/* PIP - Platform Independent Primitives Abstract input/output device Copyright (C) 2013 Ivan Pelipenko peri4ko@gmail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "piiodevice.h" #include "piconfig.h" /*! \class PIIODevice * \brief Base class for input/output classes * * \section PIIODevice_sec0 Synopsis * This class provide open/close logic, threaded read/write and virtual input/output * functions \a read() and \a write(). You should implement pure virtual * function \a openDevice() in your subclass. * * \section PIIODevice_sec1 Open and close * PIIODevice have boolean variable indicated open status. Returns of functions * \a openDevice() and \a closeDevice() change this variable. * * \section PIIODevice_sec2 Threaded read * PIIODevice based on PIThread, so it`s overload \a run() to exec \a read() * in background thread. If read is successful virtual function \a threadedRead() * is executed. Default implementation of this function execute external static * function set by \a setThreadedReadSlot() with data set by \a setThreadedReadData(). * Extrenal static function should have format \n * bool func_name(void * Threaded_read_data, uchar * readed_data, int readed_size)\n * Threaded read starts with function \a startThreadedRead(). * * \section PIIODevice_sec3 Threaded write * PIIODevice aggregate another PIThread to perform a threaded write by function * \a writeThreaded(). This function add task to internal queue and return * queue entry ID. You should start write thread by function \a startThreadedWrite. * On successful write event \a threadedWriteEvent is raised with two arguments - * task ID and written bytes count. * * \section PIIODevice_sec4 Internal buffer * PIIODevice have internal buffer for threaded read, and \a threadedRead() function * receive pointer to this buffer in first argument. You can adjust size of this buffer * by function \a setThreadedReadBufferSize() \n * Default size of this buffer is 4096 bytes * * \section PIIODevice_sec5 Reopen * When threaded read is begin its call \a open() if device is closed. While threaded * read running PIIODevice check if device opened every read and if not call \a open() * every reopen timeout if reopen enabled. Reopen timeout is set by \a setReopenTimeout(), * reopen enable is set by \a setReopenEnabled(). * * \section PIIODevice_sec6 Configuration * This is virtual function \a configureDevice() which executes when \a configure() * executes. This function takes two arguments: "e_main" and "e_parent" as void*. There * are pointers to PIConfig::Entry entries of section "section" and their parent. If * there is no parent "e_parent" = 0. Function \a configure() set three parameters of * device: "reopenEnabled", "reopenTimeout" and "threadedReadBufferSize", then execute * function \a configureDevice(). * \n Each ancestor of %PIIODevice reimlements \a configureDevice() function to be able * to be confured from configuration file. This parameters described at section * "Configurable parameters" in the class reference. Usage example: * \snippet piiodevice.cpp configure * Implement example: * \snippet piiodevice.cpp configureDevice * * \section PIIODevice_ex0 Example * \snippet piiodevice.cpp 0 */ PIIODevice::PIIODevice(): PIThread() { mode_ = ReadOnly; opened_ = init_ = thread_started_ = false; reopen_enabled_ = raise_threaded_read_ = true; reopen_timeout_ = 1000; ret_func_ = 0; ret_data_ = 0; tri = 0; buffer_tr.resize(4096); CONNECT2(void, void * , int, &timer, timeout, this, check_start); CONNECT(void, &write_thread, started, this, write_func); init(); } /*! \brief Constructs a PIIODevice with path and mode * \param path path to device * \param type mode for open * \param initNow init or not in constructor */ PIIODevice::PIIODevice(const PIString & path, PIIODevice::DeviceMode type, bool initNow): PIThread() { path_ = path; mode_ = type; opened_ = init_ = thread_started_ = false; reopen_enabled_ = raise_threaded_read_ = true; reopen_timeout_ = 1000; ret_func_ = 0; ret_data_ = 0; tri = 0; buffer_tr.resize(4096); CONNECT2(void, void * , int, &timer, timeout, this, check_start); CONNECT(void, &write_thread, started, this, write_func); if (initNow) init(); } PIIODevice::~PIIODevice() { stop(); if (opened_) { closeDevice(); if (!opened_) closed(); } } void PIIODevice::check_start(void * data, int delim) { //cout << "check " << tread_started_ << endl; if (open()) { thread_started_ = true; timer.stop(); } } void PIIODevice::write_func() { while (!write_thread.isStopping()) { while (!write_queue.isEmpty()) { if (write_thread.isStopping()) return; write_thread.lock(); PIPair item(write_queue.dequeue()); write_thread.unlock(); int ret = write(item.first); threadedWriteEvent(item.second, ret); } msleep(1); } } void PIIODevice::terminate() { thread_started_ = false; if (!isInitialized()) return; if (isRunning()) { stop(); PIThread::terminate(); } } void PIIODevice::begin() { //cout << " begin\n"; thread_started_ = false; if (!opened_) { if (open()) { thread_started_ = true; //cout << " open && ok\n"; return; } } else { thread_started_ = true; //cout << " ok\n"; return; } //init(); if (!timer.isRunning() && reopen_enabled_) timer.start(reopen_timeout_); } void PIIODevice::run() { if (!isReadable()) { //cout << "not readable\n"; PIThread::stop(); return; } if (!thread_started_) { msleep(1); //cout << "not started\n"; return; } readed_ = read(buffer_tr.data(), buffer_tr.size_s()); if (readed_ <= 0) { msleep(10); //cout << readed_ << ", " << errno << ", " << errorString() << endl; return; } threadedRead(buffer_tr.data(), readed_); if (raise_threaded_read_) threadedReadEvent(buffer_tr.data(), readed_); } PIByteArray PIIODevice::readForTime(double timeout_ms) { PIByteArray str; if (timeout_ms <= 0.) return str; int ret; uchar td[threadedReadBufferSize()]; timer.reset(); while (timer.elapsed_m() < timeout_ms) { ret = read(td, threadedReadBufferSize()); if (ret <= 0) msleep(1); else str.append(td, ret); } return str; } ullong PIIODevice::writeThreaded(const PIByteArray & data) { write_thread.lock(); write_queue.enqueue(PIPair(data, tri)); ++tri; write_thread.unlock(); return tri - 1; } bool PIIODevice::configure(const PIString & config_file, const PIString & section, bool parent_section) { PIConfig conf(config_file, PIIODevice::ReadOnly); if (!conf.isOpened()) return false; bool ex = true; PIConfig::Entry em; if (section.isEmpty()) em = conf.rootEntry(); else em = conf.getValue(section, PIString(), &ex); if (!ex) return false; PIConfig::Entry * ep = 0; if (parent_section) ep = em.parent(); if (ep != 0) { setReopenEnabled(ep->getValue("reopenEnabled", reopen_enabled_, &ex)); if (!ex) setReopenEnabled(em.getValue("reopenEnabled", reopen_enabled_)); setReopenTimeout(ep->getValue("reopenTimeout", reopen_timeout_, &ex)); if (!ex) setReopenTimeout(em.getValue("reopenTimeout", reopen_timeout_)); setThreadedReadBufferSize(ep->getValue("threadedReadBufferSize", buffer_tr.size_s(), &ex)); if (!ex) setThreadedReadBufferSize(em.getValue("threadedReadBufferSize", buffer_tr.size_s())); } else { setReopenEnabled(em.getValue("reopenEnabled", reopen_enabled_)); setReopenTimeout(em.getValue("reopenTimeout", reopen_timeout_)); setThreadedReadBufferSize(em.getValue("threadedReadBufferSize", buffer_tr.size_s())); } return configureDevice(&em, ep); }