/* PIP - Platform Independent Primitives Class for geo position storage and conversions Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "pigeoposition.h" const double PIGeoPosition::one_cm_tolerance = 0.01; // One centimeter tolerance. const double PIGeoPosition::one_mm_tolerance = 0.001; // One milimeter tolerance. const double PIGeoPosition::one_um_tolerance = 0.000001; // One micron tolerance. double PIGeoPosition::position_tolerance = PIGeoPosition::one_mm_tolerance; // Default tolerance in meters. PIGeoPosition::PIGeoPosition() { initialize(PIMathVectorT3d()); } PIGeoPosition::PIGeoPosition(double a, double b, double c, PIGeoPosition::CoordinateSystem s, PIEllipsoidModel ell) { PIMathVectorT3d v; v[0] = a; v[1] = b; v[2] = c; initialize(v, s, ell); } PIGeoPosition::PIGeoPosition(PIMathVectorT3d v, PIGeoPosition::CoordinateSystem s, PIEllipsoidModel ell) { initialize(v, s, ell); } PIGeoPosition & PIGeoPosition::transformTo(PIGeoPosition::CoordinateSystem sys) { if (sys == Unknown || sys == s) return *this; PIGeoPosition tmp(*this); switch (s) { case Unknown: return *this; case Geodetic: switch (sys) { case Unknown: case Geodetic: return *this; case Geocentric: convertGeodeticToGeocentric(*this, tmp, el); tmp.s = Geocentric; break; case Cartesian: convertGeodeticToCartesian(*this, tmp, el); tmp.s = Cartesian; break; case Spherical: convertGeodeticToGeocentric(*this, tmp, el); tmp[0] = 90 - tmp[0]; // geocen -> sph tmp.s = Spherical; break; } break; case Geocentric: switch (sys) { case Unknown: case Geocentric: return *this; case Geodetic: convertGeocentricToGeodetic(*this, tmp, el); tmp.s = Geodetic; break; case Cartesian: convertGeocentricToCartesian(*this, tmp); tmp.s = Cartesian; break; case Spherical: tmp[0] = 90 - tmp[0]; // geocen -> sph tmp.s = Spherical; break; } break; case Cartesian: switch (sys) { case Unknown: case Cartesian: return *this; case Geodetic: convertCartesianToGeodetic(*this, tmp, el); tmp.s = Geodetic; break; case Geocentric: convertCartesianToGeocentric(*this, tmp); tmp.s = Geocentric; break; case Spherical: convertCartesianToSpherical(*this, tmp); tmp.s = Spherical; break; } break; case Spherical: switch (sys) { case Unknown: case Spherical: return *this; case Geodetic: (*this)[0] = 90 - (*this)[0]; // sph -> geocen convertGeocentricToGeodetic(*this, tmp, el); tmp.s = Geodetic; break; case Geocentric: tmp[0] = 90 - tmp[0]; // sph -> geocen tmp.s = Geocentric; break; case Cartesian: convertSphericalToCartesian(*this, tmp); tmp.s = Cartesian; break; } break; } *this = tmp; return *this; } double PIGeoPosition::x() const { if (s == Cartesian) return (*this)[0]; PIGeoPosition t(*this); t.transformTo(Cartesian); return t[0]; } double PIGeoPosition::y() const { if (s == Cartesian) return (*this)[1]; PIGeoPosition t(*this); t.transformTo(Cartesian); return t[1]; } double PIGeoPosition::z() const { if (s == Cartesian) return (*this)[2]; PIGeoPosition t(*this); t.transformTo(Cartesian); return t[2]; } double PIGeoPosition::latitudeGeodetic() const { if (s == Geodetic) return (*this)[0]; PIGeoPosition t(*this); t.transformTo(Geodetic); return t[0]; } double PIGeoPosition::latitudeGeocentric() const { if (s == Geocentric) return (*this)[0]; PIGeoPosition t(*this); t.transformTo(Geocentric); return t[0]; } double PIGeoPosition::longitude() const { if (s != Cartesian) return (*this)[1]; PIGeoPosition t(*this); t.transformTo(Spherical); return t[1]; } double PIGeoPosition::theta() const { if (s == Spherical) return (*this)[0]; PIGeoPosition t(*this); t.transformTo(Spherical); return t[0]; } double PIGeoPosition::phi() const { return longitude(); } double PIGeoPosition::radius() const { if (s == Spherical || s == Geocentric) return (*this)[2]; PIGeoPosition t(*this); t.transformTo(Spherical); return t[2]; } double PIGeoPosition::height() const { if (s == Geodetic) return (*this)[2]; PIGeoPosition t(*this); t.transformTo(Geodetic); return t[2]; } PIGeoPosition & PIGeoPosition::setGeodetic(double lat, double lon, double ht, PIEllipsoidModel ell) { assertm(lat <= 90 && lat >= -90, "Achtung! Invalid latitude in setGeodetic"); (*this)[0] = lat; (*this)[1] = lon; if ((*this)[1] < 0) (*this)[1] += 360 * (1 + (unsigned long)((*this)[1] / 360)); else if ((*this)[1] >= 360) (*this)[1] -= 360 * (unsigned long)((*this)[1] / 360); (*this)[2] = ht; el = ell; s = Geodetic; return *this; } PIGeoPosition & PIGeoPosition::setGeocentric(double lat, double lon, double rad) { assertm(lat <= 90 && lat >= -90, "Achtung! Invalid latitude in setGeocentric"); assertm(rad >= 0, "Achtung! Invalid radius in setGeocentric"); (*this)[0] = lat; (*this)[1] = lon; (*this)[2] = rad; if ((*this)[1] < 0) (*this)[1] += 360 * (1 + (unsigned long)((*this)[1] / 360)); else if ((*this)[1] >= 360) (*this)[1] -= 360 * (unsigned long)((*this)[1] / 360); s = Geocentric; return *this; } PIGeoPosition & PIGeoPosition::setSpherical(double theta, double phi, double rad) { assertm(theta <= 180 && theta >= 0, "Achtung! Invalid theta in setSpherical"); assertm(rad >= 0, "Achtung! Invalid radius in setSpherical"); (*this)[0] = theta; (*this)[1] = phi; (*this)[2] = rad; if ((*this)[1] < 0) (*this)[1] += 360 * (1 + (unsigned long)((*this)[1] / 360)); else if ((*this)[1] >= 360) (*this)[1] -= 360 * (unsigned long)((*this)[1] / 360); s = Spherical; return *this; } PIGeoPosition & PIGeoPosition::setECEF(double x, double y, double z) { (*this)[0] = x; (*this)[1] = y; (*this)[2] = z; s = Cartesian; return *this; } void PIGeoPosition::convertSphericalToCartesian(const PIMathVectorT3d & tpr, PIMathVectorT3d & xyz) { double st = sin(toRad(tpr[0])); xyz[0] = tpr[2] * st * cos(toRad(tpr[1])); xyz[1] = tpr[2] * st * sin(toRad(tpr[1])); xyz[2] = tpr[2] * cos(toRad(tpr[0])); } void PIGeoPosition::convertCartesianToSpherical(const PIMathVectorT3d & xyz, PIMathVectorT3d & tpr) { tpr[2] = xyz.length(); if (tpr[2] <= PIGeoPosition::position_tolerance / 5) { // zero-length Cartesian vector tpr[0] = 90.0; tpr[1] = 0.0; return; } tpr[0] = acos(xyz[2] / tpr[2]) * rad2deg; if (sqrt(xyz[0] * xyz[0] + xyz[1] * xyz[1]) < PIGeoPosition::position_tolerance / 5) { // pole tpr[1] = 0.0; return; } tpr[1] = atan2(xyz[1], xyz[0]) * rad2deg; if (tpr[1] < 0.0) tpr[1] += 360.0; } void PIGeoPosition::convertCartesianToGeodetic(const PIMathVectorT3d & xyz, PIMathVectorT3d & llh, PIEllipsoidModel ell) { double p, slat, nn, htold, latold; p = sqrt(xyz[0] * xyz[0] + xyz[1] * xyz[1]); if (p < PIGeoPosition::position_tolerance / 5) { // pole or origin llh[0] = (xyz[2] > 0.0 ? 