/*! \file pimathmatrix.h
* \brief PIMathMatrix
*
* This file declare math matrix class, which performs various matrix operations
*/
/*
PIP - Platform Independent Primitives
PIMathMatrix
Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#ifndef PIMATHMATRIX_H
#define PIMATHMATRIX_H
#include "pimathvector.h"
#include "pimathcomplex.h"
template
inline bool _PIMathMatrixNullCompare(const T v) {
static_assert(std::is_floating_point::value, "Type must be floating point");
return (piAbs(v) < T(1E-200));
}
template<>
inline bool _PIMathMatrixNullCompare(const complexf v) {
return (abs(v) < float(1E-200));
}
template<>
inline bool _PIMathMatrixNullCompare(const complexd v) {
return (abs(v) < double(1E-200));
}
/// Matrix templated
#define PIMM_FOR(r, c) for (uint c = 0; c < Cols; ++c) { for (uint r = 0; r < Rows; ++r) {
#define PIMM_FOR_WB(r, c) for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) // without brakes
#define PIMM_FOR_I(r, c) for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) {
#define PIMM_FOR_I_WB(r, c) for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) // without brakes
#define PIMM_FOR_C(v) for (uint v = 0; v < Cols; ++v)
#define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v)
#pragma pack(push, 1)
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
template
class PIP_EXPORT PIMathMatrixT {
typedef PIMathMatrixT _CMatrix;
typedef PIMathMatrixT _CMatrixI;
typedef PIMathVectorT _CMCol;
typedef PIMathVectorT _CMRow;
static_assert(std::is_arithmetic::value, "Type must be arithmetic");
static_assert(Rows > 0, "Row count must be > 0");
static_assert(Cols > 0, "Column count must be > 0");
public:
PIMathMatrixT() { resize(Rows, Cols); }
PIMathMatrixT(const PIVector &val) {
resize(Rows, Cols);
int i = 0;
PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];
}
/**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @return identitied matrix of type PIMathMatrixT
*/
static _CMatrix identity() {
_CMatrix tm = _CMatrix();
PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Creates a matrix that is filled with elements
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT
*/
static _CMatrix filled(const Type &v) {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = v;
return tm;
}
/**
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix
* @return rotated matrix
*/
static _CMatrix rotation(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the X axis
* @return rotated matrix
*/
static _CMatrix rotationX(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the Y axis
* @return rotated matrix
*/
static _CMatrix rotationY(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param angle is the angle of rotation of the matrix along the Z axis
* @return rotated matrix
*/
static _CMatrix rotationZ(double angle) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by X axis
* @return rotated matrix
*/
static _CMatrix scaleX(double factor) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by Y axis
* @return rotated matrix
*/
static _CMatrix scaleY(double factor) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix,
* else return default construction of PIMathMatrixT
*
* @param factor is the value of scaling by Z axis
* @return rotated matrix
*/
static _CMatrix scaleZ(double factor) { return _CMatrix(); }
/**
* @brief Method which returns number of columns in matrix
*
* @return type uint shows number of columns
*/
uint cols() const { return Cols; }
/**
* @brief Method which returns number of rows in matrix
*
* @return type uint shows number of rows
*/
uint rows() const { return Rows; }
/**
* @brief Method which returns the selected column in PIMathVectorT format
*
* @param index is the number of the selected column
* @return column in PIMathVectorT format
*/
_CMCol col(uint index) {
_CMCol tv;
PIMM_FOR_R(i) tv[i] = m[i][index];
return tv;
}
/**
* @brief Method which returns the selected row in PIMathVectorT format
*
* @param index is the number of the selected row
* @return row in PIMathVectorT format
*/
_CMRow row(uint index) {
_CMRow tv;
PIMM_FOR_C(i) tv[i] = m[index][i];
return tv;
}
/**
* @brief Set the selected column in matrix
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) m[i][index] = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix &setRow(uint index, const _CMRow &v) {
PIMM_FOR_C(i) m[index][i] = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint r0, uint r1) {
Type t;
PIMM_FOR_C(i) {
t = m[r0][i];
m[r0][i] = m[r1][i];
m[r1][i] = t;
}
return *this;
}
/**
