@@ -1,9 +1,9 @@
/* ! \file pimathmatrix.h
// ! \file pimathmatrix.h
* \ingroup Math
//! \ingroup Math
* \~\brief
//! \~\brief
* \~english Math matrix
//! \~english Math matrix
* \~russian Математическая матрица
//! \~russian Математическая матрица
*/
/*
/*
PIP - Platform Independent Primitives
PIP - Platform Independent Primitives
PIMathMatrix
PIMathMatrix
@@ -38,11 +38,18 @@
# pragma pack(push, 1)
# pragma pack(push, 1)
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
//! \~english
//! @tparam Rows rows number of matrix
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix.
//! @ tparam С ols column s number of matrix
//! \ tparam `Rows` row s number of matrix.
//! @ tparam Type is the data type of the matrix. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
//! \ tparam `С ols` columns number of matrix.
//! \tparam `Type` is the data type of the matrix. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
//! of the C++ language are implemented
//! of the C++ language are implemented
//! \~russian
//! \brief Класс, работающий с операциями над квадратными матрицами, входными данными которого являются столбцы, строки и матричный типа данных.
//! \tparam `Rows` количество строк матрицы.
//! \tparam `С ols` количество столбцов матрицы.
//! \tparam `Type`типа данных матрицы. Здесь можеть быть базовый тип данных C++ или различные классы,
//! где реализованы арифметические операторы(=, +=, -=, *=, /=, ==, !=, +, -, *, /) языка C++.
template < uint Rows , uint Cols = Rows , typename Type = double >
template < uint Rows , uint Cols = Rows , typename Type = double >
class PIP_EXPORT PIMathMatrixT {
class PIP_EXPORT PIMathMatrixT {
typedef PIMathMatrixT < Rows , Cols , Type > _CMatrix ;
typedef PIMathMatrixT < Rows , Cols , Type > _CMatrix ;
@@ -53,337 +60,410 @@ class PIP_EXPORT PIMathMatrixT {
static_assert ( Rows > 0 , " Row count must be > 0 " ) ;
static_assert ( Rows > 0 , " Row count must be > 0 " ) ;
static_assert ( Cols > 0 , " Column count must be > 0 " ) ;
static_assert ( Cols > 0 , " Column count must be > 0 " ) ;
public :
public :
/**
//! \~english
* \brief Constructs PIMathMatrixT that is filled by \a new_value
//! \brief Constructs \a PIMathMatrixT that is filled by \a new_value.
*/
//! \~russian
//! \brief Создает \a PIMathMatrixT и заполняет её из \a new_value.
PIMathMatrixT ( const Type & new_value = Type ( ) ) { PIMM_FOR m [ r ] [ c ] = new_value ; }
PIMathMatrixT ( const Type & new_value = Type ( ) ) { PIMM_FOR m [ r ] [ c ] = new_value ; }
/**
//! \~english
* \brief Contructs PIMathMatrixT from PIVector
//! \brief Contructs \a PIMathMatrixT from \a PIVector.
*/
//! \~russian
//! \brief Создает \a PIMathMatrixT и заполняет её из \a PIVector.
PIMathMatrixT ( const PIVector < Type > & val ) {
PIMathMatrixT ( const PIVector < Type > & val ) {
assert ( Rows * Cols = = val . size ( ) ) ;
assert ( Rows * Cols = = val . size ( ) ) ;
int i = 0 ;
int i = 0 ;
PIMM_FOR m [ r ] [ c ] = val [ i + + ] ;
PIMM_FOR m [ r ] [ c ] = val [ i + + ] ;
}
}
/**
//! \~english
* \brief Contructs PIMathMatrixT from C++11 initializer list
//! \brief Contructs \a PIMathMatrixT from [ C++11 initializer list](https://en.cppreference.com/w/cpp/utility/initializer_list).
*/
//! \~russian
//! \brief Создает \a PIMathMatrixT и заполняет её из [списка инициализации C++11](https://ru.cppreference.com/w/cpp/utility/initializer_list).
PIMathMatrixT ( std : : initializer_list < Type > init_list ) {
PIMathMatrixT ( std : : initializer_list < Type > init_list ) {
assert ( Rows * Cols = = init_list . size ( ) ) ;
assert ( Rows * Cols = = init_list . size ( ) ) ;
int i = 0 ;
int i = 0 ;
PIMM_FOR m [ r ] [ c ] = init_list . begin ( ) [ i + + ] ;
PIMM_FOR m [ r ] [ c ] = init_list . begin ( ) [ i + + ] ;
}
}
/**
//! \~english
* \brief С reates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
//! \brief С reates a matrix whose main diagonal is filled with ones and the remaining elements are zeros.
*
//! \return identity matrix of type \a PIMathMatrixT.
* @return identity matrix of type PIMathMatrixT
//! \~russian
*/
//! \brief Создает матрицу, главная диагональ которой заполнена единицами, а остальные элементы — нулями.
static _CMatrix identity ( ) {
//! \return единичная матрица типа \a PIMathMatrixT.
_CMatrix tm = _CMatrix ( ) ;
static PIMathMatrixT < Rows , Cols , Type > identity ( ) {
PIMathMatrixT < Rows , Cols , Type > tm = PIMathMatrixT < Rows , Cols , Type > ( ) ;
PIMM_FOR tm . m [ r ] [ c ] = ( c = = r ? Type ( 1 ) : Type ( 0 ) ) ;
PIMM_FOR tm . m [ r ] [ c ] = ( c = = r ? Type ( 1 ) : Type ( 0 ) ) ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Method which returns number of columns in matrix
//! \brief Method which returns number of columns in matrix.
*
//! \return type \a uint shows number of columns.
* @return type uint shows number of columns
//! \~russian
*/
//! \brief Метод возвращающий количество столбцов в матрице.
//! \return \a uint количество столбцов.
constexpr uint cols ( ) const { return Cols ; }
constexpr uint cols ( ) const { return Cols ; }
/**
//! \~english
* \brief Method which returns number of rows in matrix
//! \brief Method which returns number of rows in matrix.
*
//! \return type uint shows number of rows.
* @return type uint shows number of rows
//! \~russian
*/
//! \brief Метод возвращающий количество строк в матрице.
//! \return \a uint количество строк.
constexpr uint rows ( ) const { return Rows ; }
constexpr uint rows ( ) const { return Rows ; }
/**
//! \~english
* \brief Method which returns the selected column in PIMathVectorT format.
//! \brief Method which returns the selected column in PIMathVectorT format.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
*
//! \param index is the number of the selected column.
* @param index is the number of the selected column
//! \return column in PIMathVectorT format.
* @return column in PIMathVectorT format
//! \~russian
*/
//! \brief Метод возвращающий выбранную строку в формате \a PIMathVectorT.
_CMCol col ( uint index ) {
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
_CMCol tv ;
//! \param index номер выбранного столбца.
//! \return столбец в формате \a PIMathVectorT.
PIMathVectorT < Rows , Type > col ( uint index ) {
PIMathVectorT < Rows , Type > tv ;
PIMM_FOR_R tv [ i ] = m [ i ] [ index ] ;
PIMM_FOR_R tv [ i ] = m [ i ] [ index ] ;
return tv ;
return tv ;
}
}
/**
//! \brief Method which returns the selected row in PIMathVectorT format.
* \brief Method which returns the selected row in PIMathVectorT format
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
* If you enter an index out of the bord er of the matrix there will be "undefined behavior"
//! \param index is the numb er of the selected row.
*
//! \return row in PIMathVectorT format.
* @param index is the number of the selected row
//! \~russian
* @return row in PIMathVectorT format
//! \brief Метод возвращающий выбранный столбец в формате \a PIMathVectorT.
*/
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
_CMRow row ( uint index ) {
//! \param index номер выбранной строки.
_CMRow tv ;
//! \return строка в формате \a PIMathVectorT.
PIMathVectorT < Cols , Type > row ( uint index ) {
PIMathVectorT < Cols , Type > tv ;
PIMM_FOR_C tv [ i ] = m [ index ] [ i ] ;
PIMM_FOR_C tv [ i ] = m [ index ] [ i ] ;
return tv ;
return tv ;
}
}
/**
//! \~english
* \brief Set the selected column in matrix.
//! \brief Set the selected column in matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
*
//! \param index is the number of the selected column.
* @param index is the number of the selected column
//! \param v is a vector of the type \a PIMathVectorT<Rows, Type> that needs to fill the column.
* @param v is a vector of the type _CMCol that needs to fill the column
//! \return matrix type \a PIMa thM atrixT<Rows, Cols, Type>.
* @return matrix type _CMatrix
//! \~russian
*/
//! \brief Определить выбранный столбец матрицы.
_CMatrix & setCol ( uint index , const _CMCol & v ) {
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param index номер выбранного столбца.
//! \param v вектор типа \a PIMathVectorT<Rows, Type>, которым необходимо заполнить столбец.
//! \return матрица типа \a PIMathMatrixT<Rows, Cols, Type>.
PIMathMatrixT < Rows , Cols , Type > & setCol ( uint index , const PIMathVectorT < Rows , Type > & v ) {
PIMM_FOR_R m [ i ] [ index ] = v [ i ] ;
PIMM_FOR_R m [ i ] [ index ] = v [ i ] ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Set the selected row in matrix
//! \brief Set the selected row in matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
*
//! \param index is the number of the selected row.
