//! \addtogroup Containers
//! \{
//! \file pivector.h
//! \brief
//! \~english Declares \a PIVector
//! \~russian Объявление \a PIVector
//! \~\authors
//! \~english
//! Ivan Pelipenko peri4ko@yandex.ru;
//! Andrey Bychkov work.a.b@yandex.ru;
//! \~russian
//! Иван Пелипенко peri4ko@yandex.ru;
//! Андрей Бычков work.a.b@yandex.ru;
//! \~\} */
/*
PIP - Platform Independent Primitives
Sequence linear container aka dynamic size array of any type
Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#ifndef PIVECTOR_H
#define PIVECTOR_H
#include "picontainers.h"
//! \addtogroup Containers
//! \{
//! \class PIVector pivector.h
//! \brief
//! \~english Sequence linear container - dynamic size array of any type.
//! \~russian Последовательный контейнер с линейной памятью - динамический массив любого типа.
//! \~\}
//! \details
//! \~english
//! The elements are stored contiguously,
//! which means that elements can be accessed not only through iterators,
//! but also using offsets to regular pointers to elements.
//! This means that a pointer to an element of a vector may be passed to any function
//! that expects a pointer to an element of an array.
//!
//! The storage of the vector is handled automatically,
//! being expanded and contracted as needed.
//! Vectors usually occupy more space than static arrays,
//! because more memory is allocated to handle future growth.
//! This way a vector does not need to reallocate each time an element is inserted,
//! but only when the additional memory is exhausted.
//! The total amount of allocated memory can be queried using \a capacity() function.
//! Reallocations are usually costly operations in terms of performance.
//! The \a reserve() function can be used to eliminate reallocations
//! if the number of elements is known beforehand.
//!
//! The complexity (efficiency) of common operations on vectors is as follows:
//! - Random access - constant 𝓞(1)
//! - Insertion or removal of elements at the end - amortized constant 𝓞(1)
//! - Insertion or removal of elements - linear in the distance to the end of the vector 𝓞(n)
//!
//! \~russian
//! Элементы хранятся непрерывно, а значит доступны не только через итераторы,
//! но и с помощью смещений для обычных указателей на элементы.
//! Это означает, что указатель на элемент вектора может передаваться в любую функцию,
//! ожидающую указатель на элемент массива.
//!
//! Память вектора обрабатывается автоматически,
//! расширяясь и сжимаясь по мере необходимости.
//! Векторы обычно занимают больше места, чем статические массивы,
//! поскольку больше памяти выделяется для обработки будущего роста.
//! Таким образом, память для вектора требуется выделять
//! не при каждой вставке элемента,
//! а только после исчерпания дополнительной памяти.
//! Общий объём выделенной памяти можно получить с помощью функции \a capacity().
//!
//! Выделение памяти обычно является дорогостоящей операцией
//! с точки зрения производительности.
//! Функцию \a reserve() можно использовать для исключения выделения памяти,
//! если количество элементов известно заранее.
//!
//! Сложность (эффективность) обычных операций над векторами следующая:
//! - Произвольный доступ — постоянная 𝓞(1)
//! - Вставка и удаление элементов в конце — амортизированная постоянная 𝓞(1)
//! - Вставка и удаление элементов — линейная по расстоянию до конца вектора 𝓞(n)
template
class PIVector {
public:
//! \~\brief
//! \~english Constructs an empty vector.
//! \~russian Создает пустой массив.
inline PIVector(): piv_data(0), piv_size(0), piv_rsize(0) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
}
//! \~\brief
//! \~english Contructs vector from raw `data`.
//! This constructor reserve `size` and copy from `data` pointer.
//! \~russian Создает массив из указателя на данные `data` и размер `size`.
//! То есть выделяет память для `size` элементов и копирует данные из указателя `data`.
inline PIVector(const T * data, size_t size): piv_data(0), piv_size(0), piv_rsize(0) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
alloc(size);
newT(piv_data, data, piv_size);
}
//! \~\brief
//! \~english Copy constructor.