* @brief Method which changes selected columns in a matrix
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
_CMatrix &swapCols(uint c0, uint c1) {
Type t;
PIMM_FOR_R(i) {
t = m[i][c0];
m[i][c0] = m[i][c1];
m[i][c1] = t;
}
return *this;
}
/**
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix &fill(const Type &v) {
PIMM_FOR_WB(r, c) m[r][c] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const { return cols() == rows(); }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
bool isIdentity() const {
PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
bool isNull() const {
PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Full access to elements reference by row "row" and col "col"
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return reference to element of matrix by row "row" and col "col"
*/
Type &at(uint row, uint col) { return m[row][col]; }
/**
* @brief Full access to element by row "row" and col "col"
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return element of matrix by row "row" and col "col"
*/
Type at(uint row, uint col) const { return m[row][col]; }
/**
* @brief Full access to the matrix row pointer
*
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
Type *operator[](uint row) { return m[row]; }
/**
* @brief Read-only access to the matrix row pointer
*
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
const Type *operator[](uint row) const { return m[row]; }
/**
* @brief Matrix assignment to matrix "sm"
*
* @param sm matrix for the assigment
* @return matrix equal with sm
*/
_CMatrix &operator=(const _CMatrix &sm) {
memcpy(m, sm.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
bool operator==(const _CMatrix &sm) const {
PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false;
return true;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; }
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; }
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; }
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator/=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] /= v; }
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator-() const {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c];
return tm;
}
/**
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c];
return tm;
}
/**
* @brief Matrix substraction
*
* @param sm is matrix subtractor
* @return the result of matrix substraction
*/
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c];
return tm;
}
/**
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator*(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] *= v;
return tm;
}
/**
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator/(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] /= v;
return tm;
}
/**
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
Type ret = Type(0);
m.toUpperTriangular(&k);
if (ok) *ok = k;
if (!k) return ret;
ret = Type(1);
for (uint c = 0; c < Cols; ++c)
for (uint r = 0; r < Rows; ++r)
if (r == c)
ret *= m[r][c];
return ret;
}
/**
* @brief Transforming matrix to upper triangular
*
* @return transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (Cols != Rows) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix smat(*this);
bool ndet;
uint crow;
Type mul;
for (uint i = 0; i < Cols; ++i) {
ndet = true;
for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < Cols; ++i) {
crow = i;
while (smat.m[i][i] == Type(0))
smat.swapRows(i, ++crow);
for (uint j = i + 1; j < Rows; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
}
if (i < Cols - 1) {
if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
if (ok != 0) *ok = false;
return *this;
}
}
}
if (ok != 0) *ok = true;
memcpy(m, smat.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
_CMatrix &invert(bool *ok = 0) {
static_assert(Cols == Rows, "Only square matrix invertable");
_CMatrix mtmp = _CMatrix::identity(), smat(*this);
bool ndet;
uint crow;
Type mul, iddiv;
for (uint i = 0; i < Cols; ++i) {
ndet = true;
for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < Cols; ++i) {
crow = i;
while (smat.m[i][i] == Type(0)) {
++crow;
smat.swapRows(i, crow);
mtmp.swapRows(i, crow);
}
for (uint j = i + 1; j < Rows; ++j) {
mul = smat.m[i][j] / smat.m[i][i];
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i];
}
if (i < Cols - 1) {
if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
if (ok != 0) *ok = false;
return *this;
}
}
iddiv = smat.m[i][i];
for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv;
for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv;