* @param index is the number of the selected row
//! \param v is a vector of the type PIMathVectorT<Cols, Type> that needs to fill the row.
* @param v is a vector of the type _CMCol that needs to fill the row
//! \return matrix type PIMa thM atrixT<Rows, Cols, Type>
* @return matrix type _CMatrix
//! \~russian
*/
//! \brief Определить выбранную строку матрицы.
_CMatrix & setRow ( uint index , const _CMRow & v ) {
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param index номер выбранной строки.
//! \param v вектор типа \a PIMathVectorT<Cols, Type>, которым необходимо заполнить строку.
//! \return матрица типа \a PIMathMatrixT<Rows, Cols, Type>.
PIMathMatrixT < Rows , Cols , Type > & setRow ( uint index , const PIMathVectorT < Cols , Type > & v ) {
PIMM_FOR_C m [ index ] [ i ] = v [ i ] ;
PIMM_FOR_C m [ index ] [ i ] = v [ i ] ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which changes selected rows in a matrix.
//! \brief Method which swaps the selected rows in a matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior"
*
//! \param rf is the number of the first selected row
* @ param rf is the number of the first selected row
//! \ param rs is the number of the second selected row
* @param rs is the number of the second selected row
//! \return matrix type \a PIMathMatrixT<Rows, Cols, Type>
* @return matrix type _CMatrix
//! \~russian
*/
//! \brief Метод, меняющий местами выбранные строки в матрице.
_CMatrix & swapRows ( uint rf , uint rs ) {
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param rf номер первой выбранной строки.
//! \param rs номер второй выбранной строки.
//! \return матрица типа \a PIMathMatrixT<Rows, Cols, Type>.
PIMathMatrixT < Rows , Cols , Type > & swapRows ( uint rf , uint rs ) {
PIMM_FOR_C piSwap < Type > ( m [ rf ] [ i ] , m [ rs ] [ i ] ) ;
PIMM_FOR_C piSwap < Type > ( m [ rf ] [ i ] , m [ rs ] [ i ] ) ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which changes selected columns in a matrix.
//! \brief Method which swaps the selected columns in a matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior"
*
//! \param cf is the number of the first selected column
* @ param cf is the number of the first selected column
//! \ param cs is the number of the second selected column
* @param cs is the number of the second selected column
//! \return matrix type \a PIMathMatrixT<Rows, Cols, Type>
* @return matrix type _CMatrix
//! \~russian
*/
//! \brief Метод, меняющий местами выбранные столбцы в матрице.
_CMatrix & swapCols ( uint cf , uint cs ) {
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param rf номер первого выбранного столбца.
//! \param rs номер второго выбранного столбца.
//! \return матрица типа \a PIMathMatrixT<Rows, Cols, Type>.
PIMathMatrixT < Rows , Cols , Type > & swapCols ( uint cf , uint cs ) {
PIMM_FOR_R piSwap < Type > ( m [ i ] [ cf ] , m [ i ] [ cs ] ) ;
PIMM_FOR_R piSwap < Type > ( m [ i ] [ cf ] , m [ i ] [ cs ] ) ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which fills the matrix with selected value
//! \brief Method which fills the matrix with selected value.
*
//! \param v is a parameter the type and value of which is selected and later filled into the matrix.
* @param v is a parameter the type and value of which is selected and later filled into the matrix
//! \return filled matrix type \a PIMathMatrixT<Rows, Cols, Type>.
* @return filled matrix type _CMatrix
//! \~russian
*/
//! \brief Метод, заполняющий матрицу выбранным значением.
_CMatrix & fill ( const Type & v ) {
//! \param v параметр тип и значения, которого выбираются и заносятся в матрицу.
//! \return заполненная матрица типа \a PIMathMatrixT<Rows, Cols, Type>.
PIMathMatrixT < Rows , Cols , Type > & fill ( const Type & v ) {
PIMM_FOR m [ r ] [ c ] = v ;
PIMM_FOR m [ r ] [ c ] = v ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which checks if matrix is square
//! \brief Method which checks if matrix is square.
*
//! \return true if matrix is square, else false.
* @return true if matrix is square, else false
//! \~russian
*/
//! \brief Метод, проверяющий является ли матрицей квадратной.
//! \return true если матрица квадратная, иначе false.
constexpr bool isSquare ( ) const { return Rows = = Cols ; }
constexpr bool isSquare ( ) const { return Rows = = Cols ; }
/**
//! \~english
* \brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
//! \brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros.
*
//! \return true if matrix is identitied, else false.
* @return true if matrix is identitied, else false
//! \~russian
*/
//! \brief Метод, проверяющий содержит ли главная диагональ единицы и все остальные поля нули.
//! \return true если матрица единичная, иначе false.
bool isIdentity ( ) const {
bool isIdentity ( ) const {
PIMM_FOR if ( ( c = = r ) ? m [ r ] [ c ] ! = Type ( 1 ) : m [ r ] [ c ] ! = Type ( 0 ) ) return false ;
PIMM_FOR if ( ( c = = r ) ? m [ r ] [ c ] ! = Type ( 1 ) : m [ r ] [ c ] ! = Type ( 0 ) ) return false ;
return true ;
return true ;
}
}
/**
//! \~english
* \brief Method which checks if every elements of matrix are zeros
//! \brief Method which checks if every elements of matrix are zeros.
*
//! \return true if matrix is null, else false.
* @return true if matrix is null, else false
//! \~russian
*/
//! \brief Метод, являются ли все элементы матрицы нулями.
//! \return true если матрица нулевая, иначе false.
bool isNull ( ) const {
bool isNull ( ) const {
PIMM_FOR if ( m [ r ] [ c ] ! = Type ( 0 ) ) return false ;
PIMM_FOR if ( m [ r ] [ c ] ! = Type ( 0 ) ) return false ;
return true ;
return true ;
}
}
/**
//! \~english
* \brief Read-only access to element by \a row and \a col .
//! \brief Read-only access to element by `row` number and `col` number .
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
*
//! \param row matrix row number.
* @param row of matrix
//! \param col matrix column number.
* @param col of matrix
//! \return copy of element of matrix.
* @return copy of element of matrix
//! \~russian
*/
//! \brief Доступ только для чтения к элементу по номеру \a строки `row` и номеру \a столбца `col`.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param row номер строки матрицы.
//! \param col номер столбца матрицы.
//! \return копия элемента матрицы.
Type at ( uint row , uint col ) const { return m [ row ] [ col ] ; }
Type at ( uint row , uint col ) const { return m [ row ] [ col ] ; }
/**
//! \~english
* \brief Full access to element by \a row and \a col .
//! \brief Full access to element by `row` number and `col` number .
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior"
*
//! \param row matrix row number.
* @param row of matrix
//! \param col matrix column number.
* @param col of matrix
//! \return element of matrix
* @return element of matrix
//! \~russian
*/
//! \brief Полный доступ к элементу по номеру \a строки `row` и номеру \a столбца `col`.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param row номер строки матрицы.
//! \param col номер столбца матрицы.
//! \return элемент матрицы.
inline Type & element ( uint row , uint col ) { return m [ row ] [ col ] ; }
inline Type & element ( uint row , uint col ) { return m [ row ] [ col ] ; }
/**
//! \~english
* \brief Read-only access to element by \a row and \a col .
//! \brief Read-only access to element by `row` number and `col` number .
* If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
*
//! \param row matrix row number.
* @param row of matrix
//! \param col matrix column number.
* @param col of matrix
//! \return copy of element of matrix.
* @return element of matrix
//! \~russian
*/
//! \brief Доступ только для чтения к элементу по номеру \a строки `row` и номеру \a столбца `col`.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param row номер строки матрицы.
//! \param col номер столбца матрицы.
//! \return копия элемента матрицы.
inline const Type & element ( uint row , uint col ) const { return m [ row ] [ col ] ; }
inline const Type & element ( uint row , uint col ) const { return m [ row ] [ col ] ; }
/**
//! \~english
* \brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Full access to the matrix row pointer.
*
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
* @ param row of matrix
//! \ param row matrix row number.
* @ return matrix row pointer
//! \ return matrix row pointer
*/
//! \~russian
//! \brief Полный доступ к указателю на строку матрицы.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param row номер строки матрицы.
//! \return указатель на строку матрицы.
Type * operator [ ] ( uint row ) { return m [ row ] ; }
Type * operator [ ] ( uint row ) { return m [ row ] ; }
/**
//! \~english
* \brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Read-only access to the matrix row pointer.
*
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
* @ param row of matrix
//! \ param row matrix row number.
* @ return matrix row pointer
//! \ return matrix row pointer
*/
//! \~russian
//! \brief Доступ только для чтения к указателю на строку матрицы.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param row номер строки матрицы.
//! \return указатель на строку матрицы.
const Type * operator [ ] ( uint row ) const { return m [ row ] ; }
const Type * operator [ ] ( uint row ) const { return m [ row ] ; }
/**
//! \~english
* \brief Matrix compare
//! \brief Matrix compare.
*
//! \param sm matrix for compare.
* @param sm matrix for compare
//! \return if matrices are equal true, else false.
* @return if matrices are equal true, else false
//! \~russian
*/
//! \brief Сравнение матриц.
bool operator = = ( const _CMatrix & sm ) const {
//! \param sm матрица для сравнения.
