/*! \file pimathmatrix.h
* \brief PIMathMatrix
*
* This file declare math matrix class, which performs various matrix operations
*/
/*
PIP - Platform Independent Primitives
PIMathMatrix
Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#ifndef PIMATHMATRIX_H
#define PIMATHMATRIX_H
#include "pimathvector.h"
#include "pimathcomplex.h"
/// Matrix templated
#define PIMM_FOR for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c)
#define PIMM_FOR_C for (uint i = 0; i < Cols; ++i)
#define PIMM_FOR_R for (uint i = 0; i < Rows; ++i)
#pragma pack(push, 1)
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
//! @tparam Rows rows number of matrix
//! @tparam Сols columns number of matrix
//! @tparam Type is the data type of the matrix. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
//! of the C++ language are implemented
template
class PIP_EXPORT PIMathMatrixT {
typedef PIMathMatrixT _CMatrix;
typedef PIMathMatrixT _CMatrixI;
typedef PIMathVectorT _CMCol;
typedef PIMathVectorT _CMRow;
static_assert(std::is_arithmetic::value, "Type must be arithmetic");
static_assert(Rows > 0, "Row count must be > 0");
static_assert(Cols > 0, "Column count must be > 0");
public:
/**
* @brief Constructs PIMathMatrixT that is filled by \a new_value
*/
PIMathMatrixT(const Type &new_value = Type()) {PIMM_FOR m[r][c] = new_value;}
/**
* @brief Contructs PIMathMatrixT from PIVector
*/
PIMathMatrixT(const PIVector &val) {
assert(Rows*Cols == val.size());
int i = 0;
PIMM_FOR m[r][c] = val[i++];
}
/**
* @brief Contructs PIMathMatrixT from C++11 initializer list
*/
PIMathMatrixT(std::initializer_list init_list) {
assert(Rows*Cols == init_list.size());
int i = 0;
PIMM_FOR m[r][c] = init_list.begin()[i++];
}
/**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @return identity matrix of type PIMathMatrixT
*/
static _CMatrix identity() {
_CMatrix tm = _CMatrix();
PIMM_FOR tm.m[r][c] = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Method which returns number of columns in matrix
*
* @return type uint shows number of columns
*/
constexpr uint cols() const {return Cols;}
/**
* @brief Method which returns number of rows in matrix
*
* @return type uint shows number of rows
*/
constexpr uint rows() const {return Rows;}
/**
* @brief Method which returns the selected column in PIMathVectorT format.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param index is the number of the selected column
* @return column in PIMathVectorT format
*/
_CMCol col(uint index) {
_CMCol tv;
PIMM_FOR_R tv[i] = m[i][index];
return tv;
}
/**
* @brief Method which returns the selected row in PIMathVectorT format
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param index is the number of the selected row
* @return row in PIMathVectorT format
*/
_CMRow row(uint index) {
_CMRow tv;
PIMM_FOR_C tv[i] = m[index][i];
return tv;
}
/**
* @brief Set the selected column in matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R m[i][index] = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix &setRow(uint index, const _CMRow &v) {
PIMM_FOR_C m[index][i] = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint rf, uint rs) {
PIMM_FOR_C piSwap(m[rf][i], m[rs][i]);
return *this;
}
/**
* @brief Method which changes selected columns in a matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
_CMatrix &swapCols(uint cf, uint cs) {
PIMM_FOR_R piSwap(m[i][cf], m[i][cs]);
return *this;
}
/**
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix &fill(const Type &v) {
PIMM_FOR m[r][c] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
constexpr bool isSquare() const { return Rows == Cols; }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
bool isIdentity() const {
PIMM_FOR if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
bool isNull() const {
PIMM_FOR if (m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Read-only access to element by \a row and \a col.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param row of matrix
* @param col of matrix
* @return copy of element of matrix
*/
Type at(uint row, uint col) const { return m[row][col]; }
/**
* @brief Full access to element by \a row and \a col.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param row of matrix
