/*! \file pimathmatrix.h * \brief PIMathMatrix * * This file declare math matrix class, which performs various matrix operations */ /* PIP - Platform Independent Primitives PIMathMatrix Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #ifndef PIMATHMATRIX_H #define PIMATHMATRIX_H #include "pimathvector.h" #include "pimathcomplex.h" /// Matrix templated #define PIMM_FOR for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) #define PIMM_FOR_C for (uint i = 0; i < Cols; ++i) #define PIMM_FOR_R for (uint i = 0; i < Rows; ++i) #pragma pack(push, 1) //! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix //! @tparam Rows rows number of matrix //! @tparam Сols columns number of matrix //! @tparam Type is the data type of the matrix. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /) //! of the C++ language are implemented template class PIP_EXPORT PIMathMatrixT { typedef PIMathMatrixT _CMatrix; typedef PIMathMatrixT _CMatrixI; typedef PIMathVectorT _CMCol; typedef PIMathVectorT _CMRow; static_assert(std::is_arithmetic::value, "Type must be arithmetic"); static_assert(Rows > 0, "Row count must be > 0"); static_assert(Cols > 0, "Column count must be > 0"); public: /** * @brief Constructs PIMathMatrixT that is filled by \a new_value */ PIMathMatrixT(const Type &new_value = Type()) {PIMM_FOR m[r][c] = new_value;} /** * @brief Contructs PIMathMatrixT from PIVector */ PIMathMatrixT(const PIVector &val) { assert(Rows*Cols == val.size()); int i = 0; PIMM_FOR m[r][c] = val[i++]; } /** * @brief Contructs PIMathMatrixT from C++11 initializer list */ PIMathMatrixT(std::initializer_list init_list) { assert(Rows*Cols == init_list.size()); int i = 0; PIMM_FOR m[r][c] = init_list.begin()[i++]; } /** * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * * @return identity matrix of type PIMathMatrixT */ static _CMatrix identity() { _CMatrix tm = _CMatrix(); PIMM_FOR tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm; } /** * @brief Method which returns number of columns in matrix * * @return type uint shows number of columns */ constexpr uint cols() const {return Cols;} /** * @brief Method which returns number of rows in matrix * * @return type uint shows number of rows */ constexpr uint rows() const {return Rows;} /** * @brief Method which returns the selected column in PIMathVectorT format. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param index is the number of the selected column * @return column in PIMathVectorT format */ _CMCol col(uint index) { _CMCol tv; PIMM_FOR_R tv[i] = m[i][index]; return tv; } /** * @brief Method which returns the selected row in PIMathVectorT format * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param index is the number of the selected row * @return row in PIMathVectorT format */ _CMRow row(uint index) { _CMRow tv; PIMM_FOR_C tv[i] = m[index][i]; return tv; } /** * @brief Set the selected column in matrix. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param index is the number of the selected column * @param v is a vector of the type _CMCol that needs to fill the column * @return matrix type _CMatrix */ _CMatrix &setCol(uint index, const _CMCol &v) { PIMM_FOR_R m[i][index] = v[i]; return *this; } /** * @brief Set the selected row in matrix * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param index is the number of the selected row * @param v is a vector of the type _CMCol that needs to fill the row * @return matrix type _CMatrix */ _CMatrix &setRow(uint index, const _CMRow &v) { PIMM_FOR_C m[index][i] = v[i]; return *this; } /** * @brief Method which changes selected rows in a matrix. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param r0 is the number of the first selected row * @param r1 is the number of the second selected row * @return matrix type _CMatrix */ _CMatrix &swapRows(uint rf, uint rs) { PIMM_FOR_C piSwap(m[rf][i], m[rs][i]); return *this; } /** * @brief Method which changes selected columns in a matrix. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param c0 is the number of the first selected column * @param c1 is the number of the second selected column * @return matrix type _CMatrix */ _CMatrix &swapCols(uint cf, uint cs) { PIMM_FOR_R piSwap(m[i][cf], m[i][cs]); return *this; } /** * @brief Method which fills the matrix with selected value * * @param v is a parameter the type and value of which is selected and later filled into the matrix * @return filled matrix type _CMatrix */ _CMatrix &fill(const Type &v) { PIMM_FOR m[r][c] = v; return *this; } /** * @brief Method which checks if matrix is square * * @return true if matrix is square, else false */ constexpr bool isSquare() const { return Rows == Cols; } /** * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros * * @return true if matrix is identitied, else false */ bool isIdentity() const { PIMM_FOR if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true; } /** * @brief Method which checks if every elements of matrix are zeros * * @return true if matrix is null, else false */ bool isNull() const { PIMM_FOR if (m[r][c] != Type(0)) return false; return true; } /** * @brief Read-only access to element by \a row and \a col. