/*! \file pimathvector.h * \brief PIMathVector * * This file declare math vector class, which performs various vector operations */ /* PIP - Platform Independent Primitives PIMathVector Ivan Pelipenko peri4ko@yandex.ru, Andrey Bychkov work.a.b@yandex.ru This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #ifndef PIMATHVECTOR_H #define PIMATHVECTOR_H #include "pimathbase.h" template class PIMathMatrixT; /// Vector templated #define PIMV_FOR(v, s) for (uint v = s; v < Size; ++v) //! \brief A class that works with vector operations, the input data of which are size and the data type of the vector //! @tparam Size number of matrix elements //! @tparam Type is the data type of the vector. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /) //! of the C++ language are implemented template class PIP_EXPORT PIMathVectorT { typedef PIMathVectorT _CVector; static_assert(std::is_arithmetic::value, "Type must be arithmetic"); public: /** * @brief Constructor that calls the private resize method * */ PIMathVectorT() {resize();} /** * @brief Constructor that fills a vector PIMathVectorT with the values ​​of another vector "PIVector" * * @param val vector of type PIVector which is identified PIMathVectorT */ PIMathVectorT(const PIVector & val) {resize(); PIMV_FOR(i, 0) c[i] = val[i];} /** * @brief Constructor that fills a vector PIMathVectorT with the subtraction of two vectors * * @param st vector of type PIMathVectorT * @param fn vector of type PIMathVectorT */ PIMathVectorT(const _CVector & st, const _CVector & fn) {resize(); set(st, fn);} /** * @brief Method that returns the number of elements contained in the vector * * @return type uint shows number of elements in this vector */ uint size() const {return Size;} /** * @brief Method that set this elements to value "v" * * @param v value of which the vector is filled * @return reference to this */ _CVector & fill(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;} /** * @brief Method that set this with the subtraction of two vectors * * @param st vector of type PIMathVectorT * @param fn vector of type PIMathVectorT * @return reference to this */ _CVector & set(const _CVector & st, const _CVector & fn) {PIMV_FOR(i, 0) c[i] = fn[i] - st[i]; return *this;} /** * @brief Method that sets this using a vector, each element of which is added to the value of "v" * * @param v value of which the vector is filled * @return reference to this */ _CVector & move(const Type & v) {PIMV_FOR(i, 0) c[i] += v; return *this;} /** * @brief Method that sets this with a vector, each element of which is added to each element of the vector "v" * * @param v vector of type PIMathVectorT * @return reference to this */ _CVector & move(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i]; return *this;} /** * @brief Method that returns sum of the squares of all elements of the vector * * @return value equal to the sum of the squares of all elements of the vector */ Type lengthSqr() const {Type tv(0); PIMV_FOR(i, 0) tv += (c[i] * c[i]); return tv;} /** * @brief Method that returns a scalar physical value equal to the absolute value of vector * * @return value equal to length of a vector */ Type length() const {return sqrt(lengthSqr());} /** * @brief Method that returns the sum of the absolute values ​​of all vector values * * @return value equal sum of the absolute values ​​of all vector values */ Type manhattanLength() const {Type tv(0); PIMV_FOR(i, 0) tv += fabs(c[i]); return tv;} /** * @brief Method that returns the cos of the current vector and vector "v" * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return cos value of the angle between two vectors */ Type angleCos(const _CVector & v) const {if(v.size() != Size) return false; Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);} /** * @brief Method that returns the sin of the current vector and vector "v". Works only with vectors which consists of 3 elements. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return sin value of the angle between two vector */ Type angleSin(const _CVector & v) const {if(v.size() != Size) return false; Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);} /** * @brief Method that returns the angle between of the current vector and vector "v" in Rad. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return value of the angle between two vectors in Rad */ Type angleRad(const _CVector & v) const {if(v.size() != Size) return false; return acos(angleCos(v));} /** * @brief Method that returns the angle between of the current vector and vector "v" in Deg. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return value of the angle between two vectors in Deg */ Type angleDeg(const _CVector & v) const {if(v.size() != Size) return false; return toDeg(acos(angleCos(v)));} /** * @brief Method that returns the angle elevation between of the current vector and vector "v" in Deg. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return value of the angle elevation between two vectors in Deg */ Type angleElevation(const _CVector & v) const {if(v.size() != Size) return false; _CVector z = v - *this; double c = z.angleCos(*this); return 90.0 - acos(c) * rad2deg;} /** * @brief Method that returns a vector equal to the projection of the current vector onto the vector "v". * If the vectors have different dimensions, it returns this without changing anything * * @param v vector of type PIMathVectorT * @return vector of type PIMathVectorT equal to the projection of the current vector onto the vector "v" */ _CVector projection(const _CVector & v) {if(v.size() != Size) return _CVector(*this); Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));} /** * @brief Method that returns this normalized vector * * @return reference to this */ _CVector & normalize() {Type tv = length(); if (tv == Type(1)) return *this; if (piAbs(tv) <= Type(1E-100)) {fill(Type(0)); return *this;} PIMV_FOR(i, 0) c[i] /= tv; return *this;} /** * @brief Method that returns a normalized vector * * @return normalized vector of type PIMathVectorT */ _CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;} /** * @brief Method that returns a vector equal to vector product of current vector and vector "v". Works only with vectors which consists of 3 elements * * @param v vector of type PIMathVectorT * @return vector equal to vector product of current vector and vector "v" type of PIMathVectorT */ _CVector cross(const _CVector & v) {return (*this) * v;} /** * @brief Method that returns a value equal to absolute value of dot product of current vector and vector "v" * * @param v vector of type PIMathVectorT * @return value equal to absolute value of dot product of current vector and vector "v" */ Type dot(const _CVector & v) const {return (*this) ^ v;} /** * @brief Method which checks if every elements of vector are zeros * * @return true if vector is zero, else false */ bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;} /** * @brief Method which checks if current vector is orthogonal to vector "v". * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return true if vectors are orthogonal, else false */ bool isOrtho(const _CVector & v) const {if(v.size() != Size) return false; return ((*this) ^ v) == Type(0);} /** * @brief Read-only access to elements reference by index of the vector element "index" * If you enter an index out of the border of the vector there will be "undefined behavior" * * @param index is a parameter that shows the index number of the vector of the selected element * @return reference to element of vector by index */ const Type & at(uint index) {return c[index];} /** * @brief Full access to the element of vector by index. If you enter an index out of the border of the vector there will be "undefined behavior" * * @param index is the index of necessary element * @return element of vector */ Type & operator [](uint index) {return c[index];} /** * @brief Read-only access to the element of vector by index. If you enter an index out of the border of the vector there will be "undefined behavior" * * @param index is the index of necessary element * @return element of vector */ const Type & operator [](uint index) const {return c[index];} /** * @brief Vector assignment to vector "v" of type PIMathVectorT * * @param v vector for the assigment * @return vector equal to vector "v" */ _CVector & operator =(const _CVector & v) {memcpy(c, v.c, sizeof(Type) * Size); return *this;} /** * @brief Assignment operation. All vector values ​​become equal to "v" * * @param v value for the assigment * @return reference to this */ _CVector & operator =(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;} /** * @brief Compare with vector "v" * * @param v vector for the compare * @return if vectors are equal true, else false */ bool operator ==(const _CVector & v) const {PIMV_FOR(i, 0) if (c[i] != v[i]) return false; return true;} /** * @brief Compare with vector "v" * * @param v vector for the compare * @return if vectors are not equal true, else false */ bool operator !=(const _CVector & v) const {return !(*this == v);} /** * @brief Vector addition this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the addition assigment */ void operator +=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] += v[i];} /** * @brief Subtraction assignmentthis vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the subtraction assigment */ void operator -=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] -= v[i];} /** * @brief Multiplication assignment this vector with value "v" * * @param v value for the multiplication assigment */ void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;} /** * @brief Multiplication assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the multiplication assigment */ void operator *=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] *= v[i];} /** * @brief Division assignment with this vector value "v" * * @param v value for the division assigment */ void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;} /** * @brief Division assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the division assigment */ void operator /=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] /= v[i];} /** * @brief Vector substraction this vector * * @return the result of vector substraction */ _CVector operator -() const {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;} /** * @brief Vector addition this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * * @param v is vector term * @return the result of vector addition */ _CVector operator +(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;} /** * @brief Vector substraction this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * * @param v is vector term * @return the result of vector substraction */ _CVector operator -(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;} /** * @brief Vector multiplication this vector with value "v" * * @param v is value factor * @return the result of vector multiplication */ _CVector operator *(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v; return tv;} /** * @brief Vector division this vector with value "v" * * @param v is value divider * @return the result of vector division */ _CVector operator /(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;} /** * @brief Vector division this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * * @param v is vector divider * @return the result of vector division */ _CVector operator /(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v[i]; return tv;} /** * @brief Cross product of two vectors. Works only with vector containing three elements, otherwise returns current vector * * @param v is vector for cross product * @return the result vector equal of cross product */ _CVector operator *(const _CVector & v) const {if (Size != 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;} /** * @brief Elementwise assignment of multiplication of two vectors. If the vectors have different dimensions, it returns this without changing anything * * @param v is vector for multiplication * @return resulting vector */ _CVector operator &(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v[i]; return tv;} /** * @brief Absolute value of the dot product. If the vectors have different dimensions, it returns false * * @param v is vector for dot product * @return resulting vector */ Type operator ^(const _CVector & v) const {if(v.size() != Size) return false; Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;} PIMathMatrixT<1, Size, Type> transposed() const { PIMathMatrixT<1, Size, Type> ret; PIMV_FOR(i, 0) ret[0][i] = c[i]; return ret; } /** * @brief The method returns a part of the selected vector from the given vector * * @return the resulting vector that is part of this vector */ template /// vector {Size, Type} to vector {Size1, Type1} PIMathVectorT turnTo() const {PIMathVectorT tv; uint sz = piMin(Size, Size1); for (uint i = 0; i < sz; ++i) tv[i] = c[i]; return tv;} /** * @brief Creates a vector each element of which is equal to value "v" * * @param v this value fills the cells of the vector * @return filled vector of type PIMathVectorT */ static _CVector filled(const Type & v) {_CVector vv; PIMV_FOR(i, 0) vv[i] = v; return vv;} private: void resize(const Type & new_value = Type()) {for (uint i = 0; i < Size; ++i) c[i] = new_value;} Type c[Size]; }; /** * @brief Inline operator which returns vector multiplication with value "x" * * @param x value for the multiplication * @param v vector for the multiplication * @return resulting vector */ template inline PIMathVectorT operator *(const Type & x, const PIMathVectorT & v) { return v * x; } /** * @brief Inline operator for outputting the vector to the console * * @param s PICout type * @param the vector type PIMathVectorT that we print to the console * @return PIMathVectorT printed to the console */ template inline PICout operator <<(PICout s, const PIMathVectorT & v) {s << "{"; PIMV_FOR(i, 0) {s << v[i]; if (i < Size - 1) s << ", ";} s << "}"; return s;} /** * @brief Inline operator checking if the cross product is zero. Works only with vector containing three elements, otherwise returns current vector * * @param f vector of the first operand * @param s vector of the second operand * @return true if the cross product is zero, else false */ template inline bool operator ||(const PIMathVectorT & f, const PIMathVectorT & s) {return (f * s).isNull();} /** * @brief Inline function which takes the square root of each element in the vector * * @param v vector of whose elements the square root is taken * @return resulting vector */ template inline PIMathVectorT sqrt(const PIMathVectorT & v) {PIMathVectorT ret; PIMV_FOR(i, 0) {ret[i] = sqrt(v[i]);} return ret;} /** * @brief Inline function which squares each element of the vector * * @param v vector whose elements are squared * @return resulting vector */ template inline PIMathVectorT sqr(const PIMathVectorT & v) {PIMathVectorT ret; PIMV_FOR(i, 0) {ret[i] = sqr(v[i]);} return ret;} /** * @brief Inline operator for serializing a vector into a PIByteArray * * @param s PIByteArray type * @param v PIMathVectorT type * @return PIBiteArray serialized PIMathVectorT */ template inline PIByteArray & operator <<(PIByteArray & s, const PIMathVectorT & v) {for (uint i = 0; i < Size; ++i) s << v[i]; return s;} /** * @brief Inline operator to deserialize vector from PIByteArray * * @param s PIByteArray type * @param v PIMathVector type * @return PIMathVector deserialized from PIByteArray */ template inline PIByteArray & operator >>(PIByteArray & s, PIMathVectorT & v) {for (uint i = 0; i < Size; ++i) s >> v[i]; return s;} /** * @brief Inline function which