/*! \file pimathmatrix.h * \brief PIMathMatrix * * This file declare math matrix class, which performs various matrix operations */ /* PIP - Platform Independent Primitives PIMathMatrix Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #ifndef PIMATHMATRIX_H #define PIMATHMATRIX_H #include "pimathvector.h" #include "pimathcomplex.h" template inline bool _PIMathMatrixNullCompare(const T v) { static_assert(std::is_floating_point::value, "Type must be floating point"); return (piAbs(v) < T(1E-200)); } template<> inline bool _PIMathMatrixNullCompare(const complexf v) { return (abs(v) < float(1E-200)); } template<> inline bool _PIMathMatrixNullCompare(const complexd v) { return (abs(v) < double(1E-200)); } /// Matrix templated #define PIMM_FOR(r, c) for (uint c = 0; c < Cols; ++c) { for (uint r = 0; r < Rows; ++r) { #define PIMM_FOR_WB(r, c) for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) // without brakes #define PIMM_FOR_I(r, c) for (uint r = 0; r < Rows; ++r) { for (uint c = 0; c < Cols; ++c) { #define PIMM_FOR_I_WB(r, c) for (uint r = 0; r < Rows; ++r) for (uint c = 0; c < Cols; ++c) // without brakes #define PIMM_FOR_C(v) for (uint v = 0; v < Cols; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v) #pragma pack(push, 1) //! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix template class PIP_EXPORT PIMathMatrixT { typedef PIMathMatrixT _CMatrix; typedef PIMathMatrixT _CMatrixI; typedef PIMathVectorT _CMCol; typedef PIMathVectorT _CMRow; static_assert(std::is_arithmetic::value, "Type must be arithmetic"); static_assert(Rows > 0, "Row count must be > 0"); static_assert(Cols > 0, "Column count must be > 0"); public: PIMathMatrixT() { resize(Rows, Cols); } PIMathMatrixT(const PIVector &val) { resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++]; } /** * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * * @return identitied matrix of type PIMathMatrixT */ static _CMatrix identity() { _CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm; } /** * @brief Creates a matrix that is filled with elements * * @param v is a parameter the type and value of which is selected and later filled into the matrix * @return filled matrix of type PIMathMatrixT */ static _CMatrix filled(const Type &v) { _CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm; } /** * @brief Rotation the matrix by an "angle". Works only with 2x2 matrix, * else return default construction of PIMathMatrixT * * @param angle is the angle of rotation of the matrix * @return rotated matrix */ static _CMatrix rotation(double angle) { return _CMatrix(); } /** * @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix, * else return default construction of PIMathMatrixT * * @param angle is the angle of rotation of the matrix along the X axis * @return rotated matrix */ static _CMatrix rotationX(double angle) { return _CMatrix(); } /** * @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix, * else return default construction of PIMathMatrixT * * @param angle is the angle of rotation of the matrix along the Y axis * @return rotated matrix */ static _CMatrix rotationY(double angle) { return _CMatrix(); } /** * @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix, * else return default construction of PIMathMatrixT * * @param angle is the angle of rotation of the matrix along the Z axis * @return rotated matrix */ static _CMatrix rotationZ(double angle) { return _CMatrix(); } /** * @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix, * else return default construction of PIMathMatrixT * * @param factor is the value of scaling by X axis * @return rotated matrix */ static _CMatrix scaleX(double factor) { return _CMatrix(); } /** * @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix, * else return default construction of PIMathMatrixT * * @param factor is the value of scaling by Y axis * @return rotated matrix */ static _CMatrix scaleY(double factor) { return _CMatrix(); } /** * @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix, * else return default construction of PIMathMatrixT * * @param factor is the value of scaling by Z axis * @return rotated matrix */ static _CMatrix scaleZ(double factor) { return _CMatrix(); } /** * @brief Method which returns number of columns in matrix * * @return type uint shows number of columns */ uint cols() const { return Cols; } /** * @brief Method which returns number of rows in matrix * * @return type uint shows number of rows */ uint rows() const { return Rows; } /** * @brief Method which returns the selected column in PIMathVectorT format * * @param index is the number of the selected column * @return column in PIMathVectorT format */ _CMCol col(uint index) { _CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv; } /** * @brief Method which