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param row of matrix * @param col of matrix * @return copy of element of matrix */ Type at(uint row, uint col) const { return m[row][col]; } /** * @brief Full access to element by \a row and \a col. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param row of matrix * @param col of matrix * @return element of matrix */ inline Type & element(uint row, uint col) {return m[row][col];} /** * @brief Read-only access to element by \a row and \a col. * If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param row of matrix * @param col of matrix * @return element of matrix */ inline const Type & element(uint row, uint col) const {return m[row][col];} /** * @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param row of matrix * @return matrix row pointer */ Type *operator[](uint row) { return m[row]; } /** * @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param row of matrix * @return matrix row pointer */ const Type *operator[](uint row) const {return m[row];} /** * @brief Matrix compare * * @param sm matrix for compare * @return if matrices are equal true, else false */ bool operator==(const _CMatrix &sm) const { PIMM_FOR if (m[r][c] != sm.m[r][c]) return false; return true; } /** * @brief Matrix negative compare * * @param sm matrix for compare * @return if matrices are not equal true, else false */ bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } /** * @brief Addition assignment with matrix "sm" * * @param sm matrix for the addition assigment */ void operator+=(const _CMatrix &sm) {PIMM_FOR m[r][c] += sm.m[r][c];} /** * @brief Subtraction assignment with matrix "sm" * * @param sm matrix for the subtraction assigment */ void operator-=(const _CMatrix &sm) {PIMM_FOR m[r][c] -= sm.m[r][c];} /** * @brief Multiplication assignment with value "v" * * @param v value for the multiplication assigment */ void operator*=(const Type &v) { PIMM_FOR m[r][c] *= v; } /** * @brief Division assignment with value "v" * * @param v value for the division assigment */ void operator/=(const Type &v) { assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP); PIMM_FOR m[r][c] /= v; } /** * @brief Matrix substraction * * @return the result of matrix substraction */ _CMatrix operator-() const { _CMatrix tm; PIMM_FOR tm.m[r][c] = -m[r][c]; return tm; } /** * @brief Matrix addition * * @param sm is matrix term * @return the result of matrix addition */ _CMatrix operator+(const _CMatrix &sm) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR tm.m[r][c] += sm.m[r][c]; return tm; } /** * @brief Matrix substraction * * @param sm is matrix subtractor * @return the result of matrix substraction */ _CMatrix operator-(const _CMatrix &sm) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR tm.m[r][c] -= sm.m[r][c]; return tm; } /** * @brief Matrix multiplication * * @param v is value factor * @return the result of matrix multiplication */ _CMatrix operator*(const Type &v) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR tm.m[r][c] *= v; return tm; } /** * @brief Matrix division * * @param v is value divider * @return the result of matrix division */ _CMatrix operator/(const Type &v) const { assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP); _CMatrix tm = _CMatrix(*this); PIMM_FOR tm.m[r][c] /= v; return tm; } /** * @brief Determinant of the matrix is ​​calculated. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return matrix determinant */ Type determinant(bool *ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); PIMM_FOR if (r == c) ret *= m[r][c]; return ret; } /** * @brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return copy of transformed upper triangular matrix */ _CMatrix &toUpperTriangular(bool *ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < Cols - 1) { if (piAbs(smat.m[i + 1][i + 1]) < Type(1E-200)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; memcpy(m, smat.m, sizeof(Type) * Cols * Rows); return *this; } /** * @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return copy of inverted matrix */ _CMatrix &invert(bool *ok = 0) { static_assert(Cols == Rows, "Only square matrix invertable"); _CMatrix