/*! \file pimathmatrix.h * \brief PIMathMatrix */ /* PIP - Platform Independent Primitives PIMathMatrix Copyright (C) 2016 Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef PIMATHMATRIX_H #define PIMATHMATRIX_H #include "pimathvector.h" /// Matrix templated #define PIMM_FOR(r, c) for (uint c = 0; c < Cols; ++c) { for (uint r = 0; r < Rows; ++r) { #define PIMM_FOR_WB(r, c) for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) // without brakes #define PIMM_FOR_I(r, c) for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) { #define PIMM_FOR_I_WB(r, c) for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) // without brakes #define PIMM_FOR_C(v) for (uint v = 0; v < Cols; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v) #pragma pack(push, 1) template class PIP_EXPORT PIMathMatrixT { typedef PIMathMatrixT _CMatrix; typedef PIMathMatrixT _CMatrixI; typedef PIMathVectorT _CMCol; typedef PIMathVectorT _CMRow; public: PIMathMatrixT() {resize(Rows, Cols);} PIMathMatrixT(Type fval, ...) {resize(Rows, Cols); va_list vl; va_start(vl, fval); PIMM_FOR_I_WB(r, c) m[r][c] = (r + c == 0 ? fval : va_arg(vl, Type)); va_end(vl);} PIMathMatrixT(const PIVector & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];} //PIMathMatrixT(const _CMatrix & o) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];} static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;} static _CMatrix rotation(double angle) {return _CMatrix();} static _CMatrix rotationX(double angle) {return _CMatrix();} static _CMatrix rotationY(double angle) {return _CMatrix();} static _CMatrix rotationZ(double angle) {return _CMatrix();} static _CMatrix scaleX(double factor) {return _CMatrix();} static _CMatrix scaleY(double factor) {return _CMatrix();} static _CMatrix scaleZ(double factor) {return _CMatrix();} uint cols() const {return Cols;} uint rows() const {return Rows;} _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;} _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;} _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;} _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;} _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;} _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;} //inline _CMatrix & set(Type fval, ...) {m[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) m[i] = va_arg(vl, Type); va_end(vl); return *this;} //inline void normalize() {Type tv = length(); if (tv == Type(1)) return; PIMV_FOR(i, 0) m[i] /= tv;} bool isSquare() const {return cols() == rows();} bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;} Type & at(uint row, uint col) {return m[row][col];} Type at(uint row, uint col) const {return m[row][col];} Type * operator [](uint row) {return m[row];} const Type * operator [](uint row) const {return m[row];} _CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];} void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];} void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;} void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;} _CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;} _CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;} _CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;} _CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;} _CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;} Type determinant(bool * ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) if (r == c) ret *= m[r][c]; return ret; } _CMatrix & toUpperTriangular(bool * ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < Cols - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; memcpy(m, smat.m, sizeof(Type) * Cols * Rows); return *this; } _CMatrix & invert(bool * ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); } for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; } //cout << i << endl << smat << endl; if (i < Cols - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv; } for (uint i = Cols - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; } } if (ok != 0) *ok = true; memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows); return *this; } _CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrixI transposed() const {_CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; return tm;} private: void resize(uint rows_, uint cols_, const Type & new_value = Type()) {r_ = rows_; c_ = cols_; PIMM_FOR_WB(r, c) m[r][c] = new_value;} int c_, r_; Type m[Rows][Cols]; }; #pragma pack(pop) template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;} template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = factor; tm[1][1] = 1.; return tm;} template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = 1.; tm[1][1] = factor; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = s; tm[1][2] = -s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = -s; tm[0][2] = s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = s; tm[0][1] = -s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {PIMathMatrixT<3u, 3u> tm; tm[1][1] = tm[2][2] = 1.; tm[0][0] = factor; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[2][2] = 1.; tm[1][1] = factor; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[1][1] = 1.; tm[2][2] = factor; return tm;} #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) {s << '{'; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << ' ';} s << '}'; return s;} #endif template inline PICout operator <<(PICout s, const PIMathMatrixT & m) {s << '{'; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << PICoutManipulators::NewLine << ' ';} s << '}'; return s;} /// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1} template inline PIMathMatrixT operator *(const PIMathMatrixT & fm, const PIMathMatrixT & sm) { PIMathMatrixT tm; Type t; for (uint j = 0; j < Rows0; ++j) { for (uint i = 0; i < Cols1; ++i) { t = Type(0); for (uint k = 0; k < CR; ++k) t += fm[j][k] * sm[k][i]; tm[j][i] = t; } } return tm; } /// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows} template inline PIMathVectorT operator *(const PIMathMatrixT & fm, const PIMathVectorT & sv) { PIMathVectorT tv; Type t; for (uint j = 0; j < Rows; ++j) { t = Type(0); for (uint i = 0; i < Cols; ++i) t += fm[j][i] * sv[i]; tv[j] = t; } return tv; } /// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols} template inline PIMathVectorT operator *(const PIMathVectorT & sv, const PIMathMatrixT & fm) { PIMathVectorT tv; Type t; for (uint j = 0; j < Cols; ++j) { t = Type(0); for (uint i = 0; i < Rows; ++i) t += fm[i][j] * sv[i]; tv[j] = t; } return tv; } /// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows} template inline PIMathMatrixT operator *(const Type & x, const PIMathMatrixT & v) { return v * x; } typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i; typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i; typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i; typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d; typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d; typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d; template class PIMathMatrix; #undef PIMV_FOR #undef PIMM_FOR #undef PIMM_FOR_WB #undef PIMM_FOR_I #undef PIMM_FOR_I_WB #undef PIMM_FOR_C #undef PIMM_FOR_R /// Matrix #define PIMM_FOR(c, r) for (uint c = 0; c < cols_; ++c) { for (uint r = 0; r < rows_; ++r) { #define PIMM_FOR_WB(c, r) for (uint c = 0; c < cols_; ++c) for (uint r = 0; r < rows_; ++r) // without brakes #define PIMM_FOR_I(c, r) for (uint r = 0; r < rows_; ++r) { for (uint c = 0; c < cols_; ++c) { #define PIMM_FOR_I_WB(c, r) for (uint r = 0; r < rows_; ++r) for (uint c = 0; c < cols_; ++c) // without brakes #define PIMM_FOR_C(v) for (uint v = 0; v < cols_; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < rows_; ++v) template class PIP_EXPORT PIMathMatrix { typedef PIMathMatrix _CMatrix; typedef PIMathVector _CMCol; typedef PIMathVector _CMRow; public: PIMathMatrix(const uint cols = 3, const uint rows = 3) {resize(cols, rows);} PIMathMatrix(const uint cols, const uint rows, Type fval, ...) {resize(cols, rows); va_list vl; va_start(vl, fval); PIMM_FOR_I_WB(c, r) m[c][r] = (r + c == 0 ? fval : va_arg(vl, Type)); va_end(vl);} PIMathMatrix(const uint cols, const uint rows, const PIVector & val) {resize(cols, rows); int i = 0; PIMM_FOR_I_WB(c, r) m[c][r] = val[i++];} static _CMatrix identity(const uint cols_, const uint rows_) {_CMatrix tm(cols_, rows_); PIMM_FOR_WB(c, r) tm.m[c][r] = (c == r ? Type(1) : Type(0)); return tm;} uint cols() const {return cols_;} uint rows() const {return rows_;} _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[index][i]; return tv;} _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[i][index]; return tv;} _CMatrix & resize(const uint cols, const uint rows, const Type & new_value = Type()) {cols_ = cols; rows_ = rows; m.resize(cols); PIMM_FOR_C(i) m[i].resize(rows, new_value); return *this;} _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[index][i] = v[i]; return *this;} _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[i][index] = v[i]; return *this;} _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[i][r0]; m[i][r0] = m[i][r1]; m[i][r1] = t;} return *this;} _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[c0][i]; m[c0][i] = m[c1][i]; m[c1][i] = t;} return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] = v; return *this;} //inline _CMatrix & set(Type fval, ...) {m[0] = fval; va_list vl; va_start(vl, fval); PIMV_FOR(i, 1) m[i] = va_arg(vl, Type); va_end(vl); return *this;} //inline