//! \return если матрицы равны true, иначе false.
bool operator = = ( const PIMathMatrixT < Rows , Cols , Type > & sm ) const {
PIMM_FOR if ( m [ r ] [ c ] ! = sm . m [ r ] [ c ] ) return false ;
PIMM_FOR if ( m [ r ] [ c ] ! = sm . m [ r ] [ c ] ) return false ;
return true ;
return true ;
}
}
/**
//! \~english
* \brief Matrix negative compare
//! \brief Matrix negative compare.
*
//! \param sm matrix for compare.
* @param sm matrix for compare
//! \return if matrices are not equal true, else false.
* @return if matrices are not equal true, else false
//! \~russian
*/
//! \brief Отрицательное сравнение матриц.
bool operator ! = ( const _CMatrix & sm ) const { return ! ( * this = = sm ) ; }
//! \param sm матрица для сравнения.
//! \return если матрицы не равны true, иначе false.
bool operator ! = ( const PIMathMatrixT < Rows , Cols , Type > & sm ) const { return ! ( * this = = sm ) ; }
/**
//! \~english
* \brief Addition assignment with matrix " sm"
//! \brief Addition assignment with matrix ` sm`.
*
//! \param sm matrix for the addition assigment.
* @param sm matrix for the addition assigment
//! \~russian
*/
//! \brief Сложение с присваиванием с матрицей `sm`.
void operator + = ( const _CMatrix & sm ) { PIMM_FOR m [ r ] [ c ] + = sm . m [ r ] [ c ] ; }
//! \param sm матрица для сложения с присваиванием.
void operator + = ( const PIMathMatrixT < Rows , Cols , Type > & sm ) { PIMM_FOR m [ r ] [ c ] + = sm . m [ r ] [ c ] ; }
/**
//! \~english
* \brief Subtraction assignment with matrix " sm"
//! \brief Subtraction assignment with matrix ` sm`.
*
//! \param sm matrix for the subtraction assigment.
* @param sm matrix for the subtraction assigment
//! \~russian
*/
//! \brief Вычитание с присваиванием с матрицей `sm`.
void operator - = ( const _CMatrix & sm ) { PIMM_FOR m [ r ] [ c ] - = sm . m [ r ] [ c ] ; }
//! \param sm матрица для вычитания с присваиванием.
void operator - = ( const PIMathMatrixT < Rows , Cols , Type > & sm ) { PIMM_FOR m [ r ] [ c ] - = sm . m [ r ] [ c ] ; }
/**
//! \~english
* \brief Multiplication assignment with value "v"
//! \brief Multiplication assignment with value `v`.
*
//! \param v value for the multiplication assigment.
* @param v value for the multiplication assigment
//! \~russian
*/
//! \brief Умножение с присваиванием с матрицей `v`.
//! \param sm матрица для умножения с присваиванием.
void operator * = ( const Type & v ) {
void operator * = ( const Type & v ) {
PIMM_FOR m [ r ] [ c ] * = v ;
PIMM_FOR m [ r ] [ c ] * = v ;
}
}
/**
//! \~english
* \brief Division assignment with value "v"
//! \brief Division assignment with value `v`.
*
//! \param v value for the division assigment.
* @param v value for the division assigment
//! \~russian
*/
//! \brief Деление с присваиванием с матрицей `v`.
//! \param sm матрица для деления с присваиванием.
void operator / = ( const Type & v ) {
void operator / = ( const Type & v ) {
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
PIMM_FOR m [ r ] [ c ] / = v ;
PIMM_FOR m [ r ] [ c ] / = v ;
}
}
/**
//! \~english
* \brief Matrix subst rac tion
//! \brief Negation ope ration
*
//! \return copy of the negative matrix
* @return the result of matrix substractio n
//! \~russia n
*/
//! \brief Операция отрицания
_CMatrix operator - ( ) const {
//! \return копия отрицательной матрицы
_CMatrix tm ;
PIMathMatrixT < Rows , Cols , Type > operator - ( ) const {
PIMathMatrixT < Rows , Cols , Type > tm ;
PIMM_FOR tm . m [ r ] [ c ] = - m [ r ] [ c ] ;
PIMM_FOR tm . m [ r ] [ c ] = - m [ r ] [ c ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix addition
//! \brief Matrix addition.
*
//! \param sm is matrix term.
* @param sm is matrix term
//! \return the result of matrix addition.
* @return the result of matrix additio n
//! \~russia n
*/
//! \brief Матричное сложение.
_CMatrix operator + ( const _CMatrix & sm ) const {
//! \param sm матричное слагаемое.
_CMatrix tm = _CMatrix ( * this ) ;
//! \return результат матричного сложения.
PIMathMatrixT < Rows , Cols , Type > operator + ( const PIMathMatrixT < Rows , Cols , Type > & sm ) const {
PIMathMatrixT < Rows , Cols , Type > tm = PIMathMatrixT < Rows , Cols , Type > ( * this ) ;
PIMM_FOR tm . m [ r ] [ c ] + = sm . m [ r ] [ c ] ;
PIMM_FOR tm . m [ r ] [ c ] + = sm . m [ r ] [ c ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix substraction
//! \brief Matrix substraction.
*
//! \param sm is matrix subtrahend.
* @param sm is matrix subtractor
//! \return the result of matrix subs traction.
* @return the result of matrix substractio n
//! \~russia n
*/
//! \brief Матричная разность.
_CMatrix operator - ( const _CMatrix & sm ) const {
//! \param sm матричное вычитаемое.
_CMatrix tm = _CMatrix ( * this ) ;
//! \return результат матричной разности.
PIMathMatrixT < Rows , Cols , Type > operator - ( const PIMathMatrixT < Rows , Cols , Type > & sm ) const {
PIMathMatrixT < Rows , Cols , Type > tm = PIMathMatrixT < Rows , Cols , Type > ( * this ) ;
PIMM_FOR tm . m [ r ] [ c ] - = sm . m [ r ] [ c ] ;
PIMM_FOR tm . m [ r ] [ c ] - = sm . m [ r ] [ c ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix multiplication
//! \brief Matrix multiplication by a constant.
*
//! \param v is value factor.
* @param v is value factor
//! \return the result of matrix multiplication.
* @return the result of matrix multiplicatio n
//! \~russia n
*/
//! \brief Умножение матрицы на константу.
_CMatrix operator * ( const Type & v ) const {
//! \param v множитель.
_CMatrix tm = _CMatrix ( * this ) ;
//! \return результат произведения.
PIMathMatrixT < Rows , Cols , Type > operator * ( const Type & v ) const {
PIMathMatrixT < Rows , Cols , Type > tm = PIMathMatrixT < Rows , Cols , Type > ( * this ) ;
PIMM_FOR tm . m [ r ] [ c ] * = v ;
PIMM_FOR tm . m [ r ] [ c ] * = v ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix division
//! \brief Division a matrix by a constant.
*
//! \param v is value divider.
* @param v is value divider
//! \return the result of matrix division.
* @return the result of matrix divi sio n
//! \~rus sia n
*/
//! \brief Деление матрицы на константу.
_CMatrix operator / ( const Type & v ) const {
//! \param v делитель.
//! \return результат деления.
PIMathMatrixT < Rows , Cols , Type > operator / ( const Type & v ) const {
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
_CMatrix tm = _CMatrix ( * this ) ;
PIMathMatrixT < Rows , Cols , Type > tm = PIMathMatrixT < Rows , Cols , Type > ( * this ) ;
PIMM_FOR tm . m [ r ] [ c ] / = v ;
PIMM_FOR tm . m [ r ] [ c ] / = v ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Determinant of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Calculate Determinant of the matrix.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @ return matrix determinant
//! \ return matrix determinant.
*/
//! \~russian
//! \brief Вычислить определитель матрицы.
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return опеределитель матрицы.
Type determinant ( bool * ok = 0 ) const {
Type determinant ( bool * ok = 0 ) const {
_CMatrix m ( * this ) ;
PIMathMatrixT < Rows , Cols , Type > m ( * this ) ;
bool k ;
bool k ;
Type ret = Type ( 0 ) ;
Type ret = Type ( 0 ) ;
m . toUpperTriangular ( & k ) ;
m . toUpperTriangular ( & k ) ;
@@ -394,11 +474,14 @@ public:
return ret ;
return ret ;
}
}
/**
//! \~english
* \brief Trace of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Calculate the trace of a matrix.
*
//! \details Works only with square matrix.
* @ return matrix trace
//! \ return matrix trace.
*/
//! \~russian
//! \brief Вычислить след матрицы.
//! \details Работает только с квадратными матрицами.
//! \return след матрицы.
Type trace ( ) const {
Type trace ( ) const {
static_assert ( Rows = = Cols , " Works only with square matrix " ) ;
static_assert ( Rows = = Cols , " Works only with square matrix " ) ;
Type ret = Type ( 0 ) ;
Type ret = Type ( 0 ) ;
@@ -408,15 +491,19 @@ public:
return ret ;
return ret ;
}
}
/**
//! \~english
* \brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Transforming matrix to upper triangular.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @return copy of transformed upper triangular matrix
//! \return a transformed upper triangular matrix.
*/
//! \~russian
_CMatrix & toUpperTriangular ( bool * ok = 0 ) {
//! \brief Преобразование матрицы в верхнетреугольную.
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return преобразованная верхнетреугольная матрицы.