* @param col of matrix
* @return element of matrix
*/
inline Type & element(uint row, uint col) {return m[row][col];}
/**
* @brief Read-only access to element by \a row and \a col.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param row of matrix
* @param col of matrix
* @return element of matrix
*/
inline const Type & element(uint row, uint col) const {return m[row][col];}
/**
* @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param row of matrix
* @return matrix row pointer
*/
Type *operator[](uint row) { return m[row]; }
/**
* @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param row of matrix
* @return matrix row pointer
*/
const Type *operator[](uint row) const {return m[row];}
/**
* @brief Matrix compare
*
* @param sm matrix for compare
* @return if matrices are equal true, else false
*/
bool operator==(const _CMatrix &sm) const {
PIMM_FOR if (m[r][c] != sm.m[r][c]) return false;
return true;
}
/**
* @brief Matrix negative compare
*
* @param sm matrix for compare
* @return if matrices are not equal true, else false
*/
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) {PIMM_FOR m[r][c] += sm.m[r][c];}
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator-=(const _CMatrix &sm) {PIMM_FOR m[r][c] -= sm.m[r][c];}
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator*=(const Type &v) {
PIMM_FOR m[r][c] *= v;
}
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator/=(const Type &v) {
assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP);
PIMM_FOR m[r][c] /= v;
}
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator-() const {
_CMatrix tm;
PIMM_FOR tm.m[r][c] = -m[r][c];
return tm;
}
/**
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR tm.m[r][c] += sm.m[r][c];
return tm;
}
/**
* @brief Matrix substraction
*
* @param sm is matrix subtractor
* @return the result of matrix substraction
*/
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR tm.m[r][c] -= sm.m[r][c];
return tm;
}
/**
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator*(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR tm.m[r][c] *= v;
return tm;
}
/**
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator/(const Type &v) const {
assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP);
_CMatrix tm = _CMatrix(*this);
PIMM_FOR tm.m[r][c] /= v;
return tm;
}
/**
* @brief Determinant of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return matrix determinant
*/
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
Type ret = Type(0);
m.toUpperTriangular(&k);
if (ok) *ok = k;
if (!k) return ret;
ret = Type(1);
PIMM_FOR if (r == c) ret *= m[r][c];
return ret;
}
/**
* @brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return copy of transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (Cols != Rows) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix smat(*this);
bool ndet;
uint crow;
Type mul;
for (uint i = 0; i < Cols; ++i) {
ndet = true;
for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < Cols; ++i) {
crow = i;
while (smat.m[i][i] == Type(0))
smat.swapRows(i, ++crow);
for (uint j = i + 1; j < Rows; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
}
if (i < Cols - 1) {
if (piAbs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
if (ok != 0) *ok = false;
return *this;
}
}
}
if (ok != 0) *ok = true;
memcpy(m, smat.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return copy of inverted matrix
*/
_CMatrix &invert(bool *ok = 0) {
static_assert(Cols == Rows, "Only square matrix invertable");
_CMatrix mtmp = _CMatrix::identity(), smat(*this);
bool ndet;
uint crow;
Type mul, iddiv;
for (uint i = 0; i < Cols; ++i) {
ndet = true;
for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < Cols; ++i) {
crow = i;
while (smat.m[i][i] == Type(0)) {
++crow;
smat.swapRows(i, crow);
mtmp.swapRows(i, crow);
}
for (uint j = i + 1; j < Rows; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i];
}
if (i < Cols - 1) {
if (piAbs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
if (ok != 0) *ok = false;
return *this;
}
}
iddiv = smat.m[i][i];
for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv;