}
for (uint i = Cols - 1; i > 0; --i) {
for (uint j = 0; j < i; ++j) {
mul = smat.m[i][j];
smat.m[i][j] -= mul;
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul;
}
}
if (ok != 0) *ok = true;
memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrixI transposed() const {
_CMatrixI tm;
PIMM_FOR_WB(r, c) tm[c][r] = m[r][c];
return tm;
}
private:
void resize(uint rows_, uint cols_, const Type &new_value = Type()) {
r_ = rows_;
c_ = cols_;
PIMM_FOR_WB(r, c) m[r][c] = new_value;
}
int c_, r_;
Type m[Rows][Cols];
};
#pragma pack(pop)
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = tm[1][1] = c;
tm[0][1] = -s;
tm[1][0] = s;
return tm;
}
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = factor;
tm[1][1] = 1.;
return tm;
}
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = 1.;
tm[1][1] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = 1.;
tm[1][1] = tm[2][2] = c;
tm[2][1] = s;
tm[1][2] = -s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[1][1] = 1.;
tm[0][0] = tm[2][2] = c;
tm[2][0] = -s;
tm[0][2] = s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[2][2] = 1.;
tm[0][0] = tm[1][1] = c;
tm[1][0] = s;
tm[0][1] = -s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[1][1] = tm[2][2] = 1.;
tm[0][0] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = tm[2][2] = 1.;
tm[1][1] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = tm[1][1] = 1.;
tm[2][2] = factor;
return tm;
}
#ifdef PIP_STD_IOSTREAM
template
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
template
inline PICout operator<<(PICout s, const PIMathMatrixT &m) {
s << "{";
PIMM_FOR_I(r, c) s << m[r][c];
if (c < Cols - 1 || r < Rows - 1) s << ", "; }
if (r < Rows - 1) s << PICoutManipulators::NewLine << " "; }
s << "}";
return s;
}
/// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1}
template
inline PIMathMatrixT operator*(const PIMathMatrixT &fm,
const PIMathMatrixT &sm) {
PIMathMatrixT tm;
Type t;
for (uint j = 0; j < Rows0; ++j) {
for (uint i = 0; i < Cols1; ++i) {
t = Type(0);
for (uint k = 0; k < CR; ++k)
t += fm[j][k] * sm[k][i];
tm[j][i] = t;
}
}
return tm;
}
/// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows}
template
inline PIMathVectorT operator*(const PIMathMatrixT &fm,
const PIMathVectorT &sv) {
PIMathVectorT tv;
Type t;
for (uint j = 0; j < Rows; ++j) {
t = Type(0);
for (uint i = 0; i < Cols; ++i)
t += fm[j][i] * sv[i];
tv[j] = t;
}
return tv;
}
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
template
inline PIMathVectorT operator*(const PIMathVectorT &sv,
const PIMathMatrixT &fm) {
PIMathVectorT tv;
Type t;
for (uint j = 0; j < Cols; ++j) {
t = Type(0);
for (uint i = 0; i < Rows; ++i)
t += fm[i][j] * sv[i];
tv[j] = t;
}
return tv;
}
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
template
inline PIMathMatrixT operator*(const Type &x, const PIMathMatrixT &v) {
return v * x;
}
typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i;
typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i;
typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i;
typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d;
typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d;
typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d;
template
class PIMathMatrix;
#undef PIMM_FOR
#undef PIMM_FOR_WB
#undef PIMM_FOR_I
#undef PIMM_FOR_I_WB
#undef PIMM_FOR_C
#undef PIMM_FOR_R
/// Matrix
#define PIMM_FOR(c, r) for (uint c = 0; c < _V2D::cols_; ++c) for (uint r = 0; r < _V2D::rows_; ++r)
#define PIMM_FOR_I(c, r) for (uint r = 0; r < _V2D::rows_; ++r) for (uint c = 0; c < _V2D::cols_; ++c)
#define PIMM_FOR_A(v) for (uint v = 0; v < _V2D::mat.size(); ++v)
#define PIMM_FOR_C(v) for (uint v = 0; v < _V2D::cols_; ++v)
#define PIMM_FOR_R(v) for (uint v = 0; v < _V2D::rows_; ++v)
//! \brief A class that works with matrix operations, the input data of which is the data type of the matrix
template
class PIP_EXPORT PIMathMatrix : public PIVector2D {
typedef PIVector2D _V2D;
typedef PIMathMatrix _CMatrix;
typedef PIMathVector _CMCol;
public:
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
PIMathMatrix(const uint cols, const uint rows, const PIVector &val) {
_V2D::resize(rows, cols);
int i = 0;
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];
}
PIMathMatrix(const PIVector > &val) {
if (!val.isEmpty()) {
_V2D::resize(val.size(), val[0].size());
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];
}
}
PIMathMatrix(const PIVector2D &val) {
if (!val.isEmpty()) {
_V2D::resize(val.rows(), val.cols());
PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);
}
}
/**
* @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @return identity matrix of type PIMathMatrix
*/
static _CMatrix identity(const uint cols, const uint rows) {
_CMatrix tm(cols, rows);
for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Creates a matrix whose row equal to vector
*
* @param val is the vector type PIMathVector
* @return identity matrix by vector
*/
static _CMatrix matrixRow(const PIMathVector &val) { return _CMatrix(val.size(), 1, val.toVector()); }
/**
* @brief Creates a matrix whose column equal to vector
*
* @param val is the vector type PIMathVector
* @return identity matrix by vector
*/
static _CMatrix matrixCol(const PIMathVector &val) { return _CMatrix(1, val.size(), val.toVector()); }
/**
* @brief Set the selected column in matrix
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) _V2D::element(i, index) = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix &setRow(uint index, const _CMCol &v) {
PIMM_FOR_C(i) _V2D::element(index, i) = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapCols(uint r0, uint r1) {
PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); }
return *this;
}
/**
* @brief Method which changes selected columns in a matrix
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint c0, uint c1) {
PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); }
return *this;
}
/**
* @brief Method which fills the matrix with selected value
*
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix &fill(const Type &v) {
PIMM_FOR_A(i) _V2D::mat[i] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const { return _V2D::cols_ == _V2D::rows_; }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
bool isIdentity() const {
PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
bool isNull() const {
PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if matrix is empty
*
* @return true if matrix is valid, else false
*/
bool isValid() const { return !PIVector2D::isEmpty(); }
/**
* @brief Matrix assignment to matrix "v"
*
* @param v matrix for the assigment
* @return matrix equal with v
*/
_CMatrix &operator=(const PIVector > &v) {
*this = _CMatrix(v);
return *this;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
bool operator==(const _CMatrix &sm) const {
PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false;
return true;
}
/**
* @brief Compare with matrix "sm"
*
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; }
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; }
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; }
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator/=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] /= v; }
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator-() const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i];
return tm;
}
/**
* @brief Matrix addition
*
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] += sm.mat[i];
return tm;
}
/**
* @brief Matrix subtraction
*
* @param sm is matrix subtractor
* @return the result of matrix subtraction
*/
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i];
return tm;
}
/**
* @brief Matrix multiplication
*
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator*(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] *= v;
return tm;
}
/**
* @brief Matrix division
*
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator/(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] /= v;
return tm;
}
/**
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
Type ret = Type(0);
m.toUpperTriangular(&k);
if (ok) *ok = k;
if (!k) return ret;
ret = Type(1);
for (uint c = 0; c < _V2D::cols_; ++c)
for (uint r = 0; r < _V2D::rows_; ++r)
if (r == c)
ret *= m.element(r, c);
return ret;
}
/**
* @brief Trace of the matrix is calculated
*
* @return matrix trace
*/
Type trace(bool *ok = 0) const {
Type ret = Type(0);
if (!isSquare()) {
if (ok != 0) *ok = false;
return ret;
}
for (uint i = 0; i < _V2D::cols_; ++i) {
ret += _V2D::element(i, i);
}
if (ok != 0) *ok = true;
return ret;
}
/**
* @brief Transforming matrix to upper triangular
*
* @return transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix smat(*this);
bool ndet;
uint crow;
Type mul;
for (uint i = 0; i < _V2D::cols_; ++i) {
ndet = true;
for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != 0) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < _V2D::cols_; ++i) {
crow = i;
while (smat.element(i, i) == Type(0))
smat.swapRows(i, ++crow);