//! \~russian Копирующий конструктор.
inline PIVector(const PIVector & v): piv_data(0), piv_size(0), piv_rsize(0) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
alloc(v.piv_size);
newT(piv_data, v.piv_data, piv_size);
}
//! \~\brief
//! \~english Contructs vector from [C++11 initializer list](https://en.cppreference.com/w/cpp/utility/initializer_list).
//! \~russian Создает массив из [списка инициализации C++11](https://ru.cppreference.com/w/cpp/utility/initializer_list).
//! \~\details
//! \~\code
//! PIVector v{1,2,3};
//! piCout << v;
//! // {1, 2, 3}
//! \endcode
inline PIVector(std::initializer_list init_list): piv_data(0), piv_size(0), piv_rsize(0) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
alloc(init_list.size());
newT(piv_data, init_list.begin(), init_list.size());
}
//! \~\brief
//! \~english Contructs vector with size `size` filled elements `e`.
//! \~russian Создает массив из `size` элементов заполненных `e`.
inline PIVector(size_t size, const T & e = T()): piv_data(0), piv_size(0), piv_rsize(0) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
resize(size, e);
}
//! \~\brief
//! \~english Contructs vector with size `size` and elements created by function `f(size_t i)`.
//! \~russian Создает массив из `size` элементов созданных функцией `f(size_t i)`.
//! \~\details
//! \~english Can use [Lambda expressions](https://en.cppreference.com/w/cpp/language/lambda) as constructor argument.
//! \~russian Позволяет передавать [Лямбда-выражения](https://ru.cppreference.com/w/cpp/language/lambda) для создания элементов в конструкторе.
//! \~\code
//! PIVector v(5, [](size_t i){return i*2;});
//! piCout << v;
//! // {0, 2, 4, 6, 8}
//! \endcode
inline PIVector(size_t size, std::function f): piv_data(0), piv_size(0), piv_rsize(0) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
resize(size, f);
}
//! \~\brief
//! \~english Move constructor.
//! \~russian Перемещающий конструктор.
inline PIVector(PIVector && v): piv_data(v.piv_data), piv_size(v.piv_size), piv_rsize(v.piv_rsize) {
PIINTROSPECTION_CONTAINER_NEW(T, sizeof(T))
v._reset();
}
inline virtual ~PIVector() {
PIINTROSPECTION_CONTAINER_DELETE(T)
PIINTROSPECTION_CONTAINER_FREE(T, (piv_rsize))
deleteT(piv_data, piv_size);
dealloc();
_reset();
}
//! \~\brief
//! \~english Assign operator.
//! \~russian Оператор присваивания.
inline PIVector & operator =(const PIVector & v) {
if (this == &v) return *this;
clear();
deleteT(piv_data, piv_size);
alloc(v.piv_size);
newT(piv_data, v.piv_data, piv_size);
return *this;
}
//! \~\brief
//! \~english Assign move operator.
//! \~russian Оператор перемещающего присваивания.
inline PIVector & operator =(PIVector && v) {
swap(v);
return *this;
}
//! \~\brief
//! \~english Reshape order enum for \a reshape function.
//! \~russian Порядок обхода для функции изменения размерности \a reshape.