returns the selected row in PIMathVectorT format * * @param index is the number of the selected row * @return row in PIMathVectorT format */ _CMRow row(uint index) { _CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv; } /** * @brief Set the selected column in matrix * * @param index is the number of the selected column * @param v is a vector of the type _CMCol that needs to fill the column * @return matrix type _CMatrix */ _CMatrix &setCol(uint index, const _CMCol &v) { PIMM_FOR_R(i) m[i][index] = v[i]; return *this; } /** * @brief Set the selected row in matrix * * @param index is the number of the selected row * @param v is a vector of the type _CMCol that needs to fill the row * @return matrix type _CMatrix */ _CMatrix &setRow(uint index, const _CMRow &v) { PIMM_FOR_C(i) m[index][i] = v[i]; return *this; } /** * @brief Method which changes selected rows in a matrix * * @param r0 is the number of the first selected row * @param r1 is the number of the second selected row * @return matrix type _CMatrix */ _CMatrix &swapRows(uint r0, uint r1) { Type t; PIMM_FOR_C(i) { t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t; } return *this; } /** * @brief Method which changes selected columns in a matrix * * @param c0 is the number of the first selected column * @param c1 is the number of the second selected column * @return matrix type _CMatrix */ _CMatrix &swapCols(uint c0, uint c1) { Type t; PIMM_FOR_R(i) { t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t; } return *this; } /** * @brief Method which fills the matrix with selected value * * @param v is a parameter the type and value of which is selected and later filled into the matrix * @return filled matrix type _CMatrix */ _CMatrix &fill(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] = v; return *this; } /** * @brief Method which checks if matrix is square * * @return true if matrix is square, else false */ bool isSquare() const { return cols() == rows(); } /** * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros * * @return true if matrix is identitied, else false */ bool isIdentity() const { PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true; } /** * @brief Method which checks if every elements of matrix are zeros * * @return true if matrix is null, else false */ bool isNull() const { PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true; } /** * @brief Full access to elements reference by row "row" and col "col" * * @param row is a parameter that shows the row number of the matrix of the selected element * @param col is a parameter that shows the column number of the matrix of the selected element * @return reference to element of matrix by row "row" and col "col" */ Type &at(uint row, uint col) { return m[row][col]; } /** * @brief Full access to element by row "row" and col "col" * * @param row is a parameter that shows the row number of the matrix of the selected element * @param col is a parameter that shows the column number of the matrix of the selected element * @return element of matrix by row "row" and col "col" */ Type at(uint row, uint col) const { return m[row][col]; } /** * @brief Full access to the matrix row pointer * * @param row is a row of necessary matrix * @return matrix row pointer */ Type *operator[](uint row) { return m[row]; } /** * @brief Read-only access to the matrix row pointer * * @param row is a row of necessary matrix * @return matrix row pointer */ const Type *operator[](uint row) const { return m[row]; } /** * @brief Matrix assignment to matrix "sm" * * @param sm matrix for the assigment * @return matrix equal with sm */ _CMatrix &operator=(const _CMatrix &sm) { memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this; } /** * @brief Compare with matrix "sm" * * @param sm matrix for the compare * @return if matrices are equal true, else false */ bool operator==(const _CMatrix &sm) const { PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true; } /** * @brief Compare with matrix "sm" * * @param sm matrix for the compare * @return if matrices are not equal true, else false */ bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } /** * @brief Addition assignment with matrix "sm" * * @param sm matrix for the addition assigment */ void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; } /** * @brief Subtraction assignment with matrix "sm" * * @param sm matrix for the subtraction assigment */ void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; } /** * @brief Multiplication assignment with value "v" * * @param v value for the multiplication assigment */ void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; } /** * @brief Division assignment with value "v" * * @param v value for the division assigment */ void