/*! \file pitime.h * \brief Time structs */ /* PIP - Platform Independent Primitives Time structs Copyright (C) 2014 Ivan Pelipenko peri4ko@gmail.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef PITIME_H #define PITIME_H #include #include #include "pistring.h" #ifdef DOXYGEN //! \brief Sleep for "msecs" milliseconds void msleep(int msecs); #else # ifdef WINDOWS inline void msleep(int msecs) {Sleep(msecs);} # else inline void msleep(int msecs) {usleep(msecs * 1000);} # endif #endif /*! \brief Precise sleep for "usecs" microseconds * \details This function consider \c "usleep" offset * on QNX/Linux/Mac, which is calculated with * \a pip_sys_test program. If there is correct * offset value in system config, this function * wait \b exactly "usecs" microseconds. */ void piUSleep(int usecs); // on !Windows consider constant "usleep" offset /*! \brief Precise sleep for "msecs" milliseconds * \details This function exec \a piUSleep (msecs * 1000). */ inline void piMSleep(int msecs) {piUSleep(msecs * 1000);} // on !Windows consider constant "usleep" offset class PIP_EXPORT PISystemTime { public: //! Contructs system time with s = ns = 0 PISystemTime() {seconds = nanoseconds = 0;} //! Contructs system time with s = "s" and ns = "ns" PISystemTime(long s, long ns) {seconds = s; nanoseconds = ns; checkOverflows();} //! Contructs system time from another PISystemTime(const PISystemTime & t) {seconds = t.seconds; nanoseconds = t.nanoseconds;} //! Returns stored system time value in seconds double toSeconds() const {return double(seconds) + nanoseconds / 1.e+9;} //! Returns stored system time value in milliseconds double toMilliseconds() const {return seconds * 1.e+3 + nanoseconds / 1.e+6;} //! Returns stored system time value in microseconds double toMicroseconds() const {return seconds * 1.e+6 + nanoseconds / 1.e+3;} //! Returns stored system time value in nanoseconds double toNanoseconds() const {return seconds * 1.e+9 + double(nanoseconds);} //! Add to stored system time "v" seconds PISystemTime & addSeconds(double v) {*this += fromSeconds(v); return *this;} //! Add to stored system time "v" milliseconds PISystemTime & addMilliseconds(double v) {*this += fromMilliseconds(v); return *this;} //! Add to stored system time "v" microseconds PISystemTime & addMicroseconds(double v) {*this += fromMicroseconds(v); return *this;} //! Add to stored system time "v" nanoseconds PISystemTime & addNanoseconds(double v) {*this += fromNanoseconds(v); return *this;} //! Sleep for stored value. \warning Use this function to sleep for difference of system times or constructs system time. //! If you call this function on system time returned from \a currentSystemTime() thread will be sleep almost forever. void sleep() {piUSleep(piFloord(toMicroseconds()));} // wait self value, useful to wait some dT = (t1 - t0) //! Returns copy of this system time with absolutely values of s and ns PISystemTime abs() const {return PISystemTime(piAbsl(seconds), piAbsl(nanoseconds));} //! Returns sum of this system time with "t" PISystemTime operator +(const PISystemTime & t) {PISystemTime tt(*this); tt.seconds += t.seconds; tt.nanoseconds += t.nanoseconds; tt.checkOverflows(); return tt;} //! Returns difference between this system time and "t" PISystemTime operator -(const PISystemTime & t) {PISystemTime tt(*this); tt.seconds -= t.seconds; tt.nanoseconds -= t.nanoseconds; tt.checkOverflows(); return tt;} //! Add to stored value system time "t" PISystemTime & operator +=(const PISystemTime & t) {seconds += t.seconds; nanoseconds += t.nanoseconds; checkOverflows(); return *this;} //! Subtract from stored value system time "t" PISystemTime & operator -=(const PISystemTime & t) {seconds -= t.seconds; nanoseconds -= t.nanoseconds; checkOverflows(); return *this;} //! Compare system times bool operator ==(const PISystemTime & t) {return ((seconds == t.seconds) && (nanoseconds == t.nanoseconds));} //! Compare system times bool operator !