enum ReshapeOrder {
byRow,
byColumn
};
class iterator {
friend class PIVector;
private:
inline iterator(PIVector * v, size_t p): parent(v), pos(p) {}
PIVector * parent;
size_t pos;
public:
inline iterator(): parent(0), pos(0) {}
inline T & operator *() {return (*parent)[pos];}
inline const T & operator *() const {return (*parent)[pos];}
inline void operator ++() {++pos;}
inline void operator ++(int) {++pos;}
inline void operator --() {--pos;}
inline void operator --(int) {--pos;}
inline bool operator ==(const iterator & it) const {return (pos == it.pos);}
inline bool operator !=(const iterator & it) const {return (pos != it.pos);}
};
class const_iterator {
friend class PIVector;
private:
inline const_iterator(const PIVector * v, size_t p): parent(v), pos(p) {}
const PIVector * parent;
size_t pos;
public:
inline const_iterator(): parent(0), pos(0) {}
inline const T & operator *() const {return (*parent)[pos];}
inline void operator ++() {++pos;}
inline void operator ++(int) {++pos;}
inline void operator --() {--pos;}
inline void operator --(int) {--pos;}
inline bool operator ==(const const_iterator & it) const {return (pos == it.pos);}
inline bool operator !=(const const_iterator & it) const {return (pos != it.pos);}
};
class reverse_iterator {
friend class PIVector;
private:
inline reverse_iterator(PIVector * v, size_t p): parent(v), pos(p) {}
PIVector * parent;
size_t pos;
public:
inline reverse_iterator(): parent(0), pos(0) {}
inline T & operator *() {return (*parent)[pos];}
inline const T & operator *() const {return (*parent)[pos];}
inline void operator ++() {--pos;}
inline void operator ++(int) {--pos;}
inline void operator --() {++pos;}
inline void operator --(int) {++pos;}
inline bool operator ==(const reverse_iterator & it) const {return (pos == it.pos);}
inline bool operator !=(const reverse_iterator & it) const {return (pos != it.pos);}
};
class const_reverse_iterator {
friend class PIVector;
private:
inline const_reverse_iterator(const PIVector * v, size_t p): parent(v), pos(p) {}
const PIVector * parent;
size_t pos;
public:
inline const_reverse_iterator(): parent(0), pos(0) {}
inline const T & operator *() const {return (*parent)[pos];}
inline void operator ++() {--pos;}
inline void operator ++(int) {--pos;}
inline void operator --() {++pos;}
inline void operator --(int) {++pos;}
inline bool operator ==(const const_reverse_iterator & it) const {return (pos == it.pos);}
inline bool operator !=(const const_reverse_iterator & it) const {return (pos != it.pos);}
};
//! \~\brief
//! \~english Iterator to the first element.
//! \~russian Итератор на первый элемент.
//! \~\details 
//!
//! \~english If the vector is empty, the returned iterator is equal to \a end.
//! \~russian Если массив - пуст, возвращаемый итератор будет равен \a end.
//! \~\sa \a end, \a rbegin, \a rend
inline iterator begin() {return iterator(this, 0);}
//! \~\brief
//! \~english Iterator to the element following the last element.
//! \~russian Итератор на элемент, следующий за последним элементом.
//! \~\details 
//!
//! \~english This element acts as a placeholder; attempting to access it results in undefined behavior.
//! \~russian Этот элемент существует лишь условно,
//! попытка доступа к нему приведёт к выходу за разрешенную память.
//! \~\sa \a begin, \a rbegin, \a rend
inline iterator end() {return iterator(this, piv_size);}
inline const_iterator begin() const {return const_iterator(this, 0);}
inline const_iterator end() const {return const_iterator(this, piv_size);}
//! \~\brief
//! \~english Returns a reverse iterator to the first element of the reversed vector.
//! \~russian Обратный итератор на первый элемент.
//! \~\details 
//!
//! \~english It corresponds to the last element of the non-reversed vector.
//! If the vector is empty, the returned iterator is equal to \a rend.
//! \~russian Итератор для прохода массива в обратном порядке.
//! Указывает на последний элемент.
//! Если массив пустой, то совпадает с итератором \a rend.
//! \~\sa \a rend, \a begin, \a end
inline reverse_iterator rbegin() {return reverse_iterator(this, piv_size - 1);}
//! \~\brief
//! \~english Returns a reverse iterator to the element following the last element of the reversed vector.
//! \~russian Обратный итератор на элемент, следующий за последним элементом.
//! \~\details 
//!
//! \~english It corresponds to the element preceding the first element of the non-reversed vector.
//! This element acts as a placeholder, attempting to access it results in undefined behavior.
//! \~russian Итератор для прохода массива в обратном порядке.
//! Указывает на элемент, предшествующий первому элементу.
//! Этот элемент существует лишь условно,
//! попытка доступа к нему приведёт к выходу за разрешенную память.