operator/=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] /= v; } /** * @brief Matrix substraction * * @return the result of matrix substraction */ _CMatrix operator-() const { _CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm; } /** * @brief Matrix addition * * @param sm is matrix term * @return the result of matrix addition */ _CMatrix operator+(const _CMatrix &sm) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm; } /** * @brief Matrix substraction * * @param sm is matrix subtractor * @return the result of matrix substraction */ _CMatrix operator-(const _CMatrix &sm) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm; } /** * @brief Matrix multiplication * * @param v is value factor * @return the result of matrix multiplication */ _CMatrix operator*(const Type &v) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm; } /** * @brief Matrix division * * @param v is value divider * @return the result of matrix division */ _CMatrix operator/(const Type &v) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm; } /** * @brief Determinant of the matrix is ​​calculated * * @return matrix determinant */ Type determinant(bool *ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); for (uint c = 0; c < Cols; ++c) for (uint r = 0; r < Rows; ++r) if (r == c) ret *= m[r][c]; return ret; } /** * @brief Transforming matrix to upper triangular * * @return transformed upper triangular matrix */ _CMatrix &toUpperTriangular(bool *ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; } if (i < Cols - 1) { if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; memcpy(m, smat.m, sizeof(Type) * Cols * Rows); return *this; } /** * @brief Matrix inversion operation * * @return inverted matrix */ _CMatrix &invert(bool *ok = 0) { static_assert(Cols == Rows, "Only square matrix invertable"); _CMatrix mtmp = _CMatrix::identity(), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < Cols; ++i) { ndet = true; for (uint j = 0; j < Rows; ++j) if (smat.m[i][j] != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < Cols; ++i) { crow = i; while (smat.m[i][i] == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); } for (uint j = i + 1; j < Rows; ++j) { mul = smat.m[i][j] / smat.m[i][i]; for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i]; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i]; } if (i < Cols - 1) { if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.m[i][i]; for (uint j = i; j < Cols; ++j) smat.m[j][i] /= iddiv; for (uint j = 0; j < Cols; ++j) mtmp.m[j][i] /= iddiv; } for (uint i = Cols - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.m[i][j]; smat.m[i][j] -= mul; for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mtmp.m[k][i] * mul; } } if (ok != 0) *ok = true; memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows); return *this; } /** * @brief Matrix inversion operation * * @return inverted matrix */ _CMatrix inverted(bool *ok = 0) const { _CMatrix tm(*this); tm.invert(ok); return tm; } /** * @brief Matrix transposition operation * * @return transposed matrix */ _CMatrixI transposed() const { _CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; return tm; } private: void resize(uint rows_, uint cols_, const Type &new_value = Type()) { r_ = rows_; c_ = cols_; PIMM_FOR_WB(r, c) m[r][c] = new_value; } int c_, r_; Type m[Rows][Cols]; }; #pragma pack(pop) template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) { double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm; } template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) { PIMathMatrixT<2u, 2u> tm; tm[0][0] = factor; tm[1][1] = 1.; return tm; } template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) { PIMathMatrixT<2u, 2u> tm; tm[0][0] = 1.; tm[1][1] = factor; return tm; } template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) { double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = s; tm[1][2] = -s; return tm; } template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) { double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = -s; tm[0][2] = s; return tm; } template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) { double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = s; tm[0][1] = -s; return tm; } template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) { PIMathMatrixT<3u, 3u> tm; tm[1][1] = tm[2][2] = 1.; tm[0][0] = factor; return tm; } template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) { PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[2][2] = 1.; tm[1][1] = factor; return tm; } template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) { PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[1][1] = 1.; tm[2][2] = factor; return tm; } #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << " ";} s << "}"; return s;} #endif