PIMathMatrixT < Rows , Cols , Type > & toUpperTriangular ( bool * ok = 0 ) {
static_assert ( Rows = = Cols , " Works only with square matrix " ) ;
static_assert ( Rows = = Cols , " Works only with square matrix " ) ;
_CMatrix smat ( * this ) ;
PIMathMatrixT < Rows , Cols , Type > smat ( * this ) ;
bool ndet ;
bool ndet ;
uint crow ;
uint crow ;
Type mul ;
Type mul ;
@@ -448,15 +535,19 @@ public:
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Matrix inversion operation.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @return copy of inverted matrix
//! \return inverted matrix.
*/
//! \~russian
_CMatrix & invert ( bool * ok = 0 ) {
//! \brief Операция обращения матрицы.
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return обратная матрица.
PIMathMatrixT < Rows , Cols , Type > & invert ( bool * ok = 0 ) {
static_assert ( Rows = = Cols , " Works only with square matrix " ) ;
static_assert ( Rows = = Cols , " Works only with square matrix " ) ;
_CMatrix mtmp = _CMatrix : : identity ( ) , smat ( * this ) ;
PIMathMatrixT < Rows , Cols , Type > mtmp = PIMathMatrixT < Rows , Cols , Type > : : identity ( ) , smat ( * this ) ;
bool ndet ;
bool ndet ;
uint crow ;
uint crow ;
Type mul , iddiv ;
Type mul , iddiv ;
@@ -502,35 +593,45 @@ public:
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Matrix inversion operation.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @return inverted matrix
//! \return copy of inverted matrix.
*/
//! \~russian
_CMatrix inverted ( bool * ok = 0 ) const {
//! \brief Операция обращения матрицы.
_CMatrix tm ( * this ) ;
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return копия обратной матрицы.
PIMathMatrixT < Rows , Cols , Type > inverted ( bool * ok = 0 ) const {
PIMathMatrixT < Rows , Cols , Type > tm ( * this ) ;
tm . invert ( ok ) ;
tm . invert ( ok ) ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix transposition operation. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Matrix transposition operation.
*
//! \details Works only with square matrix.
* @return transposed matrix
//! \return copy of transposed matrix
*/
//! \~russian
_CMatrixI transposed ( ) const {
//! \brief Транспонирование матрицы.
_CMatrixI tm ;
//! \details Работает только с квадратными матрицами.
//! \return копия транспонированной матрицы.
PIMathMatrixT < Cols , Rows , Type > transposed ( ) const {
PIMathMatrixT < Cols , Rows , Type > tm ;
PIMM_FOR tm [ c ] [ r ] = m [ r ] [ c ] ;
PIMM_FOR tm [ c ] [ r ] = m [ r ] [ c ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix rotation operation. Works only with 2x2 matrix
//! \brief Matrix rotation operation.
*
//! \details Works only with 2x2 matrix.
* @ return rotated matrix
//! \ return rotated matrix.
*/
//! \~russian
_CMatrix rotate ( Type angle ) {
//! \brief Операция поворота матрицы.
//! \details Работает только с матрицами 2x2.
//! \return повернутая матрица.
PIMathMatrixT < Rows , Cols , Type > rotate ( Type angle ) {
static_assert ( Rows = = 2 & & Cols = = 2 , " Works only with 2x2 matrix " ) ;
static_assert ( Rows = = 2 & & Cols = = 2 , " Works only with 2x2 matrix " ) ;
Type c = std : : cos ( angle ) ;
Type c = std : : cos ( angle ) ;
Type s = std : : sin ( angle ) ;
Type s = std : : sin ( angle ) ;
@@ -542,6 +643,27 @@ public:
return * this ;
return * this ;
}
}
//! \~english
//! \brief Matrix rotation operation.
//! \details Works only with 2x2 matrix.
//! \return copy of rotated matrix.
//! \~russian
//! \brief Операция поворота матрицы.
//! \details Работает только с матрицами 2x2.
//! \return копия повернутой матрицы.
PIMathMatrixT < Rows , Cols , Type > & rotated ( Type angle ) {
static_assert ( Rows = = 2 & & Cols = = 2 , " Works only with 2x2 matrix " ) ;
PIMathMatrixT < Cols , Rows , Type > outm ;
Type c = std : : cos ( angle ) ;
Type s = std : : sin ( angle ) ;
PIMathMatrixT < 2u , 2u > tm ;
tm [ 0 ] [ 0 ] = tm [ 1 ] [ 1 ] = c ;
tm [ 0 ] [ 1 ] = - s ;
tm [ 1 ] [ 0 ] = s ;
outm = outm * tm ;
return outm ;
}
private :
private :
Type m [ Rows ] [ Cols ] ;
Type m [ Rows ] [ Cols ] ;
} ;
} ;
@@ -565,13 +687,16 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Co
}
}
# endif
# endif
/**
//! \~english
* \brief Add matrix "m" at the end of matrix and return reference to matrix
//! \brief Inline operator for outputting the matrix to the console.
*
//! \param s \a PICout type.
* @param s PICout type
//! \param the matrix type \a PIMathMatrix that we print to the console.
* @param m PIMathMatrixT type
//! \return \a PIMathMatrix printed to the console.
* @return bitwise left PICout
//! \~russian
*/
//! \brief Inline-оператор для вывода матрицы в консоль.
//! \param s типа \a PICout.
//! \param m типа \a PIMathMatrixT.
//! \return непечатанная в консоль \a PICout.
template < uint Rows , uint Cols , typename Type >
template < uint Rows , uint Cols , typename Type >
inline PICout operator < < ( PICout s , const PIMathMatrixT < Rows , Cols , Type > & m ) {
inline PICout operator < < ( PICout s , const PIMathMatrixT < Rows , Cols , Type > & m ) {
s < < " { " ;
s < < " { " ;
@@ -586,13 +711,16 @@ inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
return s ;
return s ;
}
}
/**
//! \~english
* \brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Multiplying matrices by each other.
*
//! \param fm first matrix multiplier.
* @ param f m first matrix multiplier
//! \ param s m second matrix multiplier.
* @param sm second matrix multiplier
//! \return matrix that is the result of multiplication.
* @return matrix that is the result of multiplicatio n
//! \~russia n
*/
//! \brief Умножение матриц друг на друга.
//! \param fm первый множитель-матрица.
//! \param sm второй множитель-матрица.
//! \return матрица, являющаяся результатом умножения.
template < uint CR , uint Rows0 , uint Cols1 , typename Type >
template < uint CR , uint Rows0 , uint Cols1 , typename Type >
inline PIMathMatrixT < Rows0 , Cols1 , Type > operator * ( const PIMathMatrixT < Rows0 , CR , Type > & fm ,
inline PIMathMatrixT < Rows0 , Cols1 , Type > operator * ( const PIMathMatrixT < Rows0 , CR , Type > & fm ,
const PIMathMatrixT < CR , Cols1 , Type > & sm ) {
const PIMathMatrixT < CR , Cols1 , Type > & sm ) {
@@ -609,13 +737,16 @@ inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Multiplying a matrix by a vector.
*
//! \param fm first matrix multiplier
* @param fm first matrix multiplier
//! \param sv second vector multiplier
* @param sv second vector multiplier
//! \return vector that is the result of multiplication
* @return vector that is the result of multiplicatio n
//! \~russia n
*/
//! \brief Умножения матрицы на вектор.
//! \param fm первый множитель-матрица.
//! \param sv второй множитель-вектор.
//! \return вектор, являющийся результатом умножения.
template < uint Cols , uint Rows , typename Type >
template < uint Cols , uint Rows , typename Type >
inline PIMathVectorT < Rows , Type > operator * ( const PIMathMatrixT < Rows , Cols , Type > & fm ,
inline PIMathVectorT < Rows , Type > operator * ( const PIMathMatrixT < Rows , Cols , Type > & fm ,
const PIMathVectorT < Cols , Type > & sv ) {
const PIMathVectorT < Cols , Type > & sv ) {
@@ -630,13 +761,16 @@ inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type>
return tv ;
return tv ;
}
}
/**
//! \~english
* \brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Multiplying a vector by a matrix.
*
//! \param sv first vector multiplier
* @param sv first vector multiplier
//! \param fm second matrix multiplier
* @param fm second matrix multiplier
//! \return vector that is the result of multiplication
* @return vector that is the result of multiplicatio n
//! \~russia n
*/
//! \brief Умножения вектора на матрицу.
//! \param sv второй множитель-вектор.
//! \param fm первый множитель-матрица.
//! \return вектор, являющийся результатом умножения.
template < uint Cols , uint Rows , typename Type >
template < uint Cols , uint Rows , typename Type >
inline PIMathVectorT < Cols , Type > operator * ( const PIMathVectorT < Rows , Type > & sv ,
inline PIMathVectorT < Cols , Type > operator * ( const PIMathVectorT < Rows , Type > & sv ,
const PIMathMatrixT < Rows , Cols , Type > & fm ) {
const PIMathMatrixT < Rows , Cols , Type > & fm ) {
@@ -651,13 +785,16 @@ inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
return tv ;
return tv ;
}
}
/**
//! \~english
* \brief Multiplying value of type Type and matrix
//! \brief Multiplying a value of type ` Type` by a matrix.
*
//! \param x first multiplier of type `Type`.