//! \~\sa \a rbegin, \a begin, \a end
inline reverse_iterator rend() {return reverse_iterator(this, -1);}
inline const_reverse_iterator rbegin() const {return const_reverse_iterator(this, piv_size - 1);}
inline const_reverse_iterator rend() const {return const_reverse_iterator(this, -1);}
//! \~\brief
//! \~english Number of elements in the container.
//! \~russian Количество элементов массива.
//! \~\sa \a size_s, \a capacity, \a isEmpty, \a isNotEmpty, \a resize, \a reserve
inline size_t size() const {return piv_size;}
//! \~\brief
//! \~english Number of elements in the container as signed value.
//! \~russian Количество элементов массива в виде знакового числа.
//! \~\sa \a size, \a capacity, \a isEmpty, \a isNotEmpty, \a resize, \a reserve
inline ssize_t size_s() const {return piv_size;}
//! \~\brief
//! \~english Same as \a size.
//! \~russian Синоним \a size.
//! \~\sa \a size \a size_s, \a capacity, \a isEmpty, \a isNotEmpty, \a resize, \a reserve
inline size_t length() const {return piv_size;}
//! \~\brief
//! \~english Number of elements that the container has currently allocated space for.
//! \~russian Количество элементов, для которого сейчас выделена память контейнером.
//! \~\sa \a size \a size_s, \a isEmpty, \a isNotEmpty, \a resize, \a reserve
inline size_t capacity() const {return piv_rsize;}
//! \~\brief
//! \~english Checks if the container has no elements.
//! \~russian Проверяет пуст ли контейнер.
//! \~\return
//! \~english **true** if the container is empty, **false** otherwise
//! \~russian **true** если контейнер пуст, **false** иначе.
//! \~\sa \a size \a size_s, \a isEmpty, \a isNotEmpty, \a resize, \a reserve
inline bool isEmpty() const {return (piv_size == 0);}
//! \~\brief
//! \~english Checks if the container has elements.
//! \~russian Проверяет пуст ли контейнер.
//! \~\return
//! \~english **true** if the container is empty, **false** otherwise
//! \~russian **true** если контейнер пуст, **false** иначе.
//! \~\sa \a size \a size_s, \a isEmpty, \a isNotEmpty, \a resize, \a reserve
inline bool isNotEmpty() const {return (piv_size > 0);}
inline bool any(std::function test) const {
for (size_t i = 0; i < piv_size; ++i) {
if (test(piv_data[i])) return true;
}
return false;
}
inline bool every(std::function test) const {
for (size_t i = 0; i < piv_size; ++i) {
if (!test(piv_data[i])) return false;
}
return true;
}
inline T & operator [](size_t index) {return piv_data[index];}
inline const T & operator [](size_t index) const {return piv_data[index];}
inline const T & at(size_t index) const {return piv_data[index];}
inline T & back() {return piv_data[piv_size - 1];}
inline const T & back() const {return piv_data[piv_size - 1];}
inline T & front() {return piv_data[0];}
inline const T & front() const {return piv_data[0];}
inline bool operator ==(const PIVector & t) const {
if (piv_size != t.piv_size) {
return false;
}
for (size_t i = 0; i < piv_size; ++i) {
if (t[i] != piv_data[i]) {
return false;
}
}
return true;
}
inline bool operator !=(const PIVector & t) const {return !(*this == t);}
inline bool operator <(const PIVector & t) const {
if (piv_size != t.piv_size) return piv_size < t.piv_size;
for (size_t i = 0; i < piv_size; ++i) {
if ((*this)[i] != t[i]) return (*this)[i] < t[i];
}
return false;
}