mtmp = _CMatrix::identity(), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); } for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; } if (i < Cols - 1) { if (piAbs(smat.m[i + 1][i + 1]) < Type(1E-200)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv; } for (uint i = Cols - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; } } if (ok != 0) *ok = true; memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows); return *this; } /** * @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return inverted matrix */ _CMatrix inverted(bool *ok = 0) const { _CMatrix tm(*this); tm.invert(ok); return tm; } /** * @brief Matrix transposition operation. Works only with square matrix, nonzero matrices and invertible matrix * * @return transposed matrix */ _CMatrixI transposed() const { _CMatrixI tm; PIMM_FOR tm[c][r] = m[r][c]; return tm; } _CMatrix rotate(Type angle) { static_assert(Rows == 2 && Cols == 2, "Works only with 2x2 matrix"); Type c = std::cos(angle); Type s = std::sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; *this = *this * tm; return *this; } private: Type m[Rows][Cols]; }; #pragma pack(pop) #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) { s << "{"; for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) { s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", "; } if (r < Rows - 1) s << std::endl << " "; } s << "}"; return s; } #endif /** * @brief Add matrix "m" at the end of matrix and return reference to matrix * * @param s PICout type * @param m PIMathMatrixT type * @return bitwise left PICout */ template inline PICout operator<<(PICout s, const PIMathMatrixT &m) { s << "{"; for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) { s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", "; } if (r < Rows - 1) s << PICoutManipulators::NewLine << " "; } s << "}"; return s; } /** * @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param fm first matrix multiplier * @param sm second matrix multiplier * @return matrix that is the result of multiplication */ template inline PIMathMatrixT operator*(const PIMathMatrixT &fm, const PIMathMatrixT &sm) { PIMathMatrixT tm; Type t; for (uint j = 0; j < Rows0; ++j) { for (uint i = 0; i < Cols1; ++i) { t = Type(0); for (uint k = 0; k < CR; ++k) t += fm[j][k] * sm[k][i]; tm[j][i] = t; } } return tm; } /** * @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param fm first matrix multiplier * @param sv second vector multiplier * @return vector that is the result of multiplication */ template inline PIMathVectorT operator*(const PIMathMatrixT &fm, const PIMathVectorT &sv) { PIMathVectorT tv; Type t; for (uint j = 0; j < Rows; ++j) { t = Type(0); for (uint i = 0; i < Cols; ++i) t += fm[j][i] * sv[i]; tv[j] = t; } return tv; } /** * @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param sv first vector multiplier * @param fm second matrix multiplier * @return vector that is the result of multiplication */ template inline PIMathVectorT operator*(const PIMathVectorT &sv, const PIMathMatrixT &fm) { PIMathVectorT tv; Type t; for (uint j = 0; j < Cols; ++j) { t = Type(0); for (uint i = 0; i < Rows; ++i) t += fm[i][j] * sv[i]; tv[j] = t; } return tv; } /** * @brief Multiplying value of type Type and matrix * * @param x first multiplier of type Type * @param fm second matrix multiplier * @return matrix that is the result of multiplication */ template inline PIMathMatrixT operator*(const Type &x, const PIMathMatrixT &v) { return v * x; } typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i; typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i; typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i; typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d; typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d; typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d; template class PIMathMatrix; #undef PIMM_FOR #undef PIMM_FOR_C #undef PIMM_FOR_R /// Matrix #define PIMM_FOR for (uint r = 0; r < _V2D::rows_; ++r) for (uint c = 0; c < _V2D::cols_; ++c) #define PIMM_FOR_A for (uint i = 0; i < _V2D::mat.size(); ++i) #define PIMM_FOR_C for (uint i = 0; i < _V2D::cols_; ++i) #define PIMM_FOR_R for (uint i = 0; i < _V2D::rows_; ++i) //! \brief A class that works with matrix operations, the input data of which is the data type of the matrix //! @tparam There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /) //! of the C++ language are implemented template class PIP_EXPORT PIMathMatrix : public PIVector2D { typedef PIVector2D _V2D; typedef PIMathMatrix _CMatrix; public: /** * @brief Constructor of class PIMathMatrix, which creates a matrix * * @param cols is number