/* PIP - Platform Independent Primitives Thread Copyright (C) 2015 Ivan Pelipenko peri4ko@gmail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "pithread.h" #include "pisystemtests.h" #include #ifdef WINDOWS void __PISetTimerResolution() {if (setTimerResolutionAddr == NULL) return; ULONG ret; setTimerResolutionAddr(1, TRUE, &ret);} #endif /*! \class PIThread * \brief Thread class * \details This class allow you exec your code in separate thread. * * \section PIThread_sec0 Synopsis * Multithreading allow you to write program which will be executed * in several threads simultaneously. This trend allow you to use all * cores of modern processors, but there are many dangers. * * This class provide virtual functions \a begin(), \a run() and \a end(), * which describes start, execution and finish work of some process. * These functions executes in \b separate thread. When you execute * \a start(), %PIThread create separate system thread and sequentially * executes function \a begin(), \a run() and \a end(). You can * reimplement each function and write your own code to execute. * Scheme of functions executing: \code{.cpp} begin(); event started(); while (isRunning()) { run(); ThreadFunc(); msleep(timer_delay); } event stopped(); end(); \endcode * Unlike from directly using "pthread" or some similar you doesn`t need * to write your own main thread cycle and sleep at every cycle end. * %PIThread make it for you, and your job is to set sleep value from * contructor or when starting thread, and reimplement \a begin(), \a run() * and \a end() functions. * * \section PIThread_sec1 Using without subclassing * You can use %PIThread without subclassing by using "ThreadFunc" pointer * that can be set from constructor or by overloaded function \a start(ThreadFunc func, int timer_delay). * If "func" if not null this function will be executed as \a run(). ThreadFunc is any static * function with format void func(void * data). "Data" is custom data set from constructor or * with function \a setData(). \n Also you can connect to event \a started(), but * in this case you should to white your thread main cycle, because this event raised only one time. * * \section PIThread_sec2 Locking * %PIThread has inrternal mutex that can be locked and unlocked every \a run() if you set this flag * with function \a needLockRun(bool). Also you can access to this mutex by functions \a lock(), \a unlock() * and \a mutex(). Using this functions together with needLockRun(true) can guarantee one-thread access to * some data. * */ PIThread::PIThread(void * data, ThreadFunc func, bool startNow, int timer_delay): PIObject() { piMonitor.threads++; thread = 0; data_ = data; ret_func = func; terminating = running_ = lockRun = false; priority_ = piNormal; delay_ = timer_delay; if (startNow) start(timer_delay); } PIThread::PIThread(bool startNow, int timer_delay): PIObject() { piMonitor.threads++; thread = 0; ret_func = 0; terminating = running_ = lockRun = false; priority_ = piNormal; delay_ = timer_delay; if (startNow) start(timer_delay); } PIThread::~PIThread() { piMonitor.threads--; if (!running_ || thread == 0) return; #ifndef WINDOWS # ifdef ANDROID pthread_kill(thread, SIGSTOP); # else pthread_cancel(thread); # endif #else TerminateThread(thread, 0); CloseHandle(thread); #endif terminating = running_ = false; } bool PIThread::start(int timer_delay) { if (running_) return false; terminating = running_ = false; delay_ = timer_delay; #ifndef WINDOWS pthread_attr_t attr; pthread_attr_init(&attr); # ifndef ANDROID pthread_attr_setschedparam(&attr, &sparam); # endif if (pthread_create(&thread, &attr, thread_function, this) == 0) { setPriority(priority_); running_ = true; return true; #else thread = CreateThread(0, 0, (LPTHREAD_START_ROUTINE)thread_function, this, 0, 0); if (thread != 0) { setPriority(priority_); running_ = true; return true; #endif } else { thread = 0; piCoutObj << "Error: Can`t start new thread:" << errorString(); } return false; } bool PIThread::startOnce() { if (running_) return false; terminating = running_ = false; #ifndef WINDOWS pthread_attr_t attr; pthread_attr_init(&attr); # ifndef ANDROID pthread_attr_setschedparam(&attr, &sparam); # endif if (pthread_create(&thread, &attr, thread_function_once, this) == 0) { setPriority(priority_); running_ = true; return true; #else thread = CreateThread(0, 0, (LPTHREAD_START_ROUTINE)thread_function_once, this, 0, 0); if (thread != 0) { setPriority(priority_); running_ = true; return false; #endif } else { thread = 0; piCoutObj << "Error: Can`t start new thread:" << errorString(); } return false; } void PIThread::terminate() { if (thread == 0) return; terminating = running_ = false; #ifndef WINDOWS # ifdef ANDROID pthread_kill(thread, SIGKILL); # else //pthread_kill(thread, SIGKILL); pthread_cancel(thread); # endif #else TerminateThread(thread, 0); CloseHandle(thread); #endif thread = 0; end(); } void * PIThread::thread_function(void * t) { #ifndef WINDOWS # ifndef ANDROID pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, 0); pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, 0); # endif #else __PISetTimerResolution(); #endif PIThread & ct = *((PIThread * )t); ct.running_ = true; if (ct.lockRun) ct.mutex_.lock(); ct.begin(); if (ct.lockRun) ct.mutex_.unlock(); ct.started(); while (!ct.terminating) { if (ct.lockRun) ct.mutex_.lock(); ct.run(); //printf("thread %p tick\n", &ct); if (ct.ret_func != 0) ct.ret_func(ct.data_); if (ct.lockRun) ct.mutex_.unlock(); if (ct.delay_ > 0) { ct.tmr_.reset(); double sl(0.); while (1) { sl = piMind(ct.delay_ - ct.tmr_.elapsed_m(), 2.); if (sl <= 0.) break; piMSleep(sl); if (ct.terminating) break; } } } ct.stopped(); if (ct.lockRun) ct.mutex_.lock(); ct.end(); if (ct.lockRun) ct.mutex_.unlock(); ct.terminating = ct.running_ = false; //cout << "thread " << t << " exiting ... " << endl; ct.thread = 0; #ifndef WINDOWS pthread_exit(0); #else ExitThread(0); #endif return 0; } void * PIThread::thread_function_once(void * t) { #ifndef WINDOWS # ifndef ANDROID pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, 0); pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, 0); # endif #else __PISetTimerResolution(); #endif PIThread & ct = *((PIThread * )t); ct.running_ = true; ct.begin(); ct.started(); if (ct.lockRun) ct.mutex_.lock(); ct.run(); if (ct.ret_func != 0) ct.ret_func(ct.data_); if (ct.lockRun) ct.mutex_.unlock(); ct.stopped(); ct.end(); ct.terminating = ct.running_ = false; //cout << "thread " << t << " exiting ... " << endl; ct.thread = 0; #ifndef WINDOWS pthread_exit(0); #else ExitThread(0); #endif return 0; } int PIThread::priority2System(PIThread::Priority p) { switch (p) { # ifdef QNX case piLowerst: return 8; case piLow: return 9; case piNormal: return 10; case piHigh: return 11; case piHighest: return 12; # else # ifdef WINDOWS case piLowerst: return -2; case piLow: return -1; case piNormal: return 0; case piHigh: return 1; case piHighest: return 2; # else case piLowerst: return 2; case piLow: return 1; case piNormal: return 0; case piHigh: return -1; case piHighest: return -2; # endif # endif default: return 0; } return 0; } void PIThread::setPriority(PIThread::Priority prior) { priority_ = prior; #ifndef WINDOWS if (!running_ && thread != 0) return; pthread_getschedparam(thread, &policy_, &sparam); sparam. # ifndef LINUX sched_priority # else __sched_priority # endif = priority2System(priority_); pthread_setschedparam(thread, policy_, &sparam); #else if (!running_ && thread != 0) return; SetThreadPriority(thread, priority2System(priority_)); #endif } bool PIThread::waitForFinish(int timeout_msecs) { if (!running_) return true; if (timeout_msecs < 0) { while (running_) msleep(1); return true; } tmf_.reset(); while (running_ && tmf_.elapsed_m() < timeout_msecs) msleep(1); return tmf_.elapsed_m() < timeout_msecs; } bool PIThread::waitForStart(int timeout_msecs) { if (running_) return true; if (timeout_msecs < 0) { while (!running_) msleep(1); return true; } tms_.reset(); while (!running_ && tms_.elapsed_m() < timeout_msecs) msleep(1); return tms_.elapsed_m() < timeout_msecs; }