inline bool operator >(const PIVector & t) const {
if (piv_size != t.piv_size) return piv_size > t.piv_size;
for (size_t i = 0; i < piv_size; ++i) {
if ((*this)[i] != t[i]) return (*this)[i] > t[i];
}
return false;
}
inline bool contains(const T & e) const {
for (size_t i = 0; i < piv_size; ++i) {
if (e == piv_data[i]) {
return true;
}
}
return false;
}
inline int etries(const T & e, size_t start = 0) const {
int ec = 0;
if (start >= piv_size) return ec;
for (size_t i = start; i < piv_size; ++i) {
if (e == piv_data[i]) ++ec;
}
return ec;
}
inline int etries(std::function test, size_t start = 0) const {
int ec = 0;
if (start >= piv_size) return ec;
for (size_t i = start; i < piv_size; ++i) {
if (test(piv_data[i])) ++ec;
}
return ec;
}
inline ssize_t indexOf(const T & e, size_t start = 0) const {
if (start >= piv_size) return -1;
for (size_t i = start; i < piv_size; ++i) {
if (e == piv_data[i]) {
return i;
}
}
return -1;
}
inline ssize_t indexWhere(std::function test, size_t start = 0) const {
if (start >= piv_size) return -1;
for (size_t i = start; i < piv_size; ++i) {
if (test(piv_data[i])) {
return i;
}
}
return -1;
}
inline ssize_t lastIndexOf(const T & e, ssize_t start = -1) const {
if (start < 0) start = piv_size - 1;
else start = piMin(piv_size - 1, start);
for (ssize_t i = start; i >= 0; --i) {
if (e == piv_data[i]) {
return i;
}
}
return -1;
}
inline ssize_t lastIndexWhere(std::function test, ssize_t start = -1) const {
if (start < 0) start = piv_size - 1;
else start = piMin(piv_size - 1, start);
for (ssize_t i = start; i >= 0; --i) {
if (test(piv_data[i])) {
return i;
}
}
return -1;
}
inline T * data(size_t index = 0) {return &(piv_data[index]);}
inline const T * data(size_t index = 0) const {return &(piv_data[index]);}
PIVector getRange(size_t index, size_t count) const {
if (index >= piv_size || count == 0) return PIVector();
if (index + count > piv_size) count = piv_size - index;
return PIVector(&(piv_data[index]), count);
}
template::value
, int>::type = 0>
inline PIVector & clear() {
resize(0);
return *this;
}
template::value
, int>::type = 0>
inline PIVector & clear() {
PIINTROSPECTION_CONTAINER_UNUSED(T, piv_size)
piv_size = 0;
return *this;
}
inline PIVector & fill(const T & f = T()) {
deleteT(piv_data, piv_size);
PIINTROSPECTION_CONTAINER_USED(T, piv_size)
for (size_t i = 0; i < piv_size; ++i) {
elementNew(piv_data + i, f);
}
return *this;
}
inline PIVector & fill(std::function f) {
deleteT(piv_data, piv_size);
PIINTROSPECTION_CONTAINER_USED(T, piv_size)
for (size_t i = 0; i < piv_size; ++i) {
elementNew(piv_data + i, f(i));
}
return *this;
}
inline PIVector & assign(const T & f = T()) {return fill(f);}
template::value
, int>::type = 0>
inline PIVector & assign(size_t new_size, const T & f) {
resize(new_size);
return fill(f);
}
template::value
, int>::type = 0>
inline PIVector & assign(size_t new_size, const T & f) {
_resizeRaw(new_size);
return fill(f);
}
inline PIVector & resize(size_t new_size, const T & f = T()) {
if (new_size < piv_size) {
T * de = &(piv_data[new_size]);
deleteT(de, piv_size - new_size);
piv_size = new_size;
}
if (new_size > piv_size) {
size_t os = piv_size;
alloc(new_size);
PIINTROSPECTION_CONTAINER_USED(T, (new_size-os))
for (size_t i = os; i < new_size; ++i) {
elementNew(piv_data + i, f);
}
}
return *this;