* @param x first multiplier of type Type
//! \param v second matrix multiplier.
* @param fm second matrix multiplier
//! \return matrix that is the result of multiplication.
* @return matrix that is the result of multiplicatio n
//! \~russia n
*/
//! \brief Умножение значения тип `Type` на матрицу.
//! \param x первый множитель типа `Type`.
//! \param v вторая множитель-матрица.
//! \return матрица, являющаяся результатом умножения.
template < uint Cols , uint Rows , typename Type >
template < uint Cols , uint Rows , typename Type >
inline PIMathMatrixT < Rows , Cols , Type > operator * ( const Type & x , const PIMathMatrixT < Rows , Cols , Type > & v ) {
inline PIMathMatrixT < Rows , Cols , Type > operator * ( const Type & x , const PIMathMatrixT < Rows , Cols , Type > & v ) {
return v * x ;
return v * x ;
@@ -690,41 +827,53 @@ class PIMathMatrix;
# define PIMM_FOR_C for (uint i = 0; i < _V2D::cols_; ++i)
# define PIMM_FOR_C for (uint i = 0; i < _V2D::cols_; ++i)
# define PIMM_FOR_R for (uint i = 0; i < _V2D::rows_; ++i)
# define PIMM_FOR_R for (uint i = 0; i < _V2D::rows_; ++i)
//! \brief A class that works with matrix operations, the input data of which is the data type of the matrix
//! \~english
//! @tparam There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
//! \brief A class that works with matrix operations, the input data of which is the data type of the matrix.
//! of the C++ language are implemented
//! @tparam `Type` There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
//! of the C++ language are implemented.
//! \~russian
//! \brief Класс, работающий с матричными операциями, входными данными которого является тип данных матрицы.
//! @tparam `Type` Здесь можеть быть базовый тип данных C++ или различные классы,
//! где реализованы арифметические операторы(=, +=, -=, *=, /=, ==, !=, +, -, *, /) языка C++.
template < typename Type >
template < typename Type >
class PIP_EXPORT PIMathMatrix : public PIVector2D < Type > {
class PIP_EXPORT PIMathMatrix : public PIVector2D < Type > {
typedef PIVector2D < Type > _V2D ;
typedef PIVector2D < Type > _V2D ;
typedef PIMathMatrix < Type > _CMatrix ;
typedef PIMathMatrix < Type > _CMatrix ;
public :
public :
/**
//! \~english
* \brief Constructor of class PIMathMatrix, which creates a matrix
//! \brief Constructor of class \a PIMathMatrix, which creates a matrix.
*
//! \param cols is number of matrix column \a uint type.
* @ param col s is number of matrix column uint type
//! \ param row s is number of matrix row \a uint type.
* @param rows is number of matrix row uint type
//! \param f is type of matrix elements.
* @param f is type of matrix elements
//! \~russian
*/
//! \brief Конструктор класса \a PIMathMatrix, который создает матрицу.
//! \param cols количество столбов матрицы типа \a uint.
//! \param rows количество строк матрицы типа \a uint.
//! \param f тип элементов матрицы.
PIMathMatrix ( const uint cols = 0 , const uint rows = 0 , const Type & f = Type ( ) ) { _V2D : : resize ( rows , cols , f ) ; }
PIMathMatrix ( const uint cols = 0 , const uint rows = 0 , const Type & f = Type ( ) ) { _V2D : : resize ( rows , cols , f ) ; }
/**
//! \~english
* \brief Constructor of class PIMathMatrix, which creates a matrix
//! \brief Constructor of class \a PIMathMatrix, which creates a matrix
*
//! \param cols is number of matrix column \a uint type
* @ param col s is number of matrix column uint type
//! \ param row s is number of matrix row \a uint type
* @param rows is number of matrix row uint type
//! \param val is \a PIVector<Type> of matrix elements
* @param val is PIVector<Type> of matrix elements
//! \~russian
*/
//! \brief Конструктор класса \a PIMathMatrix, который создает матрицу.
//! \param cols количество столбов матрицы типа \a uint.
//! \param rows количество строк матрицы типа \a uint.
//! \param val тип \a PIVector<Type> элементов матрицы.
PIMathMatrix ( const uint cols , const uint rows , const PIVector < Type > & val ) {
PIMathMatrix ( const uint cols , const uint rows , const PIVector < Type > & val ) {
_V2D : : resize ( rows , cols ) ;
_V2D : : resize ( rows , cols ) ;
int i = 0 ;
int i = 0 ;
PIMM_FOR _V2D : : element ( r , c ) = val [ i + + ] ;
PIMM_FOR _V2D : : element ( r , c ) = val [ i + + ] ;
}
}
/**
//! \~english
* \brief Constructor of class PIMathMatrix, which creates a matrix
//! \brief Constructor of class \a PIMathMatrix, which creates a matrix.
*
//! \param val is PIVector<Type> of PIVector, which creates matrix.
* @param val is PIVector<Type> of PIVector, which creates matrix
//! \~russian
*/
//! \brief Конструктор класса \a PIMathMatrix, который создает матрицу.
//! \param val тип \a PIVector<Type>, который создает матрицу.
PIMathMatrix ( const PIVector < PIVector < Type > > & val ) {
PIMathMatrix ( const PIVector < PIVector < Type > > & val ) {
if ( ! val . isEmpty ( ) ) {
if ( ! val . isEmpty ( ) ) {
_V2D : : resize ( val . size ( ) , val [ 0 ] . size ( ) ) ;
_V2D : : resize ( val . size ( ) , val [ 0 ] . size ( ) ) ;
@@ -736,11 +885,12 @@ public:
}
}
}
}
/**
//! \~english
* \brief Constructor of class PIMathMatrix, which creates a matrix
//! \brief Constructor of class \a PIMathMatrix, which creates a matrix.
*
//! \param val is \a PIVector2D<Type>, which creates matrix.
* @param val is PIVector2D<Type>, which creates matrix
//! \~russian
*/
//! \brief Конструктор класса \a PIMathMatrix, который создает матрицу.
//! \param val тип \a PIVector2D<Type>, который создает матрицу.
PIMathMatrix ( const PIVector2D < Type > & val ) {
PIMathMatrix ( const PIVector2D < Type > & val ) {
if ( ! val . isEmpty ( ) ) {
if ( ! val . isEmpty ( ) ) {
_V2D : : resize ( val . rows ( ) , val . cols ( ) ) ;
_V2D : : resize ( val . rows ( ) , val . cols ( ) ) ;
@@ -748,246 +898,301 @@ public:
}
}
}
}
/**
//! \~english
* \brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
//! \brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
//! \param cols is number of matrix column uint type
* @ param col s is number of matrix column uint type
//! \ param row s is number of matrix row uint type
* @param rows is number of matrix row uint type
//! \return identity matrix(cols, rows)
* @return identity matrix(cols,rows)
//! \~russian
*/
//! \brief Создает матрицу, главная диагональ которой заполнена, а оставшиеся элементы - нулями.
static _CMatrix identity ( const uint cols , const uint rows ) {
//! \param cols количество столбов матрицы типа \a uint.
_CMatrix tm ( cols , rows ) ;
//! \param rows количество строк матрицы типа \a uint.
//! \return единичная матрица matrix(`cols`, `rows`)
static PIMathMatrix < Type > identity ( const uint cols , const uint rows ) {
PIMathMatrix < Type > tm ( cols , rows ) ;
for ( uint r = 0 ; r < rows ; + + r ) for ( uint c = 0 ; c < cols ; + + c ) tm . element ( r , c ) = ( c = = r ? Type ( 1 ) : Type ( 0 ) ) ;
for ( uint r = 0 ; r < rows ; + + r ) for ( uint c = 0 ; c < cols ; + + c ) tm . element ( r , c ) = ( c = = r ? Type ( 1 ) : Type ( 0 ) ) ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Creates a row matrix of every element that is equal to every element of the vector
//! \brief Creates a row matrix of every element that is equal to every element of the vector
*
//! \param val is the vector type \a PIMathVector
* @param val is the vector type PIMathV ector
//! \return row matrix of every element that is equal to every element of the v ector
* @return row matrix of every element that is equal to every element of the vector
//! \~russian
*/
//! \brief Создает матрицу-строку, каждый элемент которой равен каждому элементу вектора
static _CMatrix matrixRow ( const PIMathVector < Type > & val ) { return _CMatrix ( val . size ( ) , 1 , val . toVector ( ) ) ; }
//! \param val вектор типа \a PIMathVector
//! \return матрица-строка, каждый элемент которой равен каждому элементу вектора
static PIMathMatrix < Type > matrixRow ( const PIMathVector < Type > & val ) { return PIMathMatrix < Type > ( val . size ( ) , 1 , val . toVector ( ) ) ; }
/**
//! \~english
* \brief Creates a column matrix of every element that is equal to every element of the vector
//! \brief Creates a column matrix of every element that is equal to every element of the vector
*
//! \param val is the vector type \a PIMathVector
* @param val is the vector type PIMathV ector
//! \return column matrix of every element that is equal to every element of the v ector
* @return column matrix of every element that is equal to every element of the vector
//! \~russian
*/
//! \brief Создает матрицу-столбец, каждый элемент которой равен каждому элементу вектора
static _CMatrix matrixCol ( const PIMathVector < Type > & val ) { return _CMatrix ( 1 , val . size ( ) , val . toVector ( ) ) ; }
//! \param val вектор типа \a PIMathVector
//! \return матрица-столбец, каждый элемент которой равен каждому элементу вектора
static PIMathMatrix < Type > matrixCol ( const PIMathVector < Type > & val ) { return PIMathMatrix < Type > ( 1 , val . size ( ) , val . toVector ( ) ) ; }
/**
//! \~english
* \brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix
//! \brief Set the selected column in matrix.