for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv;
}
for (uint i = Cols - 1; i > 0; --i) {
for (uint j = 0; j < i; ++j) {
mul = smat.m[i][j];
smat.m[i][j] -= mul;
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul;
}
}
if (ok != 0) *ok = true;
memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return inverted matrix
*/
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/**
* @brief Matrix transposition operation. Works only with square matrix, nonzero matrices and invertible matrix
*
* @return transposed matrix
*/
_CMatrixI transposed() const {
_CMatrixI tm;
PIMM_FOR tm[c][r] = m[r][c];
return tm;
}
_CMatrix rotate(Type angle) {
static_assert(Rows == 2 && Cols == 2, "Works only with 2x2 matrix");
Type c = std::cos(angle);
Type s = std::sin(angle);
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = tm[1][1] = c;
tm[0][1] = -s;
tm[1][0] = s;
*this = *this * tm;
return *this;
}
private:
Type m[Rows][Cols];
};
#pragma pack(pop)
#ifdef PIP_STD_IOSTREAM
template
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) {
s << "{";
for (uint r = 0; r < Rows; ++r) {
for (uint c = 0; c < Cols; ++c) {
s << m[r][c];
if (c < Cols - 1 || r < Rows - 1) s << ", ";
}
if (r < Rows - 1) s << std::endl << " ";
}
s << "}";
return s;
}
#endif
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PICout type
* @param m PIMathMatrixT type
* @return bitwise left PICout
*/
template
inline PICout operator<<(PICout s, const PIMathMatrixT &m) {
s << "{";
for (uint r = 0; r < Rows; ++r) {
for (uint c = 0; c < Cols; ++c) {
s << m[r][c];
if (c < Cols - 1 || r < Rows - 1) s << ", ";
}
if (r < Rows - 1) s << PICoutManipulators::NewLine << " ";
}
s << "}";
return s;
}
/**
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param fm first matrix multiplier
* @param sm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template
inline PIMathMatrixT operator*(const PIMathMatrixT &fm,
const PIMathMatrixT &sm) {
PIMathMatrixT tm;
Type t;
for (uint j = 0; j < Rows0; ++j) {
for (uint i = 0; i < Cols1; ++i) {
t = Type(0);
for (uint k = 0; k < CR; ++k)
t += fm[j][k] * sm[k][i];
tm[j][i] = t;
}
}
return tm;
}
/**
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param fm first matrix multiplier
* @param sv second vector multiplier
* @return vector that is the result of multiplication
*/
template
inline PIMathVectorT operator*(const PIMathMatrixT &fm,
const PIMathVectorT &sv) {
PIMathVectorT tv;
Type t;
for (uint j = 0; j < Rows; ++j) {
t = Type(0);
for (uint i = 0; i < Cols; ++i)
t += fm[j][i] * sv[i];
tv[j] = t;
}
return tv;
}
/**
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param sv first vector multiplier
* @param fm second matrix multiplier
* @return vector that is the result of multiplication
*/
template
inline PIMathVectorT operator*(const PIMathVectorT &sv,
const PIMathMatrixT &fm) {
PIMathVectorT tv;
Type t;
for (uint j = 0; j < Cols; ++j) {
t = Type(0);
for (uint i = 0; i < Rows; ++i)
t += fm[i][j] * sv[i];
tv[j] = t;
}
return tv;
}
/**
* @brief Multiplying value of type Type and matrix
*
* @param x first multiplier of type Type
* @param fm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template
inline PIMathMatrixT operator*(const Type &x, const PIMathMatrixT &v) {
return v * x;
}
typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i;
typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i;
typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i;
typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d;
typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d;
typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d;
template
class PIMathMatrix;
#undef PIMM_FOR
#undef PIMM_FOR_C
#undef PIMM_FOR_R
/// Matrix
#define PIMM_FOR for (uint r = 0; r < _V2D::rows_; ++r) for (uint c = 0; c < _V2D::cols_; ++c)
#define PIMM_FOR_A for (uint i = 0; i < _V2D::mat.size(); ++i)
#define PIMM_FOR_C for (uint i = 0; i < _V2D::cols_; ++i)
#define PIMM_FOR_R for (uint i = 0; i < _V2D::rows_; ++i)
//! \brief A class that works with matrix operations, the input data of which is the data type of the matrix
//! @tparam There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