90.0 : -90.0); llh[1] = 0.0; // lon undefined, really llh[2] = piAbsd(xyz[2]) - ell.a * sqrt(1.0 - ell.eccSquared()); return; } llh[0] = atan2(xyz[2], p * (1.0 - ell.eccSquared())); llh[2] = 0; for (int i = 0; i < 5; i++) { slat = sin(llh[0]); nn = ell.a / sqrt(1.0 - ell.eccSquared() * slat * slat); htold = llh[2]; llh[2] = p / cos(llh[0]) - nn; latold = llh[0]; llh[0] = atan2(xyz[2], p * (1.0 - ell.eccSquared() * (nn / (nn + llh[2])))); if (piAbsd(llh[0] - latold) < 1.0e-9 && piAbsd(llh[2] - htold) < 1.0e-9 * ell.a) break; } llh[1] = atan2(xyz[1], xyz[0]); if (llh[1] < 0.0) llh[1] += M_2PI; llh[0] *= rad2deg; llh[1] *= rad2deg; } void PIGeoPosition::convertGeodeticToCartesian(const PIMathVectorT3d & llh, PIMathVectorT3d & xyz, PIEllipsoidModel ell) { double slat = sin(toRad(llh[0])); double clat = cos(toRad(llh[0])); double nn = ell.a / sqrt(1.0 - ell.eccSquared() * slat * slat); xyz[0] = (nn + llh[2]) * clat * cos(toRad(llh[1])); xyz[1] = (nn + llh[2]) * clat * sin(toRad(llh[1])); xyz[2] = (nn * (1.0 - ell.eccSquared()) + llh[2]) * slat; } void PIGeoPosition::convertCartesianToGeocentric(const PIMathVectorT3d & xyz, PIMathVectorT3d & llr) { convertCartesianToSpherical(xyz, llr); llr[0] = 90.0 - llr[0]; // convert theta to latitude } void PIGeoPosition::convertGeocentricToCartesian(const PIMathVectorT3d & llr, PIMathVectorT3d & xyz) { PIMathVectorT3d llh(llr); llh[0] = 90.0 - llh[0]; // convert latitude to theta convertSphericalToCartesian(llh, xyz); } void PIGeoPosition::convertGeocentricToGeodetic(const PIMathVectorT3d & llr, PIMathVectorT3d & llh, PIEllipsoidModel ell) { double cl, p, sl, slat, nn, htold, latold; llh[1] = llr[1]; // longitude is unchanged cl = sin(toRad(90.0 - llr[0])); sl = cos(toRad(90.0 - llr[0])); if (llr[2] <= PIGeoPosition::position_tolerance / 5) { // radius is below tolerance, hence assign zero-length, arbitrarily set latitude = longitude = 0 llh[0] = llh[1] = 0.0; llh[2] = -ell.a; return; } else if (cl < 1.e-10) { // near pole ... note that 1mm/radius(Earth) = 1.5e-10 if (llr[0] < 0.0) llh[0] = -90.0; else llh[0] = 90.0; llh[1] = 0.0; llh[2] = llr[2] - ell.a * sqrt(1.0 - ell.eccSquared()); return; } llh[0] = atan2(sl, cl * (1.0 - ell.eccSquared())); p = cl * llr[2]; llh[2] = 0.0; for (int i = 0; i < 5; i++) { slat = sin(llh[0]); nn = ell.a / sqrt(1.0 - ell.eccSquared() * slat * slat); htold = llh[2]; llh[2] = p / cos(llh[0]) - nn; latold = llh[0]; llh[0] = atan2(sl, cl * (1.0 - ell.eccSquared() * (nn / (nn + llh[2])))); if (piAbsd(llh[0] - latold) < 1.0e-9 && piAbsd(llh[2] - htold) < 1.0e-9 * ell.a) break; } llh[0] *= rad2deg; } void PIGeoPosition::convertGeodeticToGeocentric(const