* or index larger than the number of column s otherwise there will be "undefined behavior"
//! \details If there are more element s of the vector than elements in the column of the matrix
*
//! or index larger than the number of columns otherwise there will be "undefined behavior".
* @ param index is the number of the selected column
//! \ param index is the number of the selected column.
* @ param v is a vector of the type _CMCol that needs to fill the column
//! \ param v is a vector of the type \a PIMathVector<Type> that needs to fill the column.
* @ return matrix type _CMatrix
//! \ return matrix type \a PIMathMatrix<Type>
*/
//! \~russian
_CMatrix & setCol ( uint index , const PIMathVector < Type > & v ) {
//! \brief Определить выбранный столбец матрицы.
//! \details Если элементов в векторе больше, чем элементов в столбце матрицы
//! или индекс больше количества стобцов, то поведение не определено ("undefined behavior").
//! \param index номер выбранного столбца.
//! \param v вектор типа \a PIMathVector<Type>, которым нужно заполнить столбец.
//! \return матрица типа \a PIMathMatrix<Type>.
PIMathMatrix < Type > & setCol ( uint index , const PIMathVector < Type > & v ) {
assert ( _V2D : : rows ( ) = = v . size ( ) ) ;
assert ( _V2D : : rows ( ) = = v . size ( ) ) ;
PIMM_FOR_R _V2D : : element ( i , index ) = v [ i ] ;
PIMM_FOR_R _V2D : : element ( i , index ) = v [ i ] ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix,
//! \brief Set the selected row in matrix.
* or index larger than the number of row s otherwise there will be "undefined behavior"
//! \details If there are more element s of the vector than elements in the row of the matrix,
* @param index is the number of the selected row
//! or index larger than the number of rows otherwise there will be "undefined behavior".
* @param v is a vector of the type _CMCol that needs to fill the row
//! \param index is the number of the selected row.
* @return matrix type _CMatrix
//! \param v is a vector of the type \a PIMathVector<Type> that needs to fill the row.
*/
//! \return matrix type \a PIMathMatrix<Type>.
_CMatrix & setRow ( uint index , const PIMathVector < Type > & v ) {
//! \~russian
//! \brief Определить выбранную строку матрицы.
//! \details Если элементов в векторе больше, чем элементов в строке матрицы
//! или индекс больше количества стобцов, то поведение не определено ("undefined behavior").
//! \param index номер выбранной строки.
//! \param v вектор типа \a PIMathVector<Type>, которым нужно заполнить строку.
//! \return матрица типа \a PIMathMatrix<Type>.
PIMathMatrix < Type > & setRow ( uint index , const PIMathVector < Type > & v ) {
assert ( _V2D : : cols ( ) = = v . size ( ) ) ;
assert ( _V2D : : cols ( ) = = v . size ( ) ) ;
PIMM_FOR_C _V2D : : element ( index , i ) = v [ i ] ;
PIMM_FOR_C _V2D : : element ( index , i ) = v [ i ] ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns,
//! \brief Method which swaps selected columns in a matrix.
* otherwise there will be "undefined behavior"
//! \details You cannot use an index larger than the number of columns,
*
//! otherwise there will be "undefined behavior".
* @ param r0 is the number of the first selected row
//! \ param r0 is the number of the first selected column.
* @ param r1 is the number of the second selected row
//! \ param r1 is the number of the second selected column.
* @ return matrix type _CMatrix
//! \ return matrix type \a PIMathMatrix<Type>.
*/
//! \~russian
_CMatrix & swapCols ( uint r0 , uint r1 ) {
//! \brief Метод меняющий местами выбранные строки в матрице.
//! \details Вы не можете использовать индекс, который больше количества столбцов,
//! иначе будет неопределенное повередение ("undefined behavior").
//! \param r0 номер первой выбранного стобца.
//! \param r1 номер второй выбранного столбца.
//! \return матрица типа \a PIMathMatrix<Type>.
PIMathMatrix < Type > & swapCols ( uint r0 , uint r1 ) {
PIMM_FOR_C piSwap < Type > ( _V2D : : element ( i , r0 ) , _V2D : : element ( i , r1 ) ) ;
PIMM_FOR_C piSwap < Type > ( _V2D : : element ( i , r0 ) , _V2D : : element ( i , r1 ) ) ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows,
//! \brief Method which replace selected rows in a matrix.
* otherwise there will be "undefined behavior"
//! \details You cannot use an index larger than the number of rows,
*
//! otherwise there will be "undefined behavior"
* @ param c0 is the number of the first selected row
//! \ param c0 is the number of the first selected row.
* @ param c1 is the number of the second selected row
//! \ param c1 is the number of the second selected row.
* @ return matrix type _CMatrix
//! \ return matrix type \a PIMathMatrix<Type>.
*/
//! \~russian
_CMatrix & swapRows ( uint c0 , uint c1 ) {
//! \brief Метод меняющий местами выбранные строки в матрице.
//! \details Вы не можете использовать индекс, который больше количества строк,
//! иначе будет неопределенное повередение ("undefined behavior").
//! \param с 0 номер первой выбранной строки.
//! \param с 1 номер второй выбранной строки.
//! \return матрица типа \a PIMathMatrix<Type>.
PIMathMatrix < Type > & swapRows ( uint c0 , uint c1 ) {
PIMM_FOR_R piSwap < Type > ( _V2D : : element ( c0 , i ) , _V2D : : element ( c1 , i ) ) ;
PIMM_FOR_R piSwap < Type > ( _V2D : : element ( c0 , i ) , _V2D : : element ( c1 , i ) ) ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which fills the matrix with selected value
//! \brief Method which fills the matrix with selected value.
*
//! \param v is a parameter the type and value of which is selected and later filled into the matrix.
* @param v is a parameter the type and value of which is selected and later filled into the matrix
//! \return filled matrix type \a PIMathMatrix<Type>.
* @return filled matrix type _CMatrix
//! \~russian
*/
//! \brief Метод заполняющий матрицу выбранным значением.
_CMatrix & fill ( const Type & v ) {
//! \param v параметр выбранного типа и значения, которым будет заполнена матрица.
//! \return заполненная матрица типа \a PIMathMatrix<Type>.
PIMathMatrix < Type > & fill ( const Type & v ) {
PIMM_FOR_A _V2D : : mat [ i ] = v ;
PIMM_FOR_A _V2D : : mat [ i ] = v ;
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Method which checks if matrix is square
//! \brief Method which checks if matrix is square.
*
//! \return true if matrix is square, else false.
* @return true if matrix is square, else false
//! \~russian
*/
//! \brief Метод, проверющий является ли матрица квадратной.
//! \return true если матрица квадратная, иначе false.
bool isSquare ( ) const { return _V2D : : cols_ = = _V2D : : rows_ ; }
bool isSquare ( ) const { return _V2D : : cols_ = = _V2D : : rows_ ; }
/**
//! \~english
* \brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
//! \brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros.
*
//! \return true if matrix is identitied, else false.
* @return true if matrix is identity, else false
//! \~russian
*/
//! \brief Метод, проверяющий содержит ли главная диагональ единицы и все остальные поля нули.
//! \return true если матрица единичная, иначе false.
bool isIdentity ( ) const {
bool isIdentity ( ) const {
PIMM_FOR if ( ( c = = r ) ? _V2D : : element ( r , c ) ! = Type ( 1 ) : _V2D : : element ( r , c ) ! = Type ( 0 ) ) return false ;
PIMM_FOR if ( ( c = = r ) ? _V2D : : element ( r , c ) ! = Type ( 1 ) : _V2D : : element ( r , c ) ! = Type ( 0 ) ) return false ;
return true ;
return true ;
}
}
/**
//! \~english
* \brief Method which checks if every elements of matrix are zeros
//! \brief Method which checks if every elements of matrix are zeros.
*
//! \return true if matrix is null, else false.
* @return true if matrix elements equal to zero, else false
//! \~russian
*/
//! \brief Метод, являются ли все элементы матрицы нулями.
//! \return true если матрица нулевая, иначе false.
bool isNull ( ) const {
bool isNull ( ) const {
PIMM_FOR_A if ( _V2D : : mat [ i ] ! = Type ( 0 ) ) return false ;
PIMM_FOR_A if ( _V2D : : mat [ i ] ! = Type ( 0 ) ) return false ;
return true ;
return true ;
}
}
/**
//! \~english
* \brief Method which checks if matrix is empty
//! \brief Method which checks if matrix is empty.
*
//! \return true if matrix is valid, else false.
* @return true if matrix is valid, else false
//! \~russian
*/
//! \brief Метод, который проверяет является ли матрица пустой.
//! \return true если матрица действительна, иначе false.
bool isValid ( ) const { return ! PIVector2D < Type > : : isEmpty ( ) ; }
bool isValid ( ) const { return ! PIVector2D < Type > : : isEmpty ( ) ; }
/**
//! \~english
* \brief Addition assignment with matrix " sm"
//! \brief Addition assignment with matrix ` sm`.