of matrix column uint type * @param rows is number of matrix row uint type * @param f is type of matrix elements */ PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); } /** * @brief Constructor of class PIMathMatrix, which creates a matrix * * @param cols is number of matrix column uint type * @param rows is number of matrix row uint type * @param val is PIVector of matrix elements */ PIMathMatrix(const uint cols, const uint rows, const PIVector &val) { _V2D::resize(rows, cols); int i = 0; PIMM_FOR _V2D::element(r, c) = val[i++]; } /** * @brief Constructor of class PIMathMatrix, which creates a matrix * * @param val is PIVector of PIVector, which creates matrix */ PIMathMatrix(const PIVector > &val) { if (!val.isEmpty()) { _V2D::resize(val.size(), val[0].size()); for (uint r = 0; r < _V2D::rows_; ++r) { assert(val[r].size() == _V2D::cols_); for (uint c = 0; c < _V2D::cols_; ++c) _V2D::element(r, c) = val[r][c]; } } } /** * @brief Constructor of class PIMathMatrix, which creates a matrix * * @param val is PIVector2D, which creates matrix */ PIMathMatrix(const PIVector2D &val) { if (!val.isEmpty()) { _V2D::resize(val.rows(), val.cols()); PIMM_FOR _V2D::element(r, c) = val.element(r, c); } } /** * @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * * @param cols is number of matrix column uint type * @param rows is number of matrix row uint type * @return identity matrix(cols,rows) */ static _CMatrix identity(const uint cols, const uint rows) { _CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0)); return tm; } /** * @brief Creates a row matrix of every element that is equal to every element of the vector * * @param val is the vector type PIMathVector * @return row matrix of every element that is equal to every element of the vector */ static _CMatrix matrixRow(const PIMathVector &val) {return _CMatrix(val.size(), 1, val.toVector());} /** * @brief Creates a column matrix of every element that is equal to every element of the vector * * @param val is the vector type PIMathVector * @return column matrix of every element that is equal to every element of the vector */ static _CMatrix matrixCol(const PIMathVector &val) {return _CMatrix(1, val.size(), val.toVector());} /** * @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix * or index larger than the number of columns otherwise there will be "undefined behavior" * * @param index is the number of the selected column * @param v is a vector of the type _CMCol that needs to fill the column * @return matrix type _CMatrix */ _CMatrix &setCol(uint index, const PIMathVector &v) { assert(_V2D::rows == v.size()); PIMM_FOR_R _V2D::element(i, index) = v[i]; return *this; } /** * @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix, * or index larger than the number of rows otherwise there will be "undefined behavior" * @param index is the number of the selected row * @param v is a vector of the type _CMCol that needs to fill the row * @return matrix type _CMatrix */ _CMatrix &setRow(uint index, const PIMathVector &v) { assert(_V2D::cols == v.size()); PIMM_FOR_C _V2D::element(index, i) = v[i]; return *this; } /** * @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns, * otherwise there will be "undefined behavior" * * @param r0 is the number of the first selected row * @param r1 is the number of the second selected row * @return matrix type _CMatrix */ _CMatrix &swapCols(uint r0, uint r1) { PIMM_FOR_C piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); return *this; } /** * @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows, * otherwise there will be "undefined behavior" * * @param c0 is the number of the first selected row * @param c1 is the number of the second selected row * @return matrix type _CMatrix */ _CMatrix &swapRows(uint c0, uint c1) { PIMM_FOR_R piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); return *this; } /** * @brief Method which fills the matrix with selected value * * @param v is a parameter the type and value of which is selected and later filled into the matrix * @return filled matrix type _CMatrix */ _CMatrix &fill(const Type &v) { PIMM_FOR_A _V2D::mat[i] = v; return *this; } /** * @brief Method which checks if matrix is square * * @return true if matrix is square, else false */ bool isSquare() const { return _V2D::cols_ == _V2D::rows_; } /** * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros * * @return true if matrix is identity, else false */ bool isIdentity() const { PIMM_FOR if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false; return true; } /** * @brief Method which checks if every elements of matrix are zeros * * @return true if matrix elements