=(const PISystemTime & t) {return ((seconds != t.seconds) || (nanoseconds != t.nanoseconds));} //! Compare system times bool operator >(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds > t.nanoseconds; return seconds > t.seconds;} //! Compare system times bool operator <(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds < t.nanoseconds; return seconds < t.seconds;} //! Compare system times bool operator >=(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds >= t.nanoseconds; return seconds >= t.seconds;} //! Compare system times bool operator <=(const PISystemTime & t) {if (seconds == t.seconds) return nanoseconds <= t.nanoseconds; return seconds <= t.seconds;} //! Contructs system time from seconds "v" static PISystemTime fromSeconds(double v) {long s = piFloord(v); return PISystemTime(s, (v - s) * 1000000000);} //! Contructs system time from milliseconds "v" static PISystemTime fromMilliseconds(double v) {long s = piFloord(v / 1000.); return PISystemTime(s, (v / 1000. - s) * 1000000000);} //! Contructs system time from microseconds "v" static PISystemTime fromMicroseconds(double v) {long s = piFloord(v / 1000000.); return PISystemTime(s, (v / 1000000. - s) * 1000000000);} //! Contructs system time from nanoseconds "v" static PISystemTime fromNanoseconds(double v) {long s = piFloord(v / 1000000000.); return PISystemTime(s, (v / 1000000000. - s) * 1000000000);} //! Returns current system time static PISystemTime current(); //! Seconds of stored system time long seconds; //! Nanoseconds of stored system time long nanoseconds; private: void checkOverflows() {while (nanoseconds >= 1000000000) {nanoseconds -= 1000000000; seconds++;} while (nanoseconds < 0) {nanoseconds += 1000000000; seconds--;}} }; //! \relatesalso PICout \relatesalso PIByteArray \brief Output operator to PICout inline PICout operator <<(PICout s, const PISystemTime & v) {s.setControl(0, true); s.space(); s << "(" << v.seconds << " s, " << v.nanoseconds << " ns)"; s.restoreControl(); return s;} //! \relatesalso PISystemTime \relatesalso PIByteArray \brief Output operator to PIByteArray inline PIByteArray & operator <<(PIByteArray & s, const PISystemTime & v) {s << v.seconds << v.nanoseconds; return s;} //! \relatesalso PISystemTime \relatesalso PIByteArray \brief Input operator from PIByteArray inline PIByteArray & operator >>(PIByteArray & s, PISystemTime & v) {s >> v.seconds >> v.nanoseconds; return s;} struct PIP_EXPORT PITime { PITime() {hours = minutes = seconds = milliseconds = 0;} int milliseconds; int seconds; int minutes; int hours; PIString toString(const PIString & format = "h:mm:ss") const; static PITime current(); }; PIP_EXPORT bool operator ==(const PITime & t0, const PITime & t1); PIP_EXPORT bool operator <(const PITime & t0, const PITime & t1); PIP_EXPORT bool operator >(const PITime & t0, const PITime & t1); inline bool operator !=(const PITime & t0, const PITime & t1) {return !(t0 == t1);} inline bool operator <=(const PITime & t0, const PITime & t1) {return !(t0 > t1);} inline bool operator >=(const PITime & t0, const PITime & t1) {return !(t0 < t1);} struct PIP_EXPORT PIDate { PIDate() {year = month = day = 0;} int day; int month; int year; PIString toString(const PIString & format = "d.MM.yyyy") const; static PIDate current(); }; PIP_EXPORT bool operator ==(const PIDate & t0, const PIDate & t1); PIP_EXPORT bool operator <(const PIDate & t0, const PIDate & t1); PIP_EXPORT bool operator >(const PIDate & t0, const PIDate & t1); inline bool operator !