*
//! \param sm matrix for the addition assigment.
* @param sm matrix for the addition assigment
//! \~russian
*/
//! \brief Сложение с присваиванием с матрицей `sm`.
void operator + = ( const _CMatrix & sm ) {
//! \param sm матрица для сложения с присваиванием.
void operator + = ( const PIMathMatrix < Type > & sm ) {
assert ( _V2D : : rows ( ) = = sm . rows ( ) ) ;
assert ( _V2D : : rows ( ) = = sm . rows ( ) ) ;
assert ( _V2D : : cols ( ) = = sm . cols ( ) ) ;
assert ( _V2D : : cols ( ) = = sm . cols ( ) ) ;
PIMM_FOR_A _V2D : : mat [ i ] + = sm . mat [ i ] ;
PIMM_FOR_A _V2D : : mat [ i ] + = sm . mat [ i ] ;
}
}
/**
//! \~english
* \brief Subtraction assignment with matrix " sm"
//! \brief Subtraction assignment with matrix ` sm`.
*
//! \param sm matrix for the subtraction assigment.
* @param sm matrix for the subtraction assigment
//! \~russian
*/
//! \brief Вычитание с присваиванием с матрицей `sm`.
void operator - = ( const _CMatrix & sm ) {
//! \param sm матрица для вычитания с присваиванием.
void operator - = ( const PIMathMatrix < Type > & sm ) {
assert ( _V2D : : rows ( ) = = sm . rows ( ) ) ;
assert ( _V2D : : rows ( ) = = sm . rows ( ) ) ;
assert ( _V2D : : cols ( ) = = sm . cols ( ) ) ;
assert ( _V2D : : cols ( ) = = sm . cols ( ) ) ;
PIMM_FOR_A _V2D : : mat [ i ] - = sm . mat [ i ] ;
PIMM_FOR_A _V2D : : mat [ i ] - = sm . mat [ i ] ;
}
}
/**
//! \~english
* \brief Multiplication assignment with value "v"
//! \brief Multiplication assignment with value `v`.
*
//! \param v value for the multiplication assigment.
* @param v value for the multiplication assigment
//! \~russian
*/
//! \brief Умножение с присваиванием с матрицей `v`.
//! \param sm матрица для умножения с присваиванием.
void operator * = ( const Type & v ) {
void operator * = ( const Type & v ) {
PIMM_FOR_A _V2D : : mat [ i ] * = v ;
PIMM_FOR_A _V2D : : mat [ i ] * = v ;
}
}
/**
//! \~english
* \brief Division assignment with value "v"
//! \brief Division assignment with value `v`.
*
//! \param v value for the division assigment.
* @param v value for the division assigment
//! \~russian
*/
//! \brief Деление с присваиванием с матрицей `v`.
//! \param sm матрица для деления с присваиванием.
void operator / = ( const Type & v ) {
void operator / = ( const Type & v ) {
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
PIMM_FOR_A _V2D : : mat [ i ] / = v ;
PIMM_FOR_A _V2D : : mat [ i ] / = v ;
}
}
/**
//! \~english
* \brief Matrix subst rac tion
//! \brief Negation ope ration
*
//! \return copy of the negative matrix
* @return the result of matrix substractio n
//! \~russia n
*/
//! \brief Операция отрицания
_CMatrix operator - ( ) const {
//! \return копия отрицательной матрицы
_CMatrix tm ( * this ) ;
PIMathMatrix < Type > operator - ( ) const {
PIMathMatrix < Type > tm ( * this ) ;
PIMM_FOR_A tm . mat [ i ] = - _V2D : : mat [ i ] ;
PIMM_FOR_A tm . mat [ i ] = - _V2D : : mat [ i ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix addition
//! \brief Matrix addition.
*
//! \param sm is matrix term.
* @param sm is matrix term
//! \return the result of matrix addition.
* @return the result of matrix additio n
//! \~russia n
*/
//! \brief Матричное сложение.
_CMatrix operator + ( const _CMatrix & sm ) const {
//! \param sm матричное слагаемое.
_CMatrix tm ( * this ) ;
//! \return результат матричного сложения.
PIMathMatrix < Type > operator + ( const PIMathMatrix < Type > & sm ) const {
PIMathMatrix < Type > tm ( * this ) ;
assert ( tm . rows ( ) = = sm . rows ( ) ) ;
assert ( tm . rows ( ) = = sm . rows ( ) ) ;
assert ( tm . cols ( ) = = sm . cols ( ) ) ;
assert ( tm . cols ( ) = = sm . cols ( ) ) ;
PIMM_FOR_A tm . mat [ i ] + = sm . mat [ i ] ;
PIMM_FOR_A tm . mat [ i ] + = sm . mat [ i ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix subtraction
//! \brief Matrix subs traction.
*
//! \param sm is matrix subtrahend.
* @param sm is matrix subtractor
//! \return the result of matrix subs traction.
* @return the result of matrix subtractio n
//! \~russia n
*/
//! \brief Матричная разность.
_CMatrix operator - ( const _CMatrix & sm ) const {
//! \param sm матричное вычитаемое.
_CMatrix tm ( * this ) ;
//! \return результат матричной разности.
PIMathMatrix < Type > operator - ( const PIMathMatrix < Type > & sm ) const {
PIMathMatrix < Type > tm ( * this ) ;
assert ( tm . rows ( ) = = sm . rows ( ) ) ;
assert ( tm . rows ( ) = = sm . rows ( ) ) ;
assert ( tm . cols ( ) = = sm . cols ( ) ) ;
assert ( tm . cols ( ) = = sm . cols ( ) ) ;
PIMM_FOR_A tm . mat [ i ] - = sm . mat [ i ] ;
PIMM_FOR_A tm . mat [ i ] - = sm . mat [ i ] ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix multiplication
//! \brief Matrix multiplication.
*
//! \param v is value factor.
* @param v is value factor
//! \return the result of matrix multiplication.
* @return the result of matrix multiplicatio n
//! \~russia n
*/
//! \brief Матричное произведение.
_CMatrix operator * ( const Type & v ) const {
//! \param v множитель.
_CMatrix tm ( * this ) ;
//! \return результат произведения.
PIMathMatrix < Type > operator * ( const Type & v ) const {
PIMathMatrix < Type > tm ( * this ) ;
PIMM_FOR_A tm . mat [ i ] * = v ;
PIMM_FOR_A tm . mat [ i ] * = v ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix division
//! \brief Matrix division.
*
//! \param v is value divider.
* @param v is value divider
//! \return the result of matrix division.
* @return the result of matrix divi sio n
//! \~rus sia n
*/
//! \brief Матричное деление.
_CMatrix operator / ( const Type & v ) const {
//! \param v делитель.
//! \return результат деления.
PIMathMatrix < Type > operator / ( const Type & v ) const {
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
assert ( piAbs < Type > ( v ) > PIMATHVECTOR_ZERO_CMP ) ;
_CMatrix tm ( * this ) ;
PIMathMatrix < Type > tm ( * this ) ;
PIMM_FOR_A tm . mat [ i ] / = v ;
PIMM_FOR_A tm . mat [ i ] / = v ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Determinant of the self matrix is calculated. Works only with square matrix, nonzero matrices and invertibl e matrix
//! \brief Calculate Determinant of the matrix.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @ return matrix determinant
//! \ return matrix determinant.
*/
//! \~russian
//! \brief Вычислить определитель матрицы.
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return опеределитель матрицы.
Type determinant ( bool * ok = 0 ) const {
Type determinant ( bool * ok = 0 ) const {
_CMatrix m ( * this ) ;
PIMathMatrix < Type > m ( * this ) ;
bool k ;
bool k ;
m . toUpperTriangular ( & k ) ;
m . toUpperTriangular ( & k ) ;
Type ret = Type ( 0 ) ;
Type ret = Type ( 0 ) ;
@@ -1001,11 +1206,14 @@ public:
return ret ;
return ret ;
}
}
/**
//! \~english
* \brief Trace of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Calculate the trace of a matrix.
*
//! \details Works only with square matrix matrix.
* @ return matrix trace
//! \ return matrix trace.
*/
//! \~russian
//! \brief Вычислить след матрицы.
//! \details Работает только с квадратными матрицами.
//! \return след матрицы.
Type trace ( ) const {
Type trace ( ) const {
assert ( isSquare ( ) ) ;
assert ( isSquare ( ) ) ;
Type ret = Type ( 0 ) ;
Type ret = Type ( 0 ) ;
@@ -1015,15 +1223,19 @@ public:
return ret ;
return ret ;
}
}
/**
//! \~english
* \brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Transforming matrix to upper triangular.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @ return copy of transformed upper triangular matrix
//! \ return copy of transformed upper triangular matrix.
*/
//! \~russian
_CMatrix & toUpperTriangular ( bool * ok = 0 ) {
//! \brief Преобразование матрицы в верхнетреугольную.
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return копия преобразованной верхнетреугольной матрицы.
PIMathMatrix < Type > & toUpperTriangular ( bool * ok = 0 ) {
assert ( isSquare ( ) ) ;
assert ( isSquare ( ) ) ;
_CMatrix smat ( * this ) ;
PIMathMatrix < Type > smat ( * this ) ;
bool ndet ;
bool ndet ;
uint crow ;
uint crow ;
Type mul ;
Type mul ;
@@ -1055,16 +1267,19 @@ public:
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Matrix inversion operation.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @param sv is a vector multiplier
//! \return inverted matrix.
