/* PIP - Platform Independent Primitives Timer Copyright (C) 2014 Ivan Pelipenko peri4ko@gmail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "pitimer.h" #include "pisystemtests.h" /*! \class PITimer * \brief Timer * * \section PITimer_sec0 Synopsis * This class implements timer function. PIP timers supports 3 way to tick notify, * frequency delimiters and time measurements. * \section PITimer_sec1 Notify variants * Notify variants: * * "slot" - static function with format void func(void * data, int delimiter); * * event - \a void timeout(void * data, int delimiter); * * virtual function - \a void tick(void * data, int delimiter). * All this variant are equivalent, use most applicable. * \section PITimer_sec2 Frequency delimiters * Frequency delimiter is an integer number and "slot" function. If "slot" function is null * timer main "slot" will be used. Each delimiter numbers tick timer will be execute * delimiters or timer main "slot" function with \b delimiter value = delimiter number. * Example: \snippet pitimer.cpp delimiter * \section PITimer_sec3 Time measurements * PITimer can be used as time measurer. Function \a reset() set time mark to current * system time, then functions double elapsed_*() returns time elapsed from this mark. * These functions can returns nano-, micro-, milli- and seconds with suffixes "n", "u", "m" * and "s"; * Example: \snippet pitimer.cpp elapsed */ #ifdef PIP_TIMER_RT PITimer::TimerPool * pool = 0; #endif PITimer::PITimer(TimerEvent slot, void * data_, bool threaded_) #ifndef PIP_TIMER_RT : PIThread() { #else : PIObject() { #endif ret_func = slot; data = data_; running_ = false; interval_ = 0.; #ifdef PIP_TIMER_RT piMonitor.timers++; ti = -1; threaded = threaded_; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_value.sival_ptr = this; se.sigev_notify_function = PITimer::timer_event; se.sigev_notify_attributes = 0; lockRun = false; #else deferred_ = false; #endif reset(); } PITimer::PITimer(bool threaded_) #ifndef PIP_TIMER_RT : PIThread() { #else : PIObject() { #endif ret_func = 0; data = 0; running_ = false; interval_ = 0.; #ifdef PIP_TIMER_RT piMonitor.timers++; ti = -1; threaded = threaded_; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_value.sival_ptr = this; se.sigev_notify_function = PITimer::timer_event; se.sigev_notify_attributes = 0; lockRun = false; #else deferred_ = false; #endif reset(); } PITimer::~PITimer() { #ifdef PIP_TIMER_RT piMonitor.timers--; #endif stop(); } #ifdef PIP_TIMER_RT void PITimer::start(double msecs) { if (ti != -1 || msecs < 0 || running_) return; interval_ = msecs; if (!threaded) { ticks = int(msecs); if (pool == 0) pool = new TimerPool(); pool->add(this); //cout << "not threaded timer start " << msecs << " msecs\n"; if (!pool->isRunning()) pool->start(); running_ = true; return; } spec.it_interval.tv_nsec = ((int)(msecs * 1000) % 1000000) * 1000; spec.it_interval.tv_sec = (time_t)(msecs / 1000); spec.it_value = spec.it_interval; ti = timer_create(CLOCK_REALTIME, &se, &timer); //cout << "***create timer " << msecs << " msecs\n"; if (ti == -1) { piCoutObj << "Can`t create timer for " << msecs << " msecs: " << errorString(); return; } timer_settime(timer, 0, &spec, 0); running_ = true; } void PITimer::deferredStart(double interval_msecs, double delay_msecs) { if (ti != -1 || interval_msecs < 0 || running_) return; interval_ = interval_msecs; spec.it_interval.tv_nsec = ((int)(interval_msecs * 1000) % 1000000) * 1000; spec.it_interval.tv_sec = (time_t)(interval_msecs / 1000); spec.it_value.tv_nsec = ((int)(delay_msecs * 1000) % 1000000) * 1000; spec.it_value.tv_sec = (time_t)(delay_msecs / 1000); ti = timer_create(CLOCK_REALTIME, &se, &timer); //cout << "***create timer\n"; if (ti == -1) { piCoutObj << "Can`t create timer for " << interval_msecs << " msecs: " << errorString(); return; } timer_settime(timer, 0, &spec, 0); running_ = true; } void PITimer::deferredStart(double interval_msecs, const PIDateTime & start_datetime) { if (ti != -1 || interval_msecs < 0 || running_) return; interval_ = interval_msecs; spec.it_interval.tv_nsec = ((int)(interval_msecs * 1000) % 1000000) * 1000; spec.it_interval.tv_sec = (time_t)(interval_msecs / 1000); struct tm dtm; memset(&dtm, 0, sizeof(dtm)); dtm.tm_sec = start_datetime.seconds; dtm.tm_min = start_datetime.minutes; dtm.tm_hour = start_datetime.hours; dtm.tm_mday = start_datetime.day; dtm.tm_mon = start_datetime.month - 1; dtm.tm_year = start_datetime.year - 1900; spec.it_value.tv_nsec = 0; spec.it_value.tv_sec = mktime(&dtm); ti = timer_create(CLOCK_REALTIME, &se, &timer); //cout << "***create timer\n"; if (ti == -1) { piCoutObj << "Can`t create timer for " << interval_msecs << " msecs: " << errorString(); return; } timer_settime(timer, TIMER_ABSTIME, &spec, 0); running_ = true; } void PITimer::TimerPool::remove(PITimer * t) { mutex.lock(); for (int i = 0; i < timers.size_s(); ++i) if (timers[i].first == t) { timers.remove(i); mutex.unlock(); return; } mutex.unlock(); } void PITimer::TimerPool::begin() { //cout << "pool begin\n"; /*struct sigaction sa; sa.sa_flags = 0; sa.sa_handler = empty_handler; sigemptyset(&sa.sa_mask); if (sigaction(SIGALRM, &sa, 0) == -1) { piCoutObj << "sigaction error: " << errorString(); stop(); return; }*/ sigemptyset(&ss); sigaddset(&ss, SIGALRM); memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_SIGNAL; se.sigev_signo = SIGALRM; spec.it_interval.tv_nsec = 1000000; spec.it_interval.tv_sec = 0; spec.it_value = spec.it_interval; //cout << "***create pool timer\n"; if (timer_create(CLOCK_REALTIME, &se, &timer) == -1) { piCoutObj << "Can`t create timer for pool: " << errorString(); stop(); return; } if (timer_settime(timer, 0, &spec, 0) == -1) { piCoutObj << "Can`t set timer for pool: " << errorString(); stop(); return; } ti = 1; } void PITimer::TimerPool::run() { //cout << "wait ...\n"; sigwait(&ss, &si); //cout << "ok\n"; mutex.lock(); //cout << "* pool tick , pool = " << this <<", timers = " << timers.size()<<"\n"; for (int i = 0; i < timers.size_s(); ++i) { TimerPair & ct(timers[i]); sv.sival_ptr = ct.first; ct.second++; //cout << "** pool tick for " << ct.first << ", cnt " << ct.second << ", " << ct.first->ticks << "\n"; if (ct.second >= ct.first->ticks) { //cout << "*** timer "<remove(this); if (pool->isEmpty()) pool->terminate(); } } if (ti != -1) timer_delete(timer); ti = -1; interval_ = 0.; } void PITimer::timer_event(sigval e) { PITimer * ct = (PITimer * )e.sival_ptr; if (!ct->running_) return; if (ct->lockRun) ct->lock(); if (ct->ret_func != 0) ct->ret_func(ct->data, 1); ct->timeout(ct->data, 1); ct->tick(ct->data, 1); piForeach (TimerSlot & i, ct->ret_funcs) { if (i.delim > ++(i.tick)) continue; i.tick = 0; if (i.slot != 0) i.slot(ct->data, i.delim); else if (ct->ret_func != 0) ct->ret_func(ct->data, i.delim); ct->timeout(ct->data, i.delim); ct->tick(ct->data, i.delim); } if (ct->lockRun) ct->unlock(); } bool PITimer::waitForFinish(int timeout_msecs) { if (timeout_msecs < 0) { while (running_) msleep(1); return true; } int cnt = 0; while (running_ && cnt < timeout_msecs) { msleep(1); ++cnt; } return cnt < timeout_msecs; } #else void PITimer::start(double msecs) { if (msecs < 0 || running_) return; interval_ = msecs; inc_time = PISystemTime::fromMilliseconds(msecs); st_time = PISystemTime::current() + inc_time; deferred_ = false; running_ = true; PIThread::start(); } void PITimer::deferredStart(double interval_msecs, double delay_msecs) { //piCoutObj << "defStart exec with" << delay_msecs << interval_msecs; if (interval_msecs < 0 || running_) return; interval_ = interval_msecs; PISystemTime cst = PISystemTime::current(); inc_time = PISystemTime::fromMilliseconds(interval_msecs); st_time = PISystemTime::current() + PISystemTime::fromMilliseconds(delay_msecs); if (st_time < cst) st_time = cst; running_ = deferred_ = true; PIThread::start(); //piCoutObj << "timer start def"; } void PITimer::deferredStart(double interval_msecs, const PIDateTime & start_datetime) { //piCoutObj << "defStart exec to" << start_datetime.toString() << interval_msecs; if (interval_msecs < 0 || running_) return; interval_ = interval_msecs; PISystemTime cst = PISystemTime::current(); inc_time = PISystemTime::fromMilliseconds(interval_msecs); st_time = start_datetime.toSystemTime(); if (st_time < cst) st_time = cst; running_ = deferred_ = true; PIThread::start(); //piCoutObj << "timer start def"; } void PITimer::run() { if (!running_) return; while (deferred_) { PISystemTime tst = st_time - PISystemTime::current(); if (tst.seconds > 0) { piMSleep(100); if (!running_) return; continue; } if (tst.nanoseconds > 100000000) { piMSleep(100); if (!running_) return; continue; } tst.sleep(); deferred_ = false; if (!running_) return; } #ifdef WINDOWS tt_st = __PIQueryPerformanceCounter(); #else (st_time - PISystemTime::current()).sleep(); st_time += inc_time; #endif //if (lockRun) lock(); if (ret_func != 0) ret_func(data, 1); timeout(data, 1); tick(data, 1); piForeach (TimerSlot & i, ret_funcs) { if (i.delim > ++(i.tick)) continue; i.tick = 0; if (i.slot != 0) i.slot(data, i.delim); else if (ret_func != 0) ret_func(data, i.delim); timeout(data, i.delim); tick(data, i.delim); } #ifdef WINDOWS tt_cur = __PIQueryPerformanceCounter(); double cdelay = interval_ - ((tt_cur - tt_st) / double(__pi_perf_freq) * 1.E+3); if (cdelay > 0.) Sleep(piRoundd(cdelay)); #endif //if (lockRun) unlock(); } #endif double PITimer::elapsed_n() { #ifdef WINDOWS pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq) * 1.E+9) : -1.); //t_cur = GetCurrentTime(); //return (t_cur - t_st) * 1000000.; #else # ifdef MAC_OS clock_get_time(__pi_mac_clock, &t_cur); # else clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec - t_st.tv_sec) * 1.e+9 + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns); #endif } double PITimer::elapsed_u() { #ifdef WINDOWS pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq) * 1.E+6) : -1.); //t_cur = GetCurrentTime(); //return (t_cur - t_st) * 1000.; #else # ifdef MAC_OS clock_get_time(__pi_mac_clock, &t_cur); # else clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec - t_st.tv_sec) * 1.e+6 + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns) / 1.e+3; #endif } double PITimer::elapsed_m() { #ifdef WINDOWS pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq) * 1.E+3) : -1.); //t_cur = GetCurrentTime(); //return (double)(t_cur - t_st); #else # ifdef MAC_OS clock_get_time(__pi_mac_clock, &t_cur); # else clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec - t_st.tv_sec) * 1.e+3 + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns) / 1.e+6; #endif } double PITimer::elapsed_s() { #ifdef WINDOWS pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? ((pc_cur - pc_st) / double(__pi_perf_freq)) : -1.); //t_cur = GetCurrentTime(); //return (t_cur - t_st) / 1000.; #else # ifdef MAC_OS clock_get_time(__pi_mac_clock, &t_cur); # else clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec - t_st.tv_sec) + (t_cur.tv_nsec - t_st.tv_nsec - PISystemTests::time_elapsed_ns) / 1.e+9; #endif } double PITimer::reset_time_n() { #ifdef WINDOWS return t_st * 1.e+6; #else return t_st.tv_sec * 1.e+9 + t_st.tv_nsec; #endif } double PITimer::reset_time_u() { #ifdef WINDOWS return t_st * 1.e+3; #else return t_st.tv_sec * 1.e+6 + t_st.tv_nsec / 1.e+3; #endif } double PITimer::reset_time_m() { #ifdef WINDOWS return (double)t_st; #else return t_st.tv_sec * 1.e+3 + t_st.tv_nsec / 1.e+6; #endif } double PITimer::reset_time_s() { #ifdef WINDOWS return t_st / 1000.; #else return t_st.tv_sec + t_st.tv_nsec / 1.e+9; #endif } PISystemTime PITimer::reset_time() { #ifdef WINDOWS return PISystemTime(t_st / 1000, (t_st % 1000) * 1000000); #else return PISystemTime(t_st.tv_sec, t_st.tv_nsec); #endif } double PITimer::elapsed_system_n() { #ifdef WINDOWS llong pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq) * 1.E+9) : -1.); //long t_cur = GetCurrentTime(); //return (t_cur * 1000000.); #else # ifdef MAC_OS mach_timespec_t t_cur; clock_get_time(__pi_mac_clock, &t_cur); # else timespec t_cur; clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec * 1.e+9 + t_cur.tv_nsec); #endif } double PITimer::elapsed_system_u() { #ifdef WINDOWS llong pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq) * 1.E+6) : -1.); //long t_cur = GetCurrentTime(); //return (t_cur * 1000.); #else # ifdef MAC_OS mach_timespec_t t_cur; clock_get_time(__pi_mac_clock, &t_cur); # else timespec t_cur; clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec * 1.e+6 + (t_cur.tv_nsec / 1.e+3)); #endif } double PITimer::elapsed_system_m() { #ifdef WINDOWS llong pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq) * 1.E+3) : -1.); //long t_cur = GetCurrentTime(); //return (double)t_cur; #else # ifdef MAC_OS mach_timespec_t t_cur; clock_get_time(__pi_mac_clock, &t_cur); # else timespec t_cur; clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec * 1.e+3 + (t_cur.tv_nsec / 1.e+6)); #endif } double PITimer::elapsed_system_s() { #ifdef WINDOWS llong pc_cur = __PIQueryPerformanceCounter(); return ((__pi_perf_freq > 0) ? (pc_cur / double(__pi_perf_freq)) : -1.); //long t_cur = GetCurrentTime(); //return (t_cur / 1000.); #else # ifdef MAC_OS mach_timespec_t t_cur; clock_get_time(__pi_mac_clock, &t_cur); # else timespec t_cur; clock_gettime(0, &t_cur); # endif return (t_cur.tv_sec + (t_cur.tv_nsec / 1.e+9)); #endif }