PIMathVectorT3d & llh, PIMathVectorT3d & llr, PIEllipsoidModel ell) { double slat = sin(toRad(llh[0])); double nn = ell.a / sqrt(1.0 - ell.eccSquared() * slat * slat); llr[1] = llh[1]; // longitude is unchanged llr[2] = sqrt((nn + llh[2]) * (nn + llh[2]) + nn * ell.eccSquared() * (nn * ell.eccSquared() - 2 * (nn + llh[2])) * slat * slat); // radius if (llr[2] <= PIGeoPosition::position_tolerance / 5) { // radius is below tolerance, hence assign zero-length llr[0] = llr[1] = llr[2] = 0; // arbitrarily set latitude = longitude = 0 return; } if (1 - piAbsd(slat) < 1.e-10) { // at the pole if (slat < 0) llr[0] = -90.0; else llr[0] = 90.0; llr[1] = 0.0; return; } llr[0] = acos((nn * (1.0 - ell.eccSquared()) + llh[2]) * slat / llr[2]); // theta llr[0] *= rad2deg; llr[0] = 90.0 - llr[0]; } double PIGeoPosition::radiusEarth(double geolat, PIEllipsoidModel ell) { double slat = sin(toRad(geolat)); double e = (1.0 - ell.eccSquared()); double f = (1.0 + (e * e - 1.0) * slat * slat) / (1.0 - ell.eccSquared() * slat * slat); return (ell.a * sqrt(f)); } PIGeoPosition & PIGeoPosition::operator=(const PIMathVectorT3d & v) { *((PIMathVectorT3d *)(this)) = v; return *this; } PIGeoPosition & PIGeoPosition::operator-=(const PIGeoPosition & right) { PIGeoPosition r(right); CoordinateSystem saves = s; transformTo(Cartesian); r.transformTo(Cartesian); (*(PIMathVectorT3d *)(this)) -= r; transformTo(saves); return *this; } PIGeoPosition & PIGeoPosition::operator+=(const PIGeoPosition & right) { PIGeoPosition r(right); CoordinateSystem saves = s; transformTo(Cartesian); r.transformTo(Cartesian); (*(PIMathVectorT3d *)(this)) += r; transformTo(saves); return *this; } bool PIGeoPosition::operator==(const PIGeoPosition & right) const { if (el.a != right.el.a || el.eccSquared() != right.el.eccSquared()) return false; if (range(*this, right) < position_tolerance) return true; else return false; } void PIGeoPosition::initialize(PIMathVectorT3d v, PIGeoPosition::CoordinateSystem sys, PIEllipsoidModel ell) { double a(v[0]), b(v[1]), c(v[2]); if (sys == Geodetic || sys == Geocentric) { assertm(a <= 90 && a >= -90, "Achtung! Invalid latitude in constructor"); if (b < 0) b += 360 * (1 + (unsigned long)(b / 360)); else if (b >= 360) b -= 360 * (unsigned long)(b / 360); } if (sys == Geocentric || sys == Spherical) { assertm(c >= 0, "Achtung! Invalid radius in constructor"); } if (sys == Spherical) { assertm(a >= 0 && a <= 180, "Achtung! Invalid theta in constructor"); if (b < 0) b += 360 * (1 + (unsigned long)(b / 360)); else if (b >= 360) b -= 360 * (unsigned long)(b / 360); } (*this)[0] = a; (*this)[1] = b; (*this)[2] = c; el = ell; s = sys; } double PIGeoPosition::range(const PIGeoPosition & a, const PIGeoPosition & b) { PIGeoPosition l(a), r(b); l.transformTo(PIGeoPosition::Cartesian); r.transformTo(PIGeoPosition::Cartesian); return (l - r).length(); } double PIGeoPosition::elevation(const PIGeoPosition & p) const { PIGeoPosition r(*this), s(p); r.transformTo(Cartesian); s.transformTo(Cartesian); return r.angleElevation(s); } double