//! of the C++ language are implemented
template
class PIP_EXPORT PIMathMatrix : public PIVector2D {
typedef PIVector2D _V2D;
typedef PIMathMatrix _CMatrix;
public:
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @param f is type of matrix elements
*/
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @param val is PIVector of matrix elements
*/
PIMathMatrix(const uint cols, const uint rows, const PIVector &val) {
_V2D::resize(rows, cols);
int i = 0;
PIMM_FOR _V2D::element(r, c) = val[i++];
}
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param val is PIVector of PIVector, which creates matrix
*/
PIMathMatrix(const PIVector > &val) {
if (!val.isEmpty()) {
_V2D::resize(val.size(), val[0].size());
for (uint r = 0; r < _V2D::rows_; ++r) {
assert(val[r].size() == _V2D::cols_);
for (uint c = 0; c < _V2D::cols_; ++c)
_V2D::element(r, c) = val[r][c];
}
}
}
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param val is PIVector2D, which creates matrix
*/
PIMathMatrix(const PIVector2D &val) {
if (!val.isEmpty()) {
_V2D::resize(val.rows(), val.cols());
PIMM_FOR _V2D::element(r, c) = val.element(r, c);
}
}
/**
* @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @return identity matrix(cols,rows)
*/
static _CMatrix identity(const uint cols, const uint rows) {
_CMatrix tm(cols, rows);
for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Creates a row matrix of every element that is equal to every element of the vector
*
* @param val is the vector type PIMathVector
* @return row matrix of every element that is equal to every element of the vector
*/
static _CMatrix matrixRow(const PIMathVector &val) {return _CMatrix(val.size(), 1, val.toVector());}
/**
* @brief Creates a column matrix of every element that is equal to every element of the vector
*
* @param val is the vector type PIMathVector
* @return column matrix of every element that is equal to every element of the vector
*/
static _CMatrix matrixCol(const PIMathVector &val) {return _CMatrix(1, val.size(), val.toVector());}
/**
* @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix
* or index larger than the number of columns otherwise there will be "undefined behavior"
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix &setCol(uint index, const PIMathVector &v) {
assert(_V2D::rows == v.size());
PIMM_FOR_R _V2D::element(i, index) = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix,
* or index larger than the number of rows otherwise there will be "undefined behavior"
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix &setRow(uint index, const PIMathVector &v) {
assert(_V2D::cols == v.size());
PIMM_FOR_C _V2D::element(index, i) = v[i];
return *this;
}
/**
* @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns,
* otherwise there will be "undefined behavior"
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapCols(uint r0, uint r1) {
PIMM_FOR_C piSwap(_V2D::element(i, r0), _V2D::element(i, r1));
return *this;
}
/**
* @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows,
* otherwise there will be "undefined behavior"
*
* @param c0 is the number of the first selected row
* @param c1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint c0, uint c1) {
PIMM_FOR_R piSwap(_V2D::element(c0, i), _V2D::element(c1, i));
return *this;
}
/**
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix &fill(const Type &v) {
PIMM_FOR_A _V2D::mat[i] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const { return _V2D::cols_ == _V2D::rows_; }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identity, else false
*/
bool isIdentity() const {
PIMM_FOR if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix elements equal to zero, else false
*/
bool isNull() const {
PIMM_FOR_A if (_V2D::mat[i] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if matrix is empty
*
* @return true if matrix is valid, else false
*/
bool isValid() const { return !PIVector2D::isEmpty(); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) {
assert(_V2D::rows() == sm.rows());
assert(_V2D::cols() == sm.cols());
PIMM_FOR_A _V2D::mat[i] += sm.mat[i];
}
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator-=(const _CMatrix &sm) {