template inline PICout operator<<(PICout s, const PIMathMatrixT &m) { s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", "; } if (r < Rows - 1) s << PICoutManipulators::NewLine << " "; } s << "}"; return s; } /// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1} template inline PIMathMatrixT operator*(const PIMathMatrixT &fm, const PIMathMatrixT &sm) { PIMathMatrixT tm; Type t; for (uint j = 0; j < Rows0; ++j) { for (uint i = 0; i < Cols1; ++i) { t = Type(0); for (uint k = 0; k < CR; ++k) t += fm[j][k] * sm[k][i]; tm[j][i] = t; } } return tm; } /// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows} template inline PIMathVectorT operator*(const PIMathMatrixT &fm, const PIMathVectorT &sv) { PIMathVectorT tv; Type t; for (uint j = 0; j < Rows; ++j) { t = Type(0); for (uint i = 0; i < Cols; ++i) t += fm[j][i] * sv[i]; tv[j] = t; } return tv; } /// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols} template inline PIMathVectorT operator*(const PIMathVectorT &sv, const PIMathMatrixT &fm) { PIMathVectorT tv; Type t; for (uint j = 0; j < Cols; ++j) { t = Type(0); for (uint i = 0; i < Rows; ++i) t += fm[i][j] * sv[i]; tv[j] = t; } return tv; } /// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows} template inline PIMathMatrixT operator*(const Type &x, const PIMathMatrixT &v) { return v * x; } typedef PIMathMatrixT<2u, 2u, int> PIMathMatrixT22i; typedef PIMathMatrixT<3u, 3u, int> PIMathMatrixT33i; typedef PIMathMatrixT<4u, 4u, int> PIMathMatrixT44i; typedef PIMathMatrixT<2u, 2u, double> PIMathMatrixT22d; typedef PIMathMatrixT<3u, 3u, double> PIMathMatrixT33d; typedef PIMathMatrixT<4u, 4u, double> PIMathMatrixT44d; template class PIMathMatrix; #undef PIMM_FOR #undef PIMM_FOR_WB #undef PIMM_FOR_I #undef PIMM_FOR_I_WB #undef PIMM_FOR_C #undef PIMM_FOR_R /// Matrix #define PIMM_FOR(c, r) for (uint c = 0; c < _V2D::cols_; ++c) for (uint r = 0; r < _V2D::rows_; ++r) #define PIMM_FOR_I(c, r) for (uint r = 0; r < _V2D::rows_; ++r) for (uint c = 0; c < _V2D::cols_; ++c) #define PIMM_FOR_A(v) for (uint v = 0; v < _V2D::mat.size(); ++v) #define PIMM_FOR_C(v) for (uint v = 0; v < _V2D::cols_; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < _V2D::rows_; ++v) //! \brief A class that works with matrix operations, the input data of which is the data type of the matrix template class PIP_EXPORT PIMathMatrix : public PIVector2D { typedef PIVector2D _V2D; typedef PIMathMatrix _CMatrix; typedef PIMathVector _CMCol; public: PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); } PIMathMatrix(const uint cols, const uint rows, const PIVector &val) { _V2D::resize(rows, cols); int i = 0; PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++]; } PIMathMatrix(const PIVector > &val) { if (!val.isEmpty()) { _V2D::resize(val.size(), val[0].size()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c]; } } PIMathMatrix(const PIVector2D &val) { if (!val.isEmpty()) { _V2D::resize(val.rows(), val.cols()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c); } } /** * @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * * @param cols is number of matrix column uint type * @param rows is number of matrix row uint type * @return identity matrix of type PIMathMatrix */ static _CMatrix identity(const uint cols, const uint rows) { _CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0)); return tm; } /** * @brief Creates a matrix whose row equal to vector * * @param val is the vector type PIMathVector * @return identity matrix by vector */ static _CMatrix matrixRow(const PIMathVector &val) { return _CMatrix(val.size(), 1, val.toVector()); } /** * @brief Creates a matrix whose column equal to vector * * @param val is the vector type PIMathVector * @return identity matrix by vector */ static _CMatrix matrixCol(const PIMathVector &val) { return _CMatrix(1, val.size(), val.toVector()); } /** * @brief Set the selected column in matrix * * @param index is the number of the selected column * @param v is a vector of the type _CMCol that needs to fill the column * @return matrix type _CMatrix */ _CMatrix &setCol(uint index, const _CMCol &v) { PIMM_FOR_R(i) _V2D::element(i, index) = v[i]; return *this; } /** * @brief Set the selected row in matrix * * @param index is the number of the selected row * @param v is a vector of the type _CMCol that needs to fill the row * @return matrix type _CMatrix */ _CMatrix &setRow(uint index, const _CMCol &v) { PIMM_FOR_C(i) _V2D::element(index, i) = v[i]; return *this; } /** * @brief Method which changes selected rows in a matrix * * @param r0 is the number of the first selected row * @param r1 is the number of the second selected row * @return matrix type _CMatrix */ _CMatrix &swapCols(uint r0, uint r1) { PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); } return *this; } /** * @brief Method which changes selected columns in a matrix * * @param c0 is the number of the first selected column * @param c1 is the number of the second selected column * @return matrix type _CMatrix */ _CMatrix &swapRows(uint c0, uint c1) { PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); } return *this; } /** * @brief Method which fills the matrix with selected value * * @param v is a parameter the type and value of which is selected and later filled into the matrix * @return filled matrix type _CMatrix */ _CMatrix &fill(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] = v; return *this; } /** * @brief Method which checks if matrix is square * * @return true if matrix is square, else false */ bool isSquare() const { return _V2D::cols_ == _V2D::rows_; } /** * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros * * @return true if matrix is identitied, else false */ bool isIdentity() const { PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false; return true; } /** * @brief Method which checks if every elements of matrix are zeros * * @return true if matrix is null, else false */ bool isNull() const { PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false; return true; } /** * @brief Method which checks if matrix is empty * * @return true if matrix is valid, else false */ bool isValid() const { return !PIVector2D::isEmpty(); } /** * @brief Matrix assignment to matrix "v" * * @param v matrix for the assigment * @return matrix equal with v */ _CMatrix &operator=(const PIVector > &v) { *this = _CMatrix(v); return *this; } /** * @brief Compare with matrix "sm" * * @param sm matrix for the compare * @return if matrices are equal true, else false */ bool operator==(const _CMatrix &sm) const { PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false; return true; } /** * @brief Compare with matrix "sm" * * @param sm matrix for the compare * @return if matrices are not equal true, else false */ bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } /** * @brief Addition assignment with matrix "sm" * * @param sm matrix for the addition assigment */ void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; } /** * @brief Subtraction assignment with matrix "sm" * * @param sm matrix for the subtraction assigment */ void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; } /** * @brief Multiplication assignment with value "v" * * @param v value for the multiplication assigment */ void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; } /** * @brief Division assignment with value "v" * * @param v value for the division assigment */ void operator/=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] /= v; } /** * @brief Matrix substraction * * @return the result of matrix substraction */ _CMatrix operator-() const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i]; return tm; } /** * @brief Matrix addition * * @param sm is matrix term * @return the result of matrix addition */ _CMatrix operator+(const _CMatrix &sm) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] += sm.mat[i]; return tm; } /** * @brief Matrix subtraction * * @param sm is matrix subtractor * @return the result of matrix subtraction */ _CMatrix operator-(const _CMatrix &sm) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i]; return tm; } /** * @brief Matrix multiplication * * @param v is value factor * @return the result of matrix multiplication */ _CMatrix operator*(const Type &v) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] *= v; return tm; } /** * @brief Matrix division * * @param v is value divider * @return the result of matrix division */ _CMatrix operator/(const Type &v) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] /= v; return tm; } /** * @brief Determinant of the matrix is ​​calculated * * @return matrix determinant */ Type determinant(bool *ok = 0) const { _CMatrix m(*this); bool k; Type ret = Type(0); m.toUpperTriangular(&k); if (ok) *ok = k; if (!k) return ret; ret = Type(1); for (uint c = 0; c < _V2D::cols_; ++c) for (uint r = 0; r < _V2D::rows_; ++r) if (r == c) ret *= m.element(r, c); return ret; } /** * @brief Trace of the matrix is calculated * * @return matrix trace */ Type trace(bool *ok = 0) const { Type ret = Type(0); if (!isSquare()) { if (ok != 0) *ok = false; return ret; } for (uint i = 0; i < _V2D::cols_; ++i) { ret += _V2D::element(i, i); } if (ok != 0) *ok = true; return ret; } /** * @brief Transforming matrix to upper triangular * * @return transformed upper triangular matrix */ _CMatrix &toUpperTriangular(bool *ok = 0) { if (!isSquare()) { if (ok != 0) *ok = false; return *this; } _CMatrix smat(*this); bool ndet; uint crow; Type mul; for (uint i = 0; i < _V2D::cols_; ++i) { ndet = true; for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != 0) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < _V2D::cols_; ++i) { crow = i; while (smat.element(i, i) == Type(0)) smat.swapRows(i, ++crow); for (uint j = i + 1; j < _V2D::rows_; ++j) { mul = smat.element(i, j) / smat.element(i, i); for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i); } if (i < _V2D::cols_ - 1) { if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) { if (ok != 0) *ok = false; return *this; } } } if (ok != 0) *ok = true; _V2D::mat.swap(smat.mat); return *this; } /** * @brief Matrix inversion operation * * @return inverted matrix */ _CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) { if (!isSquare()) { if (ok != 0) *ok = false; return *this; } _CMatrix mtmp = _CMatrix::identity(_V2D::cols_, _V2D::rows_), smat(*this); bool ndet; uint crow; Type mul, iddiv; for (uint i = 0; i < _V2D::cols_; ++i) { ndet = true; for (uint j = 0; j < _V2D::rows_; ++j) if (smat.element(i, j) != Type(0)) ndet = false; if (ndet) { if (ok != 0) *ok = false; return *this; } } for (uint i = 0; i < _V2D::cols_; ++i) { crow = i; while (smat.element(i, i) == Type(0)) { ++crow; smat.swapRows(i, crow); mtmp.swapRows(i, crow); if (sv != 0) sv->swap(i, crow); } for (uint j = i + 1; j < _V2D::rows_; ++j) { mul = smat.element(i, j) / smat.element(i, i); for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i); for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i); if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } if (i < _V2D::cols_ - 1) { if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) { if (ok != 0) *ok = false; return *this; } } iddiv = smat.element(i, i); for (uint j = i; j < _V2D::cols_; ++j) smat.element(j, i) /= iddiv; for (uint j = 0; j < _V2D::cols_; ++j) mtmp.element(j, i) /= iddiv; if (sv != 0) (*sv)[i] /= iddiv; } for (uint i = _V2D::cols_ - 1; i > 0; --i) { for (uint j = 0; j < i; ++j) { mul = smat.element(i, j); smat.element(i, j) -= mul; for (uint k = 0; k < _V2D::cols_; ++k) mtmp.element(k, j) -= mul * mtmp.element(k, i); if (sv != 0) (*sv)[j] -= mul * (*sv)[i]; } } if (ok != 0) *ok = true; PIVector2D::swap(mtmp); return *this; } /** * @brief Matrix inversion operation * * @return inverted matrix */ _CMatrix inverted(bool *ok = 0) const { _CMatrix tm(*this); tm.invert(ok); return tm; } /** * @brief Matrix transposition operation * * @return transposed matrix */ _CMatrix transposed() const { _CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c); return tm; } }; #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;} #endif template inline PICout operator<<(PICout s, const PIMathMatrix &m) { s << "Matrix{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", "; } if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " "; } s << "}"; return s; } template inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix &v) { s << (const PIVector2D &) v; return s; } template inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix &v) { s >> (PIVector2D &) v; return s; } /// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0} template inline PIMathMatrix operator*(const PIMathMatrix &fm, const PIMathMatrix &sm) { uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols(); PIMathMatrix tm(cols1, rows0); if (fm.cols() != sm.rows()) return tm; Type t; for (uint j = 0; j < rows0; ++j) { for (uint i = 0; i < cols1; ++i) { t = Type(0); for (uint k = 0; k < cr; ++k) t += fm.element(j, k) * sm.element(k, i); tm.element(j, i) = t; } } return tm; } /// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows} template inline PIMathVector operator*(const PIMathMatrix &fm, const PIMathVector &sv) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(r); if (c != sv.size()) return tv; Type t; for (uint j = 0; j < r; ++j) { t = Type(0); for (uint i = 0; i < c; ++i) t += fm.element(j, i) * sv[i]; tv[j] = t; } return tv; } /// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols} template inline PIMathVector operator*(const PIMathVector &sv, const PIMathMatrix &fm) { uint c = fm.cols(), r = fm.rows(); PIMathVector tv(c); Type t; for (uint j = 0; j < c; ++j) { t = Type(0); for (uint i = 0; i < r; ++i) t += fm.element(i, j) * sv[i]; tv[j] = t; } return tv; } /// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows} template inline PIMathMatrix operator*(const Type &x, const PIMathMatrix &v) { return v * x; } typedef PIMathMatrix PIMathMatrixi; typedef PIMathMatrix PIMathMatrixd; template PIMathMatrix > hermitian(const PIMathMatrix > &m) { PIMathMatrix > ret(m); for (uint r = 0; r < ret.rows(); ++r) for (uint c = 0; c < ret.cols(); ++c) ret.element(r, c).imag(-(ret.element(r, c).imag())); return ret.transposed(); } #undef PIMM_FOR #undef PIMM_FOR_I #undef PIMM_FOR_A #undef PIMM_FOR_C #undef PIMM_FOR_R #endif // PIMATHMATRIX_H