}
inline PIVector & resize(size_t new_size, std::function f) {
if (new_size < piv_size) {
T * de = &(piv_data[new_size]);
deleteT(de, piv_size - new_size);
piv_size = new_size;
}
if (new_size > piv_size) {
size_t os = piv_size;
alloc(new_size);
PIINTROSPECTION_CONTAINER_USED(T, (new_size-os))
for (size_t i = os; i < new_size; ++i) {
elementNew(piv_data + i, f(i));
}
}
return *this;
}
template::value
, int>::type = 0>
inline PIVector & _resizeRaw(size_t new_size) {
if (new_size > piv_size) {
PIINTROSPECTION_CONTAINER_USED(T, (new_size-piv_size));
}
if (new_size < piv_size) {
PIINTROSPECTION_CONTAINER_UNUSED(T, (piv_size-new_size));
}
alloc(new_size);
return *this;
}
inline void _copyRaw(T * dst, const T * src, size_t size) {
newT(dst, src, size);
}
inline PIVector & reserve(size_t new_size) {
if (new_size <= piv_rsize) return *this;
size_t os = piv_size;
alloc(new_size);
piv_size = os;
return *this;
}
inline PIVector & insert(size_t index, const T & e = T()) {
alloc(piv_size + 1);
if (index < piv_size - 1) {
size_t os = piv_size - index - 1;
memmove((void*)(&(piv_data[index + 1])), (const void*)(&(piv_data[index])), os * sizeof(T));
}
PIINTROSPECTION_CONTAINER_USED(T, 1)
elementNew(piv_data + index, e);
return *this;
}
inline PIVector & insert(size_t index, T && e) {
alloc(piv_size + 1);
if (index < piv_size - 1) {
size_t os = piv_size - index - 1;
memmove((void*)(&(piv_data[index + 1])), (const void*)(&(piv_data[index])), os * sizeof(T));
}
PIINTROSPECTION_CONTAINER_USED(T, 1)
elementNew(piv_data + index, std::move(e));
return *this;
}
inline PIVector & insert(size_t index, const PIVector & v) {
if (v.isEmpty()) return *this;
assert(&v != this);
ssize_t os = piv_size - index;
alloc(piv_size + v.piv_size);
if (os > 0) {
memmove((void*)(&(piv_data[index + v.piv_size])), (const void*)(&(piv_data[index])), os * sizeof(T));
}
newT(piv_data + index, v.piv_data, v.piv_size);
return *this;
}
inline PIVector & remove(size_t index, size_t count = 1) {
if (count == 0) return *this;
if (index + count >= piv_size) {
resize(index);
return *this;
}
size_t os = piv_size - index - count;
deleteT(&(piv_data[index]), count);
memmove((void*)(&(piv_data[index])), (const void*)(&(piv_data[index + count])), os * sizeof(T));
piv_size -= count;
return *this;
}
inline void swap(PIVector & v) {
piSwap(piv_data, v.piv_data);
piSwap(piv_size, v.piv_size);
piSwap(piv_rsize, v.piv_rsize);
}
typedef int (*CompareFunc)(const T * , const T * );
static int compare_func(const T * t0, const T * t1) {return (*t0) < (*t1) ? -1 : ((*t0) == (*t1) ? 0 : 1);}
inline PIVector & sort(CompareFunc compare = compare_func) {
piqsort(piv_data, piv_size, sizeof(T), (int(*)(const void * , const void * ))compare);
return *this;
}
inline PIVector & enlarge(llong piv_size) {
llong ns = size_s() + piv_size;
if (ns <= 0) clear();
else resize(size_t(ns));
return *this;
}
/*! \brief Remove no more than one element equal "v" and return reference to vector
* \details Example: \snippet picontainers.cpp PIVector::removeOne
* \sa \a remove(), \a removeAll()
*/
inline PIVector & removeOne(const T & e) {
for (size_t i = 0; i < piv_size; ++i) {
if (piv_data[i] == e) {
remove(i);
return *this;
}
}
return *this;
}
inline PIVector & removeAll(const T & e) {
for (ssize_t i = 0; i < ssize_t(piv_size); ++i) {
