/*! \file pimathbase.h * \ingroup Math * \~\brief * \~english Basic mathematical functions and defines * \~russian Базовые математические функции и дефайны */ /* PIP - Platform Independent Primitives Basic mathematical functions and defines Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #ifndef PIMATHBASE_H #define PIMATHBASE_H #include "piinit.h" #include "pipair.h" #include "pivector.h" #ifdef QNX # undef PIP_MATH_J0 # undef PIP_MATH_J1 # undef PIP_MATH_JN # undef PIP_MATH_Y0 # undef PIP_MATH_Y1 # undef PIP_MATH_YN # include #else # include #endif #ifndef M_LN2 # define M_LN2 0.69314718055994530942 #endif #ifndef M_LN10 # define M_LN10 2.30258509299404568402 #endif #ifndef M_SQRT2 # define M_SQRT2 1.41421356237309514547 #endif #ifndef M_SQRT3 # define M_SQRT3 1.73205080756887719318 #endif #ifndef M_1_SQRT2 # define M_1_SQRT2 0.70710678118654746172 #endif #ifndef M_1_SQRT3 # define M_1_SQRT3 0.57735026918962584208 #endif #ifndef M_PI # define M_PI 3.141592653589793238462643383280 #endif #ifndef M_2PI # define M_2PI 6.283185307179586476925286766559 #endif #ifndef M_PI_3 # define M_PI_3 1.04719755119659774615 #endif #ifndef M_2PI_3 # define M_2PI_3 2.0943951023931954923 #endif #ifndef M_180_PI # define M_180_PI 57.2957795130823208768 #endif #ifndef M_PI_180 # define M_PI_180 1.74532925199432957692e-2 #endif #ifndef M_SQRT_PI # define M_SQRT_PI 1.772453850905516027298167483341 #endif #ifndef M_E # define M_E 2.7182818284590452353602874713527 #endif #ifndef M_LIGHT_SPEED # define M_LIGHT_SPEED 2.99792458e+8 #endif #ifndef M_RELATIVE_CONST # define M_RELATIVE_CONST -4.442807633e-10; #endif #ifndef M_GRAVITY_CONST # define M_GRAVITY_CONST 398600.4418e9; #endif const double deg2rad = M_PI_180; const double rad2deg = M_180_PI; // clang-format off inline int sign(const float & x) {return (x < 0.f) ? -1 : (x > 0.f ? 1 : 0);} inline int sign(const double & x) {return (x < 0. ) ? -1 : (x > 0. ? 1 : 0);} inline int sign(const ldouble & x) {return (x < 0.L) ? -1 : (x > 0.L ? 1 : 0);} inline int pow2 (const int p ) {return 1 << p;} inline float pow10(const float & e) {return powf(10.f, e);} inline double pow10(const double & e) {return pow (10. , e);} inline ldouble pow10(const ldouble & e) {return powl(10.L, e);} // clang-format on inline double sinc(const double & v) { if (v == 0.) return 1.; double t = M_PI * v; return sin(t) / t; } PIP_EXPORT double piJ0(const double & v); PIP_EXPORT double piJ1(const double & v); PIP_EXPORT double piJn(int n, const double & v); PIP_EXPORT double piY0(const double & v); PIP_EXPORT double piY1(const double & v); PIP_EXPORT double piYn(int n, const double & v); // clang-format off inline constexpr float toRad(float deg) {return deg * M_PI_180;} inline constexpr double toRad(double deg) {return deg * M_PI_180;} inline constexpr ldouble toRad(ldouble deg) {return deg * M_PI_180;} inline constexpr float toDeg(float rad) {return rad * M_180_PI;} inline constexpr double toDeg(double rad) {return rad * M_180_PI;} inline constexpr ldouble toDeg(ldouble rad) {return rad * M_180_PI;} // clang-format on template inline constexpr T sqr(const T & v) { return v * v; } template inline constexpr T toDb(T val) { return T(10.) * std::log10(val); } template inline constexpr T fromDb(T val) { return std::pow(T(10.), val / T(10.)); } // [-1 ; 1] PIP_EXPORT double randomd(); // [-1 ; 1] normal PIP_EXPORT double randomn(double dv = 0., double sv = 1.); template inline PIVector piAbs(const PIVector & v) { PIVector result; result.resize(v.size()); for (uint i = 0; i < v.size(); i++) result[i] = piAbs(v[i]); return result; } template void normalizeAngleDeg360(T & a) { while (a < 0.) a += 360.; while (a > 360.) a -= 360.; } template double normalizedAngleDeg360(T a) { normalizeAngleDeg360(a); return a; } template void normalizeAngleDeg180(T & a) { while (a < -180.) a += 360.; while (a > 180.) a -= 360.; } template double normalizedAngleDeg180(T a) { normalizeAngleDeg180(a); return a; } template bool OLS_Linear(const PIVector> & input, T * out_a, T * out_b) { static_assert(std::is_arithmetic::value, "Type must be arithmetic"); if (input.size_s() < 2) return false; int n = input.size_s(); T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a = T(), b = T(); for (int i = 0; i < n; ++i) { const PIPair & cv(input[i]); a_t0 += cv.first * cv.second; a_t1 += cv.first; a_t2 += cv.second; a_t3 += cv.first * cv.first; } a_t4 = n * a_t3 - a_t1 * a_t1; if (a_t4 != T()) a = (n * a_t0 - a_t1 * a_t2) / a_t4; b = (a_t2 - a * a_t1) / n; if (out_a != 0) *out_a = a; if (out_b != 0) *out_b = b; return true; } template bool WLS_Linear(const PIVector> & input, const PIVector & weights, T * out_a, T * out_b) { static_assert(std::is_arithmetic::value, "Type must be arithmetic"); if (input.size_s() < 2) return false; if (input.size_s() != weights.size_s()) return false; int n = input.size_s(); T a_t0 = T(), a_t1 = T(), a_t2 = T(), a_t3 = T(), a_t4 = T(), a_n = T(), a = T(), b = T(); for (int i = 0; i < n; ++i) { T cp = weights[i]; const PIPair & cv(input[i]); a_t0 += cv.first * cv.second * cp; a_t1 += cv.first * cp; a_t2 += cv.second * cp; a_t3 += cv.first * cv.first * cp; a_n += cp; } a_t4 = a_n * a_t3 - a_t1 * a_t1; if (a_t4 != T()) a = (a_n * a_t0 - a_t1 * a_t2) / a_t4; b = (a_t2 - a * a_t1) / a_n; if (out_a != 0) *out_a = a; if (out_b != 0) *out_b = b; return true; } #endif // PIMATHBASE_H