/*! \file pimathmatrix.h * \brief PIMathMatrix */ /* PIP - Platform Independent Primitives PIMathMatrix Copyright (C) 2018 Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef PIMATHMATRIX_H #define PIMATHMATRIX_H #include "pimathvector.h" #include "pimathcomplex.h" template inline bool _PIMathMatrixNullCompare(const T v) { return (piAbs(v) < T(1E-100)); } template<> inline bool _PIMathMatrixNullCompare(const complexf v) { return (abs(v) < float(1E-100)); } template<> inline bool _PIMathMatrixNullCompare(const complexd v) { return (abs(v) < double(1E-100)); } /// Matrix templated #define PIMM_FOR(r, c) for (uint c = 0; c < Cols; ++c) { for (uint r = 0; r < Rows; ++r) { #define PIMM_FOR_WB(r, c) for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) // without brakes #define PIMM_FOR_I(r, c) for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) { #define PIMM_FOR_I_WB(r, c) for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) // without brakes #define PIMM_FOR_C(v) for (uint v = 0; v < Cols; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v) #pragma pack(push, 1) template class PIP_EXPORT PIMathMatrixT { typedef PIMathMatrixT _CMatrix; typedef PIMathMatrixT _CMatrixI; typedef PIMathVectorT _CMCol; typedef PIMathVectorT _CMRow; public: PIMathMatrixT() {resize(Rows, Cols);} PIMathMatrixT(const PIVector & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];} //PIMathMatrixT(const _CMatrix & o) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];} static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;} static _CMatrix rotation(double angle) {return _CMatrix();} static _CMatrix rotationX(double angle) {return _CMatrix();} static _CMatrix rotationY(double angle) {return _CMatrix();} static _CMatrix rotationZ(double angle) {return _CMatrix();} static _CMatrix scaleX(double factor) {return _CMatrix();} static _CMatrix scaleY(double factor) {return _CMatrix();} static _CMatrix scaleZ(double factor) {return _CMatrix();} uint cols() const {return Cols;} uint rows() const {return Rows;} _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;} _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;} _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;} _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;} _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;} _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;} bool isSquare() const {return cols() == rows();} bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;} Type & at(uint row, uint col) {return m[row][col];} Type at(uint row, uint col) const {return m[row][col];} Type * operator [](uint row) {return m[row];} const Type * operator [](uint row) const {return m[row];} _CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];} void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];} void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;} void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;} _CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;} _CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;} _CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;} _CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;} _CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;} Type determinant(bool * ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) if (r == c) ret *= m[r][c]; return ret; } _CMatrix & toUpperTriangular(bool * ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < Cols - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; memcpy(m, smat.m, sizeof(Type) * Cols * Rows); return *this; } _CMatrix & invert(bool * ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < Cols; ++j) if (smat.m[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); } for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; } //cout << i << endl << smat << endl; if (i < Cols - 1) { if (fabs(smat.m[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv; } for (uint i = Cols - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; } } if (ok != 0) *ok = true; memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows); return *this; } _CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrixI transposed() const {_CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; return tm;} private: void resize(uint rows_, uint cols_, const Type & new_value = Type()) {r_ = rows_; c_ = cols_; PIMM_FOR_WB(r, c) m[r][c] = new_value;} int c_, r_; Type m[Rows][Cols]; }; #pragma pack(pop) template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;} template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = factor; tm[1][1] = 1.; return tm;} template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = 1.; tm[1][1] = factor; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = s; tm[1][2] = -s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = -s; tm[0][2] = s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = s; tm[0][1] = -s; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {PIMathMatrixT<3u, 3u> tm; tm[1][1] = tm[2][2] = 1.; tm[0][0] = factor; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[2][2] = 