PIGeoPosition::elevationGeodetic(const PIGeoPosition & p) const { PIGeoPosition r(*this), s(p); double lat = toRad(r.latitudeGeodetic()); double lng = toRad(r.longitude()); double local_up; double cos_up; r.transformTo(Cartesian); s.transformTo(Cartesian); PIMathVectorT3d z = s - r; assertm(z.length() > 1e-4, "Positions are within .1 millimeter"); PIMathVectorT3d kv; // Compute k vector in local North-East-Up (NEU) system kv[0] = cos(lat) * cos(lng); kv[1] = cos(lat) * sin(lng); kv[2] = sin(lat); local_up = z.dot(kv); // Take advantage of dot method to get Up coordinate in local NEU system cos_up = local_up / z.length(); // Let's get cos(z), being z the angle with respect to local vertical (Up); return 90.0 - toDeg(acos(cos_up)); } double PIGeoPosition::azimuth(const PIGeoPosition & p) const { PIGeoPosition r(*this), s(p); r.transformTo(Cartesian); s.transformTo(Cartesian); double xy, xyz, cosl, sinl, sint, xn1, xn2, xn3, xe1, xe2; double z1, z2, z3, p1, p2, alpha; xy = r[0] * r[0] + r[1] * r[1]; xyz = xy + r[2] * r[2]; xy = sqrt(xy); xyz = sqrt(xyz); assertm(xy > 1e-14 && xyz > 1e-14, "Divide by Zero Error"); cosl = r[0] / xy; sinl = r[1] / xy; sint = r[2] / xyz; xn1 = -sint * cosl; xn2 = -sint * sinl; xn3 = xy / xyz; xe1 = -sinl; xe2 = cosl; z1 = s[0] - r[0]; z2 = s[1] - r[1]; z3 = s[2] - r[2]; p1 = (xn1 * z1) + (xn2 * z2) + (xn3 * z3); p2 = (xe1 * z1) + (xe2 * z2); assertm((piAbsd(p1) + piAbsd(p2)) >= 1.0e-16, "azAngle(), failed p1+p2 test"); alpha = 90 - toDeg(atan2(p1, p2)); if (alpha < 0) return alpha + 360; else return alpha; } double PIGeoPosition::azimuthGeodetic(const PIGeoPosition & p) const { PIGeoPosition r(*this), s(p); double lat = toRad(r.latitudeGeodetic()); double lng = toRad(r.longitude()); r.transformTo(Cartesian); s.transformTo(Cartesian); PIMathVectorT3d z; z = s - r; assertm(z.length() > 1e-4, "Positions are within 0.1 millimeter"); PIMathVectorT3d iv; // Compute i vector in local North-East-Up (NEU) system iv[0] = -sin(lat) * cos(lng); iv[1] = -sin(lat) * sin(lng); iv[2] = cos(lat); PIMathVectorT3d jv; // Compute j vector in local North-East-Up (NEU) system jv[0] = -sin(lng); jv[1] = cos(lng); jv[2] = 0.0; double local_n = z.dot(iv) / z.length(); // Now, let's use dot product to get localN unitary vectors double local_e = z.dot(jv) / z.length(); // Now, let's use dot product to get localE unitary vector double test = piAbsd(local_n) + piAbsd(local_e); // Let's test if computing azimuth has any sense if (test < 1.0e-16) return 0.0; // Warning: If elevation is very close to 90 degrees, we will return azimuth = 0.0 double alpha = toDeg(atan2(local_e, local_n)); if (alpha < 0.0) return alpha + 360.0; else return alpha; } double PIGeoPosition::getCurvMeridian() const { double slat = sin(toRad(latitudeGeodetic())); double w = 1.0 / sqrt(1.0 - el.eccSquared() * slat * slat); return el.a * (1.0 - el.eccSquared()) * w * w * w; } double PIGeoPosition::getCurvPrimeVertical() const { double slat = sin(toRad(latitudeGeodetic())); return el.a / sqrt(1.0 - el.eccSquared() * slat * slat); }