returns vector size 2 and type of T * * @param x first element of vector * @param y second element of vector * @return resulting vector */ template inline PIMathVectorT<2u, T> createVectorT2(T x, T y) {return PIMathVectorT<2u, T>(PIVector() << x << y);} /** * @brief Inline function which returns vector size 3 and type of T * * @param x first element of vector * @param y second element of vector * @param z third element of vector * @return resulting vector */ template inline PIMathVectorT<3u, T> createVectorT3(T x, T y, T z) {return PIMathVectorT<3u, T>(PIVector() << x << y << z);} /** * @brief Inline function which returns vector size 4 and type of T * * @param x first element of vector * @param y second element of vector * @param z third element of vector * @param w fouth element of vector * @return resulting vector */ template inline PIMathVectorT<4u, T> createVectorT4(T x, T y, T z, T w) {return PIMathVectorT<4u, T>(PIVector() << x << y << z << w);} typedef PIMathVectorT<2u, int> PIMathVectorT2i; typedef PIMathVectorT<3u, int> PIMathVectorT3i; typedef PIMathVectorT<4u, int> PIMathVectorT4i; typedef PIMathVectorT<2u, double> PIMathVectorT2d; typedef PIMathVectorT<3u, double> PIMathVectorT3d; typedef PIMathVectorT<4u, double> PIMathVectorT4d; #define createVectorT2i createVectorT2 #define createVectorT3i createVectorT3 #define createVectorT4i createVectorT4 #define createVectorT2f createVectorT2 #define createVectorT3f createVectorT3 #define createVectorT4f createVectorT4 #define createVectorT2d createVectorT2 #define createVectorT3d createVectorT3 #define createVectorT4d createVectorT4 #undef PIMV_FOR /// Vector #define PIMV_FOR(v, s) for (uint v = s; v < c.size(); ++v) //! \brief A class that works with vector operations, the input data of which is the data type of the vector //! @tparam Type is the data type of the vector. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /) //! of the C++ language are implemented template class PIP_EXPORT PIMathVector { typedef PIMathVector _CVector; template friend PIByteArray & operator <<(PIByteArray & s, const PIMathVector & v); template friend PIByteArray & operator >>(PIByteArray & s, PIMathVector & v); public: /** * @brief Constructor that calls the resize method * * @param size vector dimension */ PIMathVector(const uint size = 0) {c.resize(size);} /** * @brief Constructor that fills a vector PIMathVector with the values ​​of another vector "PIVector" * * @param val vector of type PIVector which is identified PIMathVector */ PIMathVector(const PIVector & val) {c.resize(val.size()); PIMV_FOR(i, 0) c[i] = val[i];} /** * @brief Constructor that fills a vector PIMathVector with the subtraction of two vectors * * @param st vector of type PIMathVector * @param fn vector of type PIMathVector */ PIMathVector(const _CVector & st, const _CVector & fn) {c.resize(st.size()); PIMV_FOR(i, 0) c[i] = fn[i] - st[i];} /** * @brief Method that returns the number of elements contained in the vector * * @return type uint shows number of elements in this vector */ uint size() const {return c.size();} /** * @brief Returns self resized vector * * @param size new vector dimension * @param new_value value with which the vector is filled * @return reference to this */ _CVector & resize(uint size, const Type & new_value = Type()) {c.resize(size, new_value); return *this;} /** * @brief Returns copy of resized vector * * @param size new vector dimension * @param new_value value with which the vector is filled * @return resized vector */ _CVector resized(uint size, const Type & new_value = Type()) {_CVector tv = _CVector(*this); tv.resize(size, new_value); return tv;} /** * @brief Method that set this elements to value "v" * * @param v value of which the vector is filled * @return reference to this */ _CVector & fill(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;} /** * @brief Method that sets this using a vector, each element of which is added to the value of "v" * * @param v value of which the vector is filled * @return reference to this */ _CVector & move(const Type & v) {PIMV_FOR(i, 0) c[i] += v; return *this;} /** * @brief Method that sets this with a vector, each element of which is added to each element of the vector "v". * If the vectors have different dimensions, it returns this without changing anything * * @param v vector of type PIMathVectorT * @return reference to this */ _CVector & move(const _CVector & v) {if(v.size() != c.size()) return *this; PIMV_FOR(i, 0) c[i] += v[i]; return *this;} /** * @brief Method that replaces two elements in this vector by indices. You cannot use an index larger than the number vector dimension, * otherwise there will be "undefined behavior" * * @param fe index of the first element * @param se index of the second element * @return reference to this */ _CVector & swap(uint fe, uint se) {piSwap(c[fe], c[se]); return *this;} /** * @brief Method that returns sum of the squares of all elements of the vector * * @return value equal to the sum of the squares of all elements of the vector */ Type lengthSqr() const {Type tv(0); PIMV_FOR(i, 0) tv += (c[i] * c[i]); return tv;} /** * @brief Method that returns a scalar physical value equal to the absolute value of vector * * @return value equal to length of a vector */ Type length() const {return sqrt(lengthSqr());} /** * @brief Method that returns the sum of the absolute values ​​of all vector values * * @return value equal sum of the absolute values ​​of all vector values */ Type manhattanLength() const {Type tv(0); PIMV_FOR(i, 0) tv += fabs(c[i]); return tv;} /** * @brief Method that returns the cos of the current vector and vector "v". If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVector * @return cos value of the angle between two vectors */ Type angleCos(const _CVector & v) const {if(v.size() != c.size()) return false; Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);} /** * @brief Method that returns the sin of the current vector and vector "v". Works only with vectors which consists of 3 elements. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVector * @return sin value of the angle between two vector */ Type angleSin(const _CVector & v) const {if(v.size() != c.size()) return false; Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);} /** * @brief Method that returns the angle between of the current vector and vector "v" in Rad. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVector * @return value of the angle between two vectors in Rad */ Type angleRad(const _CVector & v) const {if(v.size() != c.size()) return false; return acos(angleCos(v));} /** * @brief Method that returns the angle between of the current vector and vector "v" in Deg. * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVectorT * @return value of the angle between two vectors in Deg */ Type angleDeg(const _CVector & v) const {if(v.size() != c.size()) return false; return toDeg(acos(angleCos(v)));} /** * @brief Method that returns a vector equal to the projection of the current vector onto the vector "v". * If the vectors have different dimensions, it returns this without changing anything * * @param v vector of type PIMathVector * @return vector of type PIMathVector equal to the projection of the current vector onto the vector "v" */ _CVector projection(const _CVector & v) {if(v.size() != c.size()) return *this; Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));} /** * @brief Method that returns a normalized vector * * @return copy of normalized vector of type PIMathVector */ _CVector & normalize() {Type tv = length(); if (tv == Type(1)) return *this; if (piAbs(tv) <= Type(1E-100)) {fill(Type(0)); return *this;} PIMV_FOR(i, 0) c[i] /= tv; return *this;} /** * @brief Method that returns a normalized vector * * @return normalized vector of type PIMathVector */ _CVector normalized() {_CVector tv(*this); tv.normalize(); return tv;} /** * @brief Method which checks if every elements of vector are zeros * * @return true if vector is zero, else false */ bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;} /** * @brief Method which checks if vector is valid * * @return true if vector is valid, else false */ bool isValid() const {return !c.isEmpty();} /** * @brief Method which checks if current vector is orthogonal to vector "v". * If the vectors have different dimensions, it returns false * * @param v vector of type PIMathVector * @return true if vectors are orthogonal, else false */ bool isOrtho(const _CVector & v) const {if(v.size() != c.size()) return false; return ((*this) ^ v) == Type(0);} /** * @brief Read-only access to elements reference by index of the vector element "index" * If you enter an index out of the border of the vector there will be "undefined behavior" * * @param index is a parameter that shows the index number of the vector of the selected element * @return reference to element of vector by index */ const Type & at(uint index) {return c[index];} /** * @brief Full access to the element of vector by index. If you enter an index out of the border of the vector there will be "undefined behavior" * * @param index is the index of necessary element * @return element of vector */ Type & operator [](uint index) {return c[index];} /** * @brief Read-only access to the element of vector by index. If you enter an index out of the border of the vector there will be "undefined behavior" * * @param index is the index of necessary element * @return element of vector */ const Type & operator [](uint index) const {return c[index];} /** * @brief Vector assignment to vector "v" of type PIMathVector * If the vectors have different dimensions, it returns this without changing anything * * @param v vector for the assigment * @return reference to this */ _CVector & operator =(const _CVector & v) {if(v.size() != c.size()) return *this; c = v.c; return *this;} /** * @brief Vector assignment to value "v" * * @param v value for the assigment * @return reference to this */ _CVector & operator =(const Type & v) {PIMV_FOR(i, 0) c[i] = v; return *this;} /** * @brief Compare with vector "v" * * @param v vector for the compare * @return if vectors are equal true, else false */ bool operator ==(const _CVector & v) const {PIMV_FOR(i, 0) if ((c[i] != v[i]) || (v.size() != c.size())) return false; return true;} /** * @brief Compare with vector "v" * * @param v vector for the compare * @return if vectors are not equal true, else false */ bool operator !