if (piv_data[i] == e) {
remove(i);
--i;
}
}
return *this;
}
inline PIVector & removeWhere(std::function test) {
for (ssize_t i = 0; i < ssize_t(piv_size); ++i) {
if (test(piv_data[i])) {
remove(i);
--i;
}
}
return *this;
}
inline PIVector & push_back(const T & e) {
alloc(piv_size + 1);
PIINTROSPECTION_CONTAINER_USED(T, 1);
elementNew(piv_data + piv_size - 1, e);
return *this;
}
inline PIVector & push_back(T && e) {
alloc(piv_size + 1);
PIINTROSPECTION_CONTAINER_USED(T, 1);
elementNew(piv_data + piv_size - 1, std::move(e));
return *this;
}
inline PIVector & push_back(std::initializer_list init_list) {
size_t ps = piv_size;
alloc(piv_size + init_list.size());
newT(piv_data + ps, init_list.begin(), init_list.size());
return *this;
}
inline PIVector & push_back(const PIVector & v) {
assert(&v != this);
size_t ps = piv_size;
alloc(piv_size + v.piv_size);
newT(piv_data + ps, v.piv_data, v.piv_size);
return *this;
}
inline PIVector & append(const T & e) {return push_back(e);}
inline PIVector & append(T && e) {return push_back(std::move(e));}
inline PIVector & append(std::initializer_list init_list) {return push_back(init_list);}
inline PIVector & append(const PIVector & v) {return push_back(v);}
inline PIVector & operator <<(const T & e) {return push_back(e);}
inline PIVector & operator <<(T && e) {return push_back(std::move(e));}
inline PIVector & operator <<(const PIVector & v) {return push_back(v);}
inline PIVector & push_front(const T & e) {insert(0, e); return *this;}
inline PIVector & push_front(T && e) {insert(0, std::move(e)); return *this;}
inline PIVector & push_front(const PIVector & v) {insert(0, v); return *this;}
inline PIVector & prepend(const T & e) {return push_front(e);}
inline PIVector & prepend(T && e) {return push_front(std::move(e));}
inline PIVector & prepend(const PIVector & v) {return push_front(v);}
inline PIVector & pop_back() {
if (piv_size == 0) return *this;
resize(piv_size - 1);
return *this;
}
inline PIVector & pop_front() {
if (piv_size == 0) return *this;
remove(0);
return *this;
}
inline T take_back() {T e(back()); pop_back(); return e;}
inline T take_front() {T e(front()); pop_front(); return e;}
template
PIVector toType() const {
PIVector ret(piv_size);
for (size_t i = 0; i < piv_size; ++i) {
ret[i] = ST(piv_data[i]);
}
return ret;
}
const PIVector & forEach(std::function f) const {
for (size_t i = 0; i < piv_size; ++i) {
f(piv_data[i]);
}
return *this;
}
PIVector copyForEach(std::function f) const {
PIVector ret; ret.reserve(piv_size);
for (size_t i = 0; i < piv_size; ++i) {
ret << f(piv_data[i]);
}
return ret;
}
PIVector & forEachInplace(std::function f) {
for (size_t i = 0; i < piv_size; ++i) {
piv_data[i] = f(piv_data[i]);
}
return *this;
}
template
PIVector map(std::function f) const {
PIVector ret; ret.reserve(piv_size);
for (size_t i = 0; i < piv_size; ++i) {
ret << f(piv_data[i]);
}
return ret;
}
template
PIVector toType(std::function f) const {return map(f);}
template
ST reduce(std::function f, const ST & initial = ST()) const {
ST ret(initial);
for (size_t i = 0; i < piv_size; ++i) {
ret = f(piv_data[i], ret);
}
return ret;
}
inline PIVector> reshape(size_t rows, size_t cols, ReshapeOrder order = byRow) const {
PIVector> ret;
if (isEmpty()) return ret;
assert(rows*cols == piv_size);