for (uint j = i + 1; j < _V2D::rows_; ++j) {
mul = smat.element(i, j) / smat.element(i, i);
for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i);
}
if (i < _V2D::cols_ - 1) {
if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) {
if (ok != 0) *ok = false;
return *this;
}
}
}
if (ok != 0) *ok = true;
_V2D::mat.swap(smat.mat);
return *this;
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
_CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
return *this;
}
_CMatrix mtmp = _CMatrix::identity(_V2D::cols_, _V2D::rows_), smat(*this);
bool ndet;
uint crow;
Type mul, iddiv;
for (uint i = 0; i < _V2D::cols_; ++i) {
ndet = true;
for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != Type(0)) ndet = false;
if (ndet) {
if (ok != 0) *ok = false;
return *this;
}
}
for (uint i = 0; i < _V2D::cols_; ++i) {
crow = i;
while (smat.element(i, i) == Type(0)) {
++crow;
smat.swapRows(i, crow);
mtmp.swapRows(i, crow);
if (sv != 0) sv->swap(i, crow);
}
for (uint j = i + 1; j < _V2D::rows_; ++j) {
mul = smat.element(i, j) / smat.element(i, i);
for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i);
for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i);
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
if (i < _V2D::cols_ - 1) {
if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) {
if (ok != 0) *ok = false;
return *this;
}
}
iddiv = smat.element(i, i);
for (uint j = i; j < _V2D::cols_; ++j) smat.element(j, i) /= iddiv;
for (uint j = 0; j < _V2D::cols_; ++j) mtmp.element(j, i) /= iddiv;
if (sv != 0) (*sv)[i] /= iddiv;
}
for (uint i = _V2D::cols_ - 1; i > 0; --i) {
for (uint j = 0; j < i; ++j) {
mul = smat.element(i, j);
smat.element(i, j) -= mul;
for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i);
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
}
if (ok != 0) *ok = true;
PIVector2D::swap(mtmp);
return *this;
}
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
*/
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrix transposed() const {
_CMatrix tm(_V2D::rows_, _V2D::cols_);
PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c);
return tm;
}
};
#ifdef PIP_STD_IOSTREAM
template
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
template
inline PICout operator<<(PICout s, const PIMathMatrix &m) {
s << "Matrix{";
for (uint r = 0; r < m.rows(); ++r) {
for (uint c = 0; c < m.cols(); ++c) {
s << m.element(r, c);
if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";
}
if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";
}
s << "}";
return s;
}
template
inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix &v) {
s << (const PIVector2D &) v;
return s;
}
template
inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix &v) {
s >> (PIVector2D &) v;
return s;
}
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
template
inline PIMathMatrix operator*(const PIMathMatrix &fm,
const PIMathMatrix &sm) {
uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols();
PIMathMatrix tm(cols1, rows0);
if (fm.cols() != sm.rows()) return tm;
Type t;
for (uint j = 0; j < rows0; ++j) {
for (uint i = 0; i < cols1; ++i) {
t = Type(0);
for (uint k = 0; k < cr; ++k)
t += fm.element(j, k) * sm.element(k, i);
tm.element(j, i) = t;
}
}
return tm;
}
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
template
inline PIMathVector operator*(const PIMathMatrix &fm,
const PIMathVector &sv) {
uint c = fm.cols(), r = fm.rows();
PIMathVector tv(r);
if (c != sv.size()) return tv;
Type t;
for (uint j = 0; j < r; ++j) {
t = Type(0);
for (uint i = 0; i < c; ++i)
t += fm.element(j, i) * sv[i];
tv[j] = t;
}
return tv;
}
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
template
inline PIMathVector operator*(const PIMathVector &sv,
const PIMathMatrix &fm) {
uint c = fm.cols(), r = fm.rows();
PIMathVector tv(c);
Type t;
for (uint j = 0; j < c; ++j) {
t = Type(0);
for (uint i = 0; i < r; ++i)
t += fm.element(i, j) * sv[i];
tv[j] = t;
}
return tv;
}
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
template
inline PIMathMatrix operator*(const Type &x, const PIMathMatrix &v) {
return v * x;
}
typedef PIMathMatrix PIMathMatrixi;
typedef PIMathMatrix PIMathMatrixd;
template
PIMathMatrix > hermitian(const PIMathMatrix > &m) {
PIMathMatrix > ret(m);
for (uint r = 0; r < ret.rows(); ++r)
for (uint c = 0; c < ret.cols(); ++c)
ret.element(r, c).imag(-(ret.element(r, c).imag()));
return ret.transposed();
}
#undef PIMM_FOR
#undef PIMM_FOR_I
#undef PIMM_FOR_A
#undef PIMM_FOR_C
#undef PIMM_FOR_R
#endif // PIMATHMATRIX_H