1.; tm[1][1] = factor; return tm;} template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[1][1] = 1.; tm[2][2] = factor; return tm;} #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) {s << '{'; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << ' ';} s << '}'; return s;} #endif template inline PICout operator <<(PICout s, const PIMathMatrixT & m) {s << '{'; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << PICoutManipulators::NewLine << ' ';} s << '}'; return s;} /// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1} template inline PIMathMatrixT operator *(const PIMathMatrixT & fm, const PIMathMatrixT & sm) { PIMathMatrixT tm; Type t; for (uint j = 0; j < Rows0; ++j) { for (uint i = 0; i < Cols1; ++i) { t = Type(0); for (uint k = 0; k < CR; ++k) t += fm[j][k] * sm[k][i]; tm[j][i] = t; } } return tm; } /// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows} template inline PIMathVectorT operator *(const PIMathMatrixT & fm, const PIMathVectorT & sv) { PIMathVectorT tv; Type t; for (uint j = 0; j < Rows; ++j) { t = Type(0); for (uint i = 0; i < Cols; ++i) t += fm[j][i] * sv[i]; tv[j] = t; } return tv; } /// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols} template inline PIMathVectorT operator *(const PIMathVectorT & sv, const PIMathMatrixT & fm) { PIMathVectorT tv; Type t; for (uint j = 0; j < Cols; ++j) { t = Type(0); for (uint i = 0; i < Rows; ++i) t += fm[i][j] * sv[i]; tv[j] = t; } return tv; } /// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows} template inline PIMathMatrixT operator *(const Type & x, const PIMathMatrixT & v) { return v * x; } typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i; typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i; typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i; typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d; typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d; typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d; template class PIMathMatrix; #undef PIMM_FOR #undef PIMM_FOR_WB #undef PIMM_FOR_I #undef PIMM_FOR_I_WB #undef PIMM_FOR_C #undef PIMM_FOR_R /// Matrix #define PIMM_FOR(c, r) for (uint c = 0; c < _V2D::cols_; ++c) for (uint r = 0; r < _V2D::rows_; ++r) #define PIMM_FOR_I(c, r) for (uint r = 0; r < _V2D::rows_; ++r) for (uint c = 0; c < _V2D::cols_; ++c) #define PIMM_FOR_A(v) for (uint v = 0; v < _V2D::mat.size(); ++v) #define PIMM_FOR_C(v) for (uint v = 0; v < _V2D::cols_; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < _V2D::rows_; ++v) template class PIP_EXPORT PIMathMatrix : public PIVector2D { typedef PIVector2D _V2D; typedef PIMathMatrix _CMatrix; typedef PIMathVector _CMCol; typedef PIMathVector _CMRow; public: PIMathMatrix(const uint cols = 3, const uint rows = 3) {resize(cols, rows);} PIMathMatrix(const uint cols, const uint rows, const PIVector & val) {resize(cols, rows); int i=0; PIMM_FOR_I(c, r) (*this)[r][c] = val[i++];} PIMathMatrix(const PIVector > & val) {_V2D::cols_ = _V2D::rows_ = 0; if(!val.isEmpty()) {resize(val[0].size(), val.size()); PIMM_FOR_I(c, r) (*this)[r][c] = val[r][c];}} PIMathMatrix(const PIVector2D & val) {_V2D::cols_ = _V2D::rows_ = 0; if(!val.isEmpty()) {resize(val.cols(), val.rows()); PIMM_FOR_I(c, r) (*this)[r][c] = val[r][c];}} static _CMatrix identity(const uint cols, const uint rows) {_CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm[r][c] = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix matrixRow(const PIMathVector & val) {return _CMatrix(val.size(), 1, val.toVector());} static _CMatrix matrixCol(const PIMathVector & val) {return _CMatrix(1, val.size(), val.toVector());} _CMatrix & resize(const uint cols, const uint rows, const Type & new_value = Type()) {_V2D::_resizeRaw(rows, cols); PIMM_FOR_A(i) _V2D::mat[i] = new_value; return *this;} _CMatrix & swapCols(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = (*this)[i][r0]; (*this)[i][r0] = (*this)[i][r1]; (*this)[i][r1] = t;} return *this;} _CMatrix & swapRows(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = (*this)[c0][i]; (*this)[c0][i] = (*this)[c1][i]; (*this)[c1][i] = t;} return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] = v; return *this;} bool isSquare() const {return _V2D::cols_ == _V2D::rows_;} bool isIdentity() const {PIMM_FOR(c, r) if ((c == r) ? (*this)[c][r] != Type(1) : (*this)[c][r] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false; return true;} _CMatrix & operator =(const PIVector > & v) {*this = PIVector2D(v); return *this;} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false; return true;} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} void operator +=(const _CMatrix & sm) {PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i];} void operator -=(const _CMatrix & sm) {PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i];} void operator *=(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] *= v;} void operator /=(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] /= v;} _CMatrix operator -() {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i]; return