Instead of \a start(int msecs) function this variant allow start timer * with frequencies more than 1 kHz. */ //! \fn void stop() //! \brief Stop timer /** \fn void deferredStart(double interval_msecs, double delay_msecs) * \brief Start timer with \b interval_msecs loop delay after \b delay_msecs delay. * \details Timer wait \b delay_msecs milliseconds and then normally starts with * \b interval_msecs loop delay. * \sa \a void start(double msecs), \a void deferredStart(double interval_msecs, const PIDateTime & start_datetime) */ /** \fn void deferredStart(double interval_msecs, const PIDateTime & start_datetime) * \brief Start timer with \b interval_msecs loop delay after \b start_datetime date and time. * \details Timer wait until \b start_datetime and then normally starts with * \b interval_msecs loop delay. * \sa \a void start(double msecs), \a void deferredStart(double interval_msecs, double delay_msecs) */ //! \fn void clearDelimiters() //! \brief Remove all frequency delimiters. //! \} //! \events //! \{ /** \fn void timeout(void * data, int delimiter) * \brief Raise on timer tick * \details \b Data can be set with function \a setData(void * data) or from constructor. * \b Delimiter if frequency delimiter, 1 for main loop. */ //! \} protected: //! Virtual timer execution function, similar to "slot" or event \a void timeout(void * data, int delimiter). //! By default is empty. virtual void tick(void * data, int delimiter) {;} private: #ifndef PIP_TIMER_RT void run(); void end() {interval_ = 0.;} PISystemTime st_time, inc_time; bool deferred_; #else bool threaded; volatile bool lockRun; PIMutex mutex_; int ti; itimerspec spec; timer_t timer; sigevent se; #endif bool running_; double interval_; #ifdef WINDOWS llong pc_st, pc_cur, tt_st, tt_cur; long #elif defined(MAC_OS) mach_timespec_t #else timespec #endif t_st, t_cur; struct TimerSlot { TimerSlot(TimerEvent slot_ = 0, int delim_ = 1) {slot = slot_; delim = delim_; tick = 0;} TimerEvent slot; int delim; int tick; }; void * data; TimerEvent ret_func; PIVector ret_funcs; }; #ifdef PIP_TIMER_RT extern PITimer::TimerPool * pool; #endif PIP_EXPORT PITime currentTime(); PIP_EXPORT PIDate currentDate(); PIP_EXPORT PIDateTime currentDateTime(); //! \relatesalso PISystemTime \brief Returns current system time PIP_EXPORT PISystemTime currentSystemTime(); PIP_EXPORT PIString time2string(const PITime & time, const PIString & format = "h:mm:ss"); // obsolete, use PITime.toString() instead PIP_EXPORT PIString date2string(const PIDate & date, const PIString & format = "d.MM.yyyy"); // obsolete, use PITime.toString() instead PIP_EXPORT PIString datetime2string(const PIDateTime & datetime, const PIString & format = "h:mm:ss d.MM.yyyy"); // obsolete, use PIDateTime.toString() instead #endif // PITIMER_H