equal to zero, else false */ bool isNull() const { PIMM_FOR_A if (_V2D::mat[i] != Type(0)) return false; return true; } /** * @brief Method which checks if matrix is empty * * @return true if matrix is valid, else false */ bool isValid() const { return !PIVector2D::isEmpty(); } /** * @brief Addition assignment with matrix "sm" * * @param sm matrix for the addition assigment */ void operator+=(const _CMatrix &sm) { assert(_V2D::rows() == sm.rows()); assert(_V2D::cols() == sm.cols()); PIMM_FOR_A _V2D::mat[i] += sm.mat[i]; } /** * @brief Subtraction assignment with matrix "sm" * * @param sm matrix for the subtraction assigment */ void operator-=(const _CMatrix &sm) { assert(_V2D::rows() == sm.rows()); assert(_V2D::cols() == sm.cols()); PIMM_FOR_A _V2D::mat[i] -= sm.mat[i]; } /** * @brief Multiplication assignment with value "v" * * @param v value for the multiplication assigment */ void operator*=(const Type &v) { PIMM_FOR_A _V2D::mat[i] *= v; } /** * @brief Division assignment with value "v" * * @param v value for the division assigment */ void operator/=(const Type &v) { assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP); PIMM_FOR_A _V2D::mat[i] /= v; } /** * @brief Matrix substraction * * @return the result of matrix substraction */ _CMatrix operator-() const { _CMatrix tm(*this); PIMM_FOR_A tm.mat[i] = -_V2D::mat[i]; return tm; } /** * @brief Matrix addition * * @param sm is matrix term * @return the result of matrix addition */ _CMatrix operator+(const _CMatrix &sm) const { _CMatrix tm(*this); assert(tm.rows() == sm.rows()); assert(tm.cols() == sm.cols()); PIMM_FOR_A tm.mat[i] += sm.mat[i]; return tm; } /** * @brief Matrix subtraction * * @param sm is matrix subtractor * @return the result of matrix subtraction */ _CMatrix operator-(const _CMatrix &sm) const { _CMatrix tm(*this); assert(tm.rows() == sm.rows()); assert(tm.cols() == sm.cols()); PIMM_FOR_A tm.mat[i] -= sm.mat[i]; return tm; } /** * @brief Matrix multiplication * * @param v is value factor * @return the result of matrix multiplication */ _CMatrix operator*(const Type &v) const { _CMatrix tm(*this); PIMM_FOR_A tm.mat[i] *= v; return tm; } /** * @brief Matrix division * * @param v is value divider * @return the result of matrix division */ _CMatrix operator/(const Type &v) const { assert(piAbs(v) > PIMATHVECTOR_ZERO_CMP); _CMatrix tm(*this); PIMM_FOR_A tm.mat[i] /= v; return tm; } /** * @brief Determinant of the self matrix is ​​calculated. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return matrix determinant */ Type determinant(bool *ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); for (uint c = 0; c < _V2D::cols_; ++c) for (uint r = 0; r < _V2D::rows_; ++r) if (r == c) ret *= m.element(r, c); return ret; } /** * @brief Trace of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return matrix trace */ Type trace(bool *ok = 0) const { Type ret = Type(0); if (!isSquare()) { if (ok != 0) *ok = false; return ret; } for (uint i = 0; i < _V2D::cols_; ++i) { ret += _V2D::element(i, i); } if (ok != 0) *ok = true; return ret; } /** * @brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return copy of transformed upper triangular matrix */ _CMatrix &toUpperTriangular(bool *ok = 0) { if (!isSquare()) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < _V2D::cols_; ++i) { ndet = true; for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < _V2D::cols_; ++i) { crow = i; while (smat.element(i, i) == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < _V2D::rows_; ++j) { mul = smat.element(i, j) / smat.element(i, i); for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i); } if (i < _V2D::cols_ - 1) { if (PIMathFloatNullCompare(smat.element(i + 1, i + 1))) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; _V2D::mat.swap(smat.mat); return *this; } /** * @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @param sv is a vector multiplier * @return copy of inverted matrix */ _CMatrix &invert(bool *ok = 0, PIMathVector *sv = 0) { if (!isSquare()) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(_V2D::cols_, _V2D::rows_), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < _V2D::cols_; ++i) { ndet = true; for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != Type(0)) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < _V2D::cols_; ++i) { crow = i; while (smat.element(i, i) == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); if (sv != 0) sv->swapElements(i, crow); } for (uint j = i + 1; j < _V2D::rows_; ++j) { mul = smat.element(i, j) / smat.element(i, i); for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i); for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i); if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } if (i < _V2D::cols_ - 1) { if (PIMathFloatNullCompare(smat.element(i + 1, i + 1))) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.element(i, i); for (uint j = i; j < _V2D::cols_; ++j) smat.element(j, i) /= iddiv; for (uint j = 0; j < _V2D::cols_; ++j) mtmp.element(j, i) /= iddiv; if (sv != 0) (*sv)[i] /= iddiv; } for (uint i = _V2D::cols_ - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.element(i, j); smat.element(i, j) -= mul; for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i); if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } } if (ok != 0) *ok = true; PIVector2D::swap(mtmp); return *this; } /** * @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix * * @param ok is a parameter with which we can find out if the method worked correctly * @return inverted matrix */ _CMatrix inverted(bool *ok = 0) const { _CMatrix tm(*this); tm.invert(ok); return tm; } /** * @brief Matrix transposition operation * * @return transposed matrix */ _CMatrix transposed() const { _CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR tm.element(c, r) = _V2D::element(r, c); return tm; } }; #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;} #endif /** * @brief Inline operator for outputting the matrix to the console * * @param s PICout type * @param the matrix type PIMathMatrix that we print to the console * @return PIMathMatrix printed to the console */ template inline PICout operator<<(PICout s, const PIMathMatrix &m) { s << "Matrix{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", "; } if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " "; } s << "}"; return s; } /** * @brief Inline operator for serializing a matrix into a PIByteArray * * @param s PIByteArray type * @param v PIMathMatrix type * @return PIBiteArray serialized PIMathMatrix */ template inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix &v) { s << (const PIVector2D &) v; return s; } /** * @brief Inline operator to deserialize matrix from PIByteArray * * @param s PIByteArray type * @param v PIMathMatrix type * @return PIMathMatrix deserialized from PIByteArray */ template inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix &v) { s >> (PIVector2D &) v; return s; } /** * @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param fm first matrix multiplier * @param sm second matrix multiplier * @return matrix that is the result of multiplication */ template inline PIMathMatrix operator*(const PIMathMatrix &fm, const PIMathMatrix &sm) { uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols(); PIMathMatrix tm(cols1, rows0); if (fm.cols() != sm.rows()) return tm; Type t; for (uint j = 0; j < rows0; ++j) { for (uint i = 0; i < cols1; ++i) { t = Type(0); for (uint k = 0; k < cr; ++k) t += fm.element(j, k) * sm.element(k, i); tm.element(j, i) = t; } } return tm; } /** * @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param fm first matrix multiplier * @param sv second vector multiplier * @return vector that is the result of multiplication */ template inline PIMathVector operator*(const PIMathMatrix &fm, const PIMathVector &sv) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(r); if (c != sv.size()) return tv; Type t; for (uint j = 0; j < r; ++j) { t = Type(0); for (uint i = 0; i < c; ++i) t += fm.element(j, i) * sv[i]; tv[j] = t; } return tv; } /** * @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior" * * @param sv first vector multiplier * @param fm second matrix multiplier * @return vector that is the result of multiplication */ template inline PIMathVector operator*(const PIMathVector &sv, const PIMathMatrix &fm) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(c); Type t; for (uint j = 0; j < c; ++j) { t = Type(0); for (uint i = 0; i < r; ++i) t += fm.element(i, j) * sv[i]; tv[j] = t; } return tv; } /** * @brief Multiplying value of type Type and matrix * * @param x first multiplier of type Type * @param fm second matrix multiplier * @return matrix that is the result of multiplication */ template inline PIMathMatrix operator*(const Type &x, const PIMathMatrix &v) { return v * x; } typedef PIMathMatrix PIMathMatrixi; typedef PIMathMatrix PIMathMatrixd; /** * @brief Searching hermitian matrix * * @param m conjugate transpose matrix * @return result of the hermitian */ template PIMathMatrix > hermitian(const PIMathMatrix > &m) { PIMathMatrix > ret(m); for (uint r = 0; r < ret.rows(); ++r) for (uint c = 0; c < ret.cols(); ++c) ret.element(r, c).imag(-(ret.element(r, c).imag())); return ret.transposed(); } #undef PIMM_FOR #undef PIMM_FOR_A #undef PIMM_FOR_C #undef PIMM_FOR_R #endif // PIMATHMATRIX_H