tm;} _CMatrix operator +(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] += sm.mat[i]; return tm;} _CMatrix operator -(const _CMatrix & sm) {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i]; return tm;} _CMatrix operator *(const Type & v) {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] *= v; return tm;} _CMatrix operator /(const Type & v) {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] /= v; return tm;} Type determinant(bool * ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); for (uint c = 0; c < _V2D::cols_; ++c) for (uint r = 0; r < _V2D::rows_; ++r) if (r == c) ret *= m[r][c]; return ret; } Type trace(bool * ok = 0) const { Type ret = Type(0); if (!isSquare()) { if (ok != 0) *ok = false; return ret; } for (uint i = 0; i < _V2D::cols_; ++i) { ret += (*this)[i][i]; } if (ok != 0) *ok = true; return ret; } _CMatrix & toUpperTriangular(bool * ok = 0) { if (!isSquare()) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < _V2D::cols_; ++i) { ndet = true; for (uint j = 0; j < _V2D::rows_; ++j) if (smat.mat[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < _V2D::cols_; ++j) if (smat.mat[j][i] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < _V2D::cols_; ++i) { crow = i; while (smat.mat[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < _V2D::rows_; ++j) { mul = smat.mat[i][j] / smat.mat[i][i]; for (uint k = i; k < _V2D::cols_; ++k) smat.mat[k][j] -= mul * smat.mat[k][i]; } if (i < _V2D::cols_ - 1) { if (fabs(smat.mat[i+1][i+1]) < Type(1E-100)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; _V2D::mat.swap(smat.mat); return *this; } _CMatrix & invert(bool * ok = 0, _CMCol * sv = 0) { if (!isSquare()) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(_V2D::cols_, _V2D::rows_), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < _V2D::cols_; ++i) { ndet = true; for (uint j = 0; j < _V2D::rows_; ++j) if (smat[i][j] != Type(0)) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } for (uint j = 0; j < _V2D::cols_; ++j) if (smat[j][i] != Type(0)) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < _V2D::cols_; ++i) { crow = i; while (smat[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); if (sv != 0) sv->swap(i, crow); } for (uint j = i + 1; j < _V2D::rows_; ++j) { mul = smat[i][j] / smat[i][i]; for (uint k = i; k < _V2D::cols_; ++k) smat[k][j] -= mul * smat[k][i]; for (uint k = 0; k < _V2D::cols_; ++k) mtmp[k][j] -= mul * mtmp[k][i]; if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } //cout << i << endl << smat << endl; if (i < _V2D::cols_ - 1) { if (_PIMathMatrixNullCompare(smat[i+1][i+1])) { if (ok != 0) *ok = false; return *this; } } iddiv = smat[i][i]; for (uint j = i; j < _V2D::cols_; ++j) smat[j][i] /= iddiv; for (uint j = 0; j < _V2D::cols_; ++j) mtmp[j][i] /= iddiv; if (sv != 0) (*sv)[i] /= iddiv; } for (uint i = _V2D::cols_ - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat[i][j]; smat[i][j] -= mul; for (uint k = 0; k < _V2D::cols_; ++k) mtmp[k][j] -= mtmp[k][i] * mul; if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } } if (ok != 0) *ok = true; PIVector2D::swap(mtmp); return *this; } _CMatrix inverted(bool * ok = 0) {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrix transposed() {_CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR(c, r) tm[c][r] = (*this)[r][c]; return tm;} private: // size_t rows_, cols_; // PIVector mat; }; #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[c][r]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << ' ';} s << '}'; return s;} #endif template inline PICout operator <<(PICout s, const PIMathMatrix & m) {s << '{'; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m[r][c]; if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << PICoutManipulators::NewLine << ' ';} s << '}'; return s;} /// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0} template inline PIMathMatrix operator *(const PIMathMatrix & fm, const PIMathMatrix & sm) { uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols(); PIMathMatrix tm(cols1, rows0); if (fm.cols() != sm.rows()) return tm; Type t; for (uint j = 0; j < rows0; ++j) { for (uint i = 0; i < cols1; ++i) { t = Type(0); for (uint k = 0; k < cr; ++k) t += fm[j][k] * sm[k][i]; tm[j][i] = t; } } return tm; } /// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows} template inline PIMathVector operator *(const PIMathMatrix & fm, const PIMathVector & sv) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(r); if (c != sv.size()) return tv; Type t; for (uint i = 0; i < r; ++i) { t = Type(0); for (uint j = 0; j < c; ++j) t += fm[j][i] * sv[j]; tv[i] = t; } return tv; } typedef PIMathMatrix PIMathMatrixi; typedef PIMathMatrix PIMathMatrixd; template PIMathMatrix > hermitian(const PIMathMatrix > & m) { PIMathMatrix > ret(m); for (uint r = 0; r < ret.rows(); ++r) for (uint c = 0; c < ret.cols(); ++c) ret[r][c].imag(-(ret[r][c].imag())); return ret.transposed(); } #undef PIMM_FOR #undef PIMM_FOR_I #undef PIMM_FOR_A #undef PIMM_FOR_C #undef PIMM_FOR_R #endif // PIMATHMATRIX_H