assert(_V2D::rows() == sm.rows());
assert(_V2D::cols() == sm.cols());
PIMM_FOR_A _V2D::mat[i] -= sm.mat[i];
}
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator*=(const Type &v) {
PIMM_FOR_A _V2D::mat[i] *= v;
}
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator/=(const Type &v) {
assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP);
PIMM_FOR_A _V2D::mat[i] /= v;
}
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator-() const {
_CMatrix tm(*this);
PIMM_FOR_A tm.mat[i] = -_V2D::mat[i];
return tm;
}
/**
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm(*this);
assert(tm.rows() == sm.rows());
assert(tm.cols() == sm.cols());
PIMM_FOR_A tm.mat[i] += sm.mat[i];
return tm;
}
/**
* @brief Matrix subtraction
*
* @param sm is matrix subtractor
* @return the result of matrix subtraction
*/
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm(*this);
assert(tm.rows() == sm.rows());
assert(tm.cols() == sm.cols());
PIMM_FOR_A tm.mat[i] -= sm.mat[i];
return tm;
}
/**
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator*(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A tm.mat[i] *= v;
return tm;
}
/**
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator/(const Type &v) const {
assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP);
_CMatrix tm(*this);
PIMM_FOR_A tm.mat[i] /= v;
return tm;
}
/**
* @brief Determinant of the self matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return matrix determinant
*/
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
Type ret = Type(0);
m.toUpperTriangular(&k);
if (ok) *ok = k;
if (!k) return ret;
ret = Type(1);
for (uint c = 0; c < _V2D::cols_; ++c)
for (uint r = 0; r < _V2D::rows_; ++r)
if (r == c)
ret *= m.element(r, c);
return ret;
}
/**
* @brief Trace of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return matrix trace
*/
Type trace(bool *ok = 0) const {
Type ret = Type(0);
if (!isSquare()) {
if (ok != 0) *ok = false;
return ret;
}
for (uint i = 0; i < _V2D::cols_; ++i) {
ret += _V2D::element(i, i);
}
if (ok != 0) *ok = true;
return ret;
}
/**
* @brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return copy of transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix smat(*this);
bool ndet;
uint crow;
Type mul;
for (uint i = 0; i < _V2D::cols_; ++i) {
ndet = true;
for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < _V2D::cols_; ++i) {
crow = i;
while (smat.element(i, i) == Type(0))
smat.swapRows(i, ++crow);
for (uint j = i + 1; j < _V2D::rows_; ++j) {
mul = smat.element(i, j) / smat.element(i, i);
for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i);
}
if (i < _V2D::cols_ - 1) {
if (PIMathFloatNullCompare(smat.element(i + 1, i + 1))) {
if (ok != 0) *ok = false;
return *this;
}
}
}
if (ok != 0) *ok = true;
_V2D::mat.swap(smat.mat);
return *this;
}
/**
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @param sv is a vector multiplier
* @return copy of inverted matrix
*/
_CMatrix &invert(bool *ok = 0, PIMathVector *sv = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix mtmp = _CMatrix::identity(_V2D::cols_, _V2D::rows_), smat(*this);
bool ndet;
uint crow;
Type mul, iddiv;
for (uint i = 0; i < _V2D::cols_; ++i) {
ndet = true;
for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != Type(0)) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < _V2D::cols_; ++i) {
crow = i;
while (smat.element(i, i) == Type(0)) {
++crow;
smat.swapRows(i, crow);
mtmp.swapRows(i, crow);
if (sv != 0) sv->swapElements(i, crow);
}
for (uint j = i + 1; j < _V2D::rows_; ++j) {
mul = smat.element(i, j) / smat.element(i, i);
for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i);
for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i);
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
if (i < _V2D::cols_ - 1) {
if (PIMathFloatNullCompare(smat.element(i + 1, i + 1))) {
if (ok != 0) *ok = false;
return *this;
}
}
iddiv = smat.element(i, i);
for (uint j = i; j < _V2D::cols_; ++j) smat.element(j, i) /= iddiv;
for (uint j = 0; j < _V2D::cols_; ++j) mtmp.element(j, i) /= iddiv;
if (sv != 0) (*sv)[i] /= iddiv;
}
for (uint i = _V2D::cols_ - 1; i > 0; --i) {