void normalize() {Type tv = length(); if (tv == Type(1)) return; PIMV_FOR(i, 0) m[i] /= tv;} bool isSquare() const {return cols() == rows();} bool isIdentity() const {PIMM_FOR_WB(c, r) if ((c == r) ? m[c][r] != Type(1) : m[c][r] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_WB(c, r) if (m[c][r] != Type(0)) return false; return true;} Type & at(uint col, uint row) {return m[col][row];} Type at(uint col, uint row) const {return m[col][row];} PIVector & operator [](uint col) {return m[col];} PIVector operator [](uint col) const {return m[col];} void operator =(const _CMatrix & sm) {m = sm.m;} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(c, r) if (m[c][r] != sm.m[c][r]) return false; return true;} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] += sm.m[c][r];} void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(c, r) m[c][r] -= sm.m[c][r];} void operator *=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] *= v;} void operator /=(const Type & v) {PIMM_FOR_WB(c, r) m[c][r] /= v;} _CMatrix operator -() {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] = -m[c][r]; return tm;} _CMatrix operator +(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] += sm.m[c][r]; return tm;} _CMatrix operator -(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] -= sm.m[c][r]; return tm;} _CMatrix operator *(const Type & v) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] *= v; return tm;} _CMatrix operator /(const Type & v) {_CMatrix tm(*this); PIMM_FOR_WB(c, r) tm.m[c][r] /= v; return tm;} _CMatrix & toUpperTriangular(bool * ok = 0) { if (cols_ != rows_) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < cols_; ++i) { ndet = true; for (uint j = 0; j < rows_; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < cols_; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < cols_; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < rows_; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < cols_; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < cols_ - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; m = smat.m; return *this; } _CMatrix & invert(bool * ok = 0, _CMCol * sv = 0) { if (cols_ != rows_) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(cols_, rows_), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < cols_; ++i) { ndet = true; for (uint j = 0; j < rows_; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < cols_; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < cols_; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); if (sv != 0) sv->swap(i, crow); } for (uint j = i + 1; j < rows_; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < cols_; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < cols_; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } //cout << i << endl << smat << endl; if (i < cols_ - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < cols_; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < cols_; ++j) mtmp.m[j][i] /= iddiv; if (sv != 0) (*sv)[i] /= iddiv; } for (uint i = cols_ - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < cols_; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } } if (ok != 0) *ok = true; m = mtmp.m; return *this; } _CMatrix inverted(bool * ok = 0) {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrix transposed() {_CMatrix tm(rows_, cols_); PIMM_FOR_WB(c, r) tm[r][c] = m[c][r]; return tm;} private: uint cols_, rows_; PIVector > m; }; #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << ' ';} s << '}'; return s;} #endif template inline PICout operator <<(PICout s, const PIMathMatrix & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << PICoutManipulators::NewLine << ' ';} s << '}'; return s;} /// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0} template inline PIMathMatrix operator *(const PIMathMatrix & fm, const PIMathMatrix & sm) { uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols(); PIMathMatrix tm(cols1, rows0); if (fm.cols() != sm.rows()) return tm; Type t; for (uint j = 0; j < rows0; ++j) { for (uint i = 0; i < cols1; ++i) { t = Type(0); for (uint k = 0; k < cr; ++k) t += fm[k][j] * sm[i][k]; tm[i][j] = t; } } return tm; } /// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows} template inline PIMathVector operator *(const PIMathMatrix & fm, const PIMathVector & sv) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(r); if (c != sv.size()) return tv; Type t; for (uint i = 0; i < r; ++i) { t = Type(0); for (uint j = 0; j < c; ++j) t += fm[j][i] * sv[j]; tv[i] = t; } return tv; } typedef PIMathMatrix PIMathMatrixi; typedef PIMathMatrix PIMathMatrixd; #undef PIMV_FOR #undef PIMM_FOR #undef PIMM_FOR_WB #undef PIMM_FOR_I #undef PIMM_FOR_I_WB #undef PIMM_FOR_C #undef PIMM_FOR_R #endif // PIMATHMATRIX_H