=(const _CVector & v) const {return !(*this == v);} /** * @brief Addition assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the addition assigment */ void operator +=(const _CVector & v) {if(v.size() != c.size()) return void(); PIMV_FOR(i, 0) c[i] += v[i];} /** * @brief Subtraction assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the subtraction assigment */ void operator -=(const _CVector & v) {if(v.size() != c.size()) return void(); PIMV_FOR(i, 0) c[i] -= v[i];} /** * @brief Multiplication assignment this vector with value "v" * * @param v value for the multiplication assigment */ void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;} /** * @brief Multiplication assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the multiplication assigment */ void operator *=(const _CVector & v) {if(v.size() != c.size()) return void(); PIMV_FOR(i, 0) c[i] *= v[i];} /** * @brief Division assignment this vector with value "v" * * @param v value for the division assigment */ void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;} /** * @brief Division assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * * @param v vector for the division assigment */ void operator /=(const _CVector & v) {if(v.size() != c.size()) return void(); PIMV_FOR(i, 0) c[i] /= v[i];} /** * @brief Vector substraction this vector * * @return the result of vector substraction */ _CVector operator -() const {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;} /** * @brief Vector addition this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * * @param v is vector term * @return the result of matrix addition */ _CVector operator +(const _CVector & v) const {if(v.size() != c.size()) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;} /** * @brief Vector substraction this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * * @param v is vector term * @return the result of vector substraction */ _CVector operator -(const _CVector & v) const {if(v.size() != c.size()) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;} /** * @brief Vector multiplicationthis vector with value "v" * * @param v is value factor * @return the result of vector multiplication */ _CVector operator *(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v; return tv;} /** * @brief Vector division this vector with value "v" * * @param v is value divider * @return the result of vector division */ _CVector operator /(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;} /** * @brief Cross product of two vectors. Works only with vector containing three elements, otherwise returns current vector * * @param v is vector for cross product * @return the result vector equal of cross product */ _CVector operator *(const _CVector & v) const {if ((c.size() != 3) || (v.size() != 3)) return _CVector(); _CVector tv(3); tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;} /** * @brief Elementwise assignment of multiplication of two vectors. If the vectors have different dimensions, it returns this without changing anything * * @param v is vector for multiplication * @return resulting vector */ _CVector operator &(const _CVector & v) const {if(v.size() != c.size()) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v[i]; return tv;} /** * @brief Value of the dot product. If the vectors have different dimensions, it returns false * * @param v is vector for dot product * @return resulting value */ Type operator ^(const _CVector & v) const {if(v.size() != c.size()) return false; Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;} /** * @brief Converts PIMathVector to PIVector type * * @return vector equal PIMathVector but in PIVector type */ PIVector toVector() const {return c;} /** * @brief Returns full access data of vector * * @return data of vector */ inline Type * data() {return c.data();} /** * @brief Returns read-only data of vector * * @return data of vector */ inline const Type * data() const {return c.data();} private: PIVector c; }; #undef PIMV_FOR #ifdef PIP_STD_IOSTREAM template inline std::ostream & operator <<(std::ostream & s, const PIMathVector & v) {s << "{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;} #endif /** * @brief Inline operator for outputting the vector to the console * * @param s PICout type * @param the vector type PIMathVector that we print to the console * @return PIMathVector printed to the console */ template inline PICout operator <<(PICout s, const PIMathVector & v) {s << "Vector{"; for (uint i = 0; i < v.size(); ++i) {s << v[i]; if (i < v.size() - 1) s << ", ";} s << "}"; return s;} /** * @brief Inline operator for serializing a vector into a PIByteArray * * @param s PIByteArray type * @param v PIMathVector type * @return PIBiteArray serialized PIMathVector */ template inline PIByteArray & operator <<(PIByteArray & s, const PIMathVector & v) {s << v.c; return s;} /** * @brief Inline operator to deserialize vector from PIByteArray * * @param s PIByteArray type * @param v PIMathVector type * @return PIMathVector deserialized from PIByteArray */ template inline PIByteArray & operator >>(PIByteArray & s, PIMathVector & v) {s >> v.c; return s;} typedef PIMathVector PIMathVectori; typedef PIMathVector PIMathVectord; #endif // PIMATHVECTOR_H