=(const PIDate & t0, const PIDate & t1) {return !(t0 == t1);} inline bool operator <=(const PIDate & t0, const PIDate & t1) {return !(t0 > t1);} inline bool operator >=(const PIDate & t0, const PIDate & t1) {return !(t0 < t1);} struct PIP_EXPORT PIDateTime { PIDateTime() {year = month = day = hours = minutes = seconds = 0;} PIDateTime(const PITime & time) {year = month = day = 0; hours = time.hours; minutes = time.minutes; seconds = time.seconds; milliseconds = time.milliseconds;} PIDateTime(const PIDate & date) {year = date.year; month = date.month; day = date.day; hours = minutes = seconds = milliseconds = 0;} PIDateTime(const PIDate & date, const PITime & time) {year = date.year; month = date.month; day = date.day; hours = time.hours; minutes = time.minutes; seconds = time.seconds; milliseconds = time.milliseconds;} int milliseconds; int seconds; int minutes; int hours; int day; int month; int year; PIDateTime normalized() const {return PIDateTime::fromSecondSinceEpoch(toSecondSinceEpoch());} void normalize() {*this = normalized();} PIString toString(const PIString & format = "h:mm:ss d.MM.yyyy") const; time_t toSecondSinceEpoch() const; PISystemTime toSystemTime() const {return PISystemTime(int(toSecondSinceEpoch()), milliseconds * 1000000);} void operator +=(const PIDateTime & d1) {year += d1.year; month += d1.month; day += d1.day; hours += d1.hours; minutes += d1.minutes; seconds += d1.seconds; normalize();} void operator -=(const PIDateTime & d1) {year -= d1.year; month -= d1.month; day -= d1.day; hours -= d1.hours; minutes -= d1.minutes; seconds -= d1.seconds; normalize();} static PIDateTime fromSecondSinceEpoch(const time_t sec); static PIDateTime fromSystemTime(const PISystemTime & st) {PIDateTime dt = fromSecondSinceEpoch(st.seconds); dt.milliseconds = piClampi(st.nanoseconds / 1000000, 0, 999); return dt;} static PIDateTime current(); }; inline PIDateTime operator +(const PIDateTime & d0, const PIDateTime & d1) {PIDateTime td = d0; td += d1; return td.normalized();} inline PIDateTime operator -(const PIDateTime & d0, const PIDateTime & d1) {PIDateTime td = d0; td -= d1; return td.normalized();} PIP_EXPORT bool operator ==(const PIDateTime & t0, const PIDateTime & t1); PIP_EXPORT bool operator <(const PIDateTime & t0, const PIDateTime & t1); PIP_EXPORT bool operator >(const PIDateTime & t0, const PIDateTime & t1); inline bool operator !=(const PIDateTime & t0, const PIDateTime & t1) {return !(t0 == t1);} inline bool operator <=(const PIDateTime & t0, const PIDateTime & t1) {return !(t0 > t1);} inline bool operator >=(const PIDateTime & t0, const PIDateTime & t1) {return !(t0 < t1);} DEPRECATED inline PITime currentTime() {return PITime::current();} // obsolete, use PITime::current() instead DEPRECATED inline PIDate currentDate() {return PIDate::current();} // obsolete, use PIDate::current() instead DEPRECATED inline PIDateTime currentDateTime() {return PIDateTime::current();} // obsolete, use PIDateTime::current() instead //! \relatesalso PISystemTime \brief Returns current system time DEPRECATED inline PISystemTime currentSystemTime() {return PISystemTime::current();} // obsolete, use PISystemTime::current() instead DEPRECATED PIP_EXPORT PIString time2string(const PITime & time, const PIString & format = "h:mm:ss"); // obsolete, use PITime.toString() instead DEPRECATED PIP_EXPORT PIString date2string(const PIDate & date, const PIString & format = "d.MM.yyyy"); // obsolete, use PITime.toString() instead DEPRECATED PIP_EXPORT PIString datetime2string(const PIDateTime & datetime, const PIString & format = "h:mm:ss d.MM.yyyy"); // obsolete, use PIDateTime.toString() instead #endif // PITIME_H