for (uint j = 0; j < i; ++j) {
mul = smat.element(i, j);
smat.element(i, j) -= mul;
for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i);
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
}
if (ok != 0) *ok = true;
PIVector2D::swap(mtmp);
return *this;
}
/**
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
*
* @param ok is a parameter with which we can find out if the method worked correctly
* @return inverted matrix
*/
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrix transposed() const {
_CMatrix tm(_V2D::rows_, _V2D::cols_);
PIMM_FOR tm.element(c, r) = _V2D::element(r, c);
return tm;
}
};
#ifdef PIP_STD_IOSTREAM
template
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
/**
* @brief Inline operator for outputting the matrix to the console
*
* @param s PICout type
* @param the matrix type PIMathMatrix that we print to the console
* @return PIMathMatrix printed to the console
*/
template
inline PICout operator<<(PICout s, const PIMathMatrix &m) {
s << "Matrix{";
for (uint r = 0; r < m.rows(); ++r) {
for (uint c = 0; c < m.cols(); ++c) {
s << m.element(r, c);
if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";
}
if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";
}
s << "}";
return s;
}
/**
* @brief Inline operator for serializing a matrix into a PIByteArray
*
* @param s PIByteArray type
* @param v PIMathMatrix type
* @return PIBiteArray serialized PIMathMatrix
*/
template
inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix &v) {
s << (const PIVector2D &) v;
return s;
}
/**
* @brief Inline operator to deserialize matrix from PIByteArray
*
* @param s PIByteArray type
* @param v PIMathMatrix type
* @return PIMathMatrix deserialized from PIByteArray
*/
template
inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix &v) {
s >> (PIVector2D &) v;
return s;
}
/**
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param fm first matrix multiplier
* @param sm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template
inline PIMathMatrix operator*(const PIMathMatrix &fm,
const PIMathMatrix &sm) {
uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols();
PIMathMatrix tm(cols1, rows0);
if (fm.cols() != sm.rows()) return tm;
Type t;
for (uint j = 0; j < rows0; ++j) {
for (uint i = 0; i < cols1; ++i) {
t = Type(0);
for (uint k = 0; k < cr; ++k)
t += fm.element(j, k) * sm.element(k, i);
tm.element(j, i) = t;
}
}
return tm;
}
/**
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param fm first matrix multiplier
* @param sv second vector multiplier
* @return vector that is the result of multiplication
*/
template
inline PIMathVector operator*(const PIMathMatrix &fm,
const PIMathVector &sv) {
uint c = fm.cols(), r = fm.rows();
PIMathVector tv(r);
if (c != sv.size()) return tv;
Type t;
for (uint j = 0; j < r; ++j) {
t = Type(0);
for (uint i = 0; i < c; ++i)
t += fm.element(j, i) * sv[i];
tv[j] = t;
}
return tv;
}
/**
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param sv first vector multiplier
* @param fm second matrix multiplier
* @return vector that is the result of multiplication
*/
template
inline PIMathVector operator*(const PIMathVector &sv,
const PIMathMatrix &fm) {
uint c = fm.cols(), r = fm.rows();
PIMathVector tv(c);
Type t;
for (uint j = 0; j < c; ++j) {
t = Type(0);
for (uint i = 0; i < r; ++i)
t += fm.element(i, j) * sv[i];
tv[j] = t;
}
return tv;
}
/**
* @brief Multiplying value of type Type and matrix
*
* @param x first multiplier of type Type
* @param fm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template
inline PIMathMatrix operator*(const Type &x, const PIMathMatrix &v) {
return v * x;
}
typedef PIMathMatrix PIMathMatrixi;
typedef PIMathMatrix PIMathMatrixd;
/**
* @brief Searching hermitian matrix
*
* @param m conjugate transpose matrix
* @return result of the hermitian
*/
template
PIMathMatrix > hermitian(const PIMathMatrix > &m) {
PIMathMatrix > ret(m);
for (uint r = 0; r < ret.rows(); ++r)
for (uint c = 0; c < ret.cols(); ++c)
ret.element(r, c).imag(-(ret.element(r, c).imag()));
return ret.transposed();
}
#undef PIMM_FOR
#undef PIMM_FOR_A
#undef PIMM_FOR_C
#undef PIMM_FOR_R
#endif // PIMATHMATRIX_H