ret.resize(rows);
if (order == byRow) {
for (size_t r = 0; r < rows; r++) {
ret[r] = PIVector(&(piv_data[r*cols]), cols);
}
}
if (order == byColumn) {
for (size_t r = 0; r < rows; r++) {
ret[r].resize(cols);
for (size_t c = 0; c < cols; c++) {
ret[r][c] = piv_data[c*rows + r];
}
}
}
return ret;
}
template>::value
, int>::type = 0>
inline PIVector reshape(ReshapeOrder order = byRow) const {
PIVector ret;
if (isEmpty()) return ret;
size_t rows = size();
size_t cols = at(0).size();
ret.reserve(rows * cols);
if (order == byRow) {
for (size_t r = 0; r < rows; r++) {
ret.append(at(r));
}
}
if (order == byColumn) {
for (size_t c = 0; c < cols; c++) {
for (size_t r = 0; r < rows; r++) {
ret << at(r)[c];
}
}
}
ret.resize(rows * cols);
return ret;
}
private:
inline void _reset() {piv_size = piv_rsize = 0; piv_data = 0;}
inline size_t asize(size_t s) {
if (s == 0) return 0;
if (piv_rsize + piv_rsize >= s && piv_rsize < s) {
return piv_rsize + piv_rsize;
}
ssize_t t = 0, s_ = s - 1;
while (s_ >> t) ++t;
return (1 << t);
}
template::value
, int>::type = 0>
inline void newT(T * dst, const T * src, size_t s) {
PIINTROSPECTION_CONTAINER_USED(T, s)
for (size_t i = 0; i < s; ++i)
elementNew(dst + i, src[i]);
}
template::value
, int>::type = 0>
inline void newT(T * dst, const T * src, size_t s) {
PIINTROSPECTION_CONTAINER_USED(T, s)
memcpy((void*)(dst), (const void*)(src), s * sizeof(T));
}
template::value
, int>::type = 0>
inline void deleteT(T * d, size_t sz) {
PIINTROSPECTION_CONTAINER_UNUSED(T, sz)
if ((uchar*)d != 0) {
for (size_t i = 0; i < sz; ++i) {
elementDelete(d[i]);
}
}
}
template::value
, int>::type = 0>
inline void deleteT(T * d, size_t sz) {
PIINTROSPECTION_CONTAINER_UNUSED(T, sz)
}
template::value
, int>::type = 0>
inline void elementNew(T * to, const T & from) {new(to)T(from);}
template::value
, int>::type = 0>
inline void elementNew(T * to, T && from) {new(to)T(std::move(from));}
template::value
, int>::type = 0>
inline void elementNew(T1 * to, const T & from) {(*to) = from;}
template::value
, int>::type = 0>
inline void elementNew(T * to, T && from) {(*to) = std::move(from);}
template::value
, int>::type = 0>
inline void elementDelete(T & from) {from.~T();}
template::value
, int>::type = 0>
inline void elementDelete(T & from) {}
inline void dealloc() {
if ((uchar*)piv_data != 0) free((uchar*)piv_data);
piv_data = 0;
}
inline void alloc(size_t new_size) {
if (new_size <= piv_rsize) {
piv_size = new_size;
return;
}
piv_size = new_size;
size_t as = asize(new_size);
if (as == piv_rsize) return;
PIINTROSPECTION_CONTAINER_ALLOC(T, (as-piv_rsize))
T * p_d = (T*)(realloc((void*)(piv_data), as*sizeof(T)));
assert(p_d);
piv_data = p_d;
piv_rsize = as;
}
T * piv_data;
size_t piv_size, piv_rsize;
};
#ifdef PIP_STD_IOSTREAM
template
inline std::ostream & operator <<(std::ostream & s, const PIVector & v) {
s << "{";
for (size_t i = 0; i < v.size(); ++i) {
s << v[i];
if (i < v.size() - 1) s << ", ";
}
s << "}";
return s;
}
#endif
template
inline PICout operator <<(PICout s, const PIVector & v) {
s.space();
s.setControl(0, true);
s << "{";
for (size_t i = 0; i < v.size(); ++i) {
s << v[i];
if (i < v.size() - 1) {
s << ", ";
}
}
s << "}";
s.restoreControl();
return s;
}
template inline void piSwap(PIVector & f, PIVector & s) {f.swap(s);}
#endif // PIVECTOR_H