* @return copy of inverted matrix
//! \~russian
*/
//! \brief Операция обращения матрицы.
_CMatrix & invert ( bool * ok = 0 , PIMathVector < Type > * sv = 0 ) {
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return обратная матрица.
PIMathMatrix < Type > & invert ( bool * ok = 0 , PIMathVector < Type > * sv = 0 ) {
assert ( isSquare ( ) ) ;
assert ( isSquare ( ) ) ;
_CMatrix mtmp = _CMatrix : : identity ( _V2D : : cols_ , _V2D : : rows_ ) , smat ( * this ) ;
PIMathMatrix < Type > mtmp = PIMathMatrix < Type > : : identity ( _V2D : : cols_ , _V2D : : rows_ ) , smat ( * this ) ;
bool ndet ;
bool ndet ;
uint crow ;
uint crow ;
Type mul , iddiv ;
Type mul , iddiv ;
@@ -1114,25 +1329,32 @@ public:
return * this ;
return * this ;
}
}
/**
//! \~english
* \brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
//! \brief Matrix inversion operation.
*
//! \details Works only with square matrix, nonzero matrices and invertible matrix.
* @ param ok is a parameter with which we can find out if the method worked correctly
//! \ param ok is a parameter with which we can find out if the method worked correctly.
* @return inverted matrix
//! \return copy of inverted matrix.
*/
//! \~russian
_CMatrix inverted ( bool * ok = 0 ) const {
//! \brief Операция обращения матрицы.
_CMatrix tm ( * this ) ;
//! \details Работает только с квадратными, ненулевыми и обратимыми матрицами.
//! \param ok это параметр, с помощью которого мы можем узнать, правильно ли сработал метод.
//! \return копия обратной матрицы.
PIMathMatrix < Type > inverted ( bool * ok = 0 ) const {
PIMathMatrix < Type > tm ( * this ) ;
tm . invert ( ok ) ;
tm . invert ( ok ) ;
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Matrix transposition operation
//! \brief Matrix transposition operation.
*
//! \details Works only with square matrix matrix.
* @return transposed matrix
//! \return copy of transposed matrix
*/
//! \~russian
_CMatrix transposed ( ) const {
//! \brief Транспонирование матрицы.
_CMatrix tm ( _V2D : : rows_ , _V2D : : cols_ ) ;
//! \details Работает только с квадратными матрицами.
//! \return копия транспонированной матрицы.
PIMathMatrix < Type > transposed ( ) const {
PIMathMatrix < Type > tm ( _V2D : : rows_ , _V2D : : cols_ ) ;
PIMM_FOR tm . element ( c , r ) = _V2D : : element ( r , c ) ;
PIMM_FOR tm . element ( c , r ) = _V2D : : element ( r , c ) ;
return tm ;
return tm ;
}
}
@@ -1144,13 +1366,16 @@ template<typename Type>
inline std : : ostream & operator < < ( std : : ostream & s , const PIMathMatrix < Type > & m ) { s < < " { " ; for ( uint r = 0 ; r < m . rows ( ) ; + + r ) { for ( uint c = 0 ; c < m . cols ( ) ; + + c ) { s < < m . element ( r , c ) ; if ( c < m . cols ( ) - 1 | | r < m . rows ( ) - 1 ) s < < " , " ; } if ( r < m . rows ( ) - 1 ) s < < std : : endl < < " " ; } s < < " } " ; return s ; }
inline std : : ostream & operator < < ( std : : ostream & s , const PIMathMatrix < Type > & m ) { s < < " { " ; for ( uint r = 0 ; r < m . rows ( ) ; + + r ) { for ( uint c = 0 ; c < m . cols ( ) ; + + c ) { s < < m . element ( r , c ) ; if ( c < m . cols ( ) - 1 | | r < m . rows ( ) - 1 ) s < < " , " ; } if ( r < m . rows ( ) - 1 ) s < < std : : endl < < " " ; } s < < " } " ; return s ; }
# endif
# endif
/**
//! \~english
* \brief Inline operator for outputting the matrix to the console
//! \brief Inline operator for outputting the matrix to the console.
*
//! \param s \a PICout type.
* @param s PICout type
//! \param the matrix type \a PIMathMatrix that we print to the console.
* @param the matrix type PIMathMatrix that we print to the console
//! \return \a PIMathMatrix printed to the console.
* @return PIMathMatrix printed to the console
//! \~russian
*/
//! \brief Inline-оператор для вывода матрицы в консоль.
//! \param s типа \a PICout.
//! \param m типа \a PIMathMatrixT.
//! \return непечатанная в консоль \a PICout.
template < typename Type >
template < typename Type >
inline PICout operator < < ( PICout s , const PIMathMatrix < Type > & m ) {
inline PICout operator < < ( PICout s , const PIMathMatrix < Type > & m ) {
s < < " Matrix{ " ;
s < < " Matrix{ " ;
@@ -1165,26 +1390,28 @@ inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
return s ;
return s ;
}
}
/**
//! \~english
* \brief Inline operator for serializing a matrix into a PIByteArray
//! \brief Inline operator for serializing a matrix into a \a PIBinaryStream.
*
//! \param s \a PIBinaryStream type.
* @param s PIByteArray type
//! \param v \a PIMathMatrix type.
* @param v PIMathMatrix type
//! \~russian
* @return PIBiteArray serialized PIMathMatrix
//! \brief Inline-оператор для сериализации матрицы в \a PIBinaryStream.
*/
//! \param s типа \a PIBinaryStream.
//! \param v типа \a PIMathMatrix.
template < typename P , typename T >
template < typename P , typename T >
inline PIBinaryStream < P > & operator < < ( PIBinaryStream < P > & s , const PIMathMatrix < T > & v ) {
inline PIBinaryStream < P > & operator < < ( PIBinaryStream < P > & s , const PIMathMatrix < T > & v ) {
s < < ( const PIVector2D < T > & ) v ;
s < < ( const PIVector2D < T > & ) v ;
return s ;
return s ;
}
}
/**
//! \~english
* \brief Inline operator to deserialize matrix from PIByteArray
//! \brief Inline operator to deserialize matrix from \a PIByteArray.
*
//! \param s \a PIBinaryStream type.
* @param s PIByteArray type
//! \param v \a PIMathMatrix type.
* @param v PIMathMatrix type
//! \~russian
* @return PIMathMatrix deserialized from PIByteArray
//! \brief Inline-оператор для сериализации матрицы в \a PIByteArray.
*/
//! \param s типа \a PIBinaryStream.
//! \param v типа \a PIMathMatrix.
template < typename P , typename T >
template < typename P , typename T >
inline PIBinaryStream < P > & operator > > ( PIBinaryStream < P > & s , PIMathMatrix < T > & v ) {
inline PIBinaryStream < P > & operator > > ( PIBinaryStream < P > & s , PIMathMatrix < T > & v ) {
s > > ( PIVector2D < T > & ) v ;
s > > ( PIVector2D < T > & ) v ;
@@ -1192,13 +1419,18 @@ inline PIBinaryStream<P> & operator >>(PIBinaryStream<P> & s, PIMathMatrix<T> &
}
}
/**
//! \~english
* \brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Multiplying matrices by each other.
*
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
* @ param fm first matrix multiplier
//! \ param fm first matrix multiplier.
* @ param sm second matrix multiplier
//! \ param sm second matrix multiplier.
* @ return matrix that is the result of multiplication
//! \ return matrix that is the result of multiplication.
*/
//! \~russian
//! \brief Умножение матриц друг на друга.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param fm первый множитель-матрица.
//! \param sm вторая множитель-матрица.
//! \return матрица, являющаяся результатом умножения.
template < typename Type >
template < typename Type >
inline PIMathMatrix < Type > operator * ( const PIMathMatrix < Type > & fm ,
inline PIMathMatrix < Type > operator * ( const PIMathMatrix < Type > & fm ,
const PIMathMatrix < Type > & sm ) {
const PIMathMatrix < Type > & sm ) {
@@ -1216,13 +1448,18 @@ inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
return tm ;
return tm ;
}
}
/**
//! \~english
* \brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Multiplying a matrix by a vector.
*
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
* @ param fm first matrix multiplier
//! \ param fm first matrix multiplier
* @ param sv second vector multiplier
//! \ param sv second vector multiplier
* @ return vector that is the result of multiplication
//! \ return vector that is the result of multiplication
*/
//! \~russian
//! \brief Умножения матрицы на вектор.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param fm первый множитель-матрица.
//! \param sv второй множитель-вектор.
//! \return вектор, являющийся результатом умножения.
template < typename Type >
template < typename Type >
inline PIMathVector < Type > operator * ( const PIMathMatrix < Type > & fm ,
inline PIMathVector < Type > operator * ( const PIMathMatrix < Type > & fm ,
const PIMathVector < Type > & sv ) {
const PIMathVector < Type > & sv ) {
@@ -1238,13 +1475,18 @@ inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
return tv ;
return tv ;
}
}
/**
//! \~english
* \brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior"
//! \brief Multiplying a vector by a matrix.
*
//! \details If you enter an index out of the border of the matrix there will be "undefined behavior".
* @ param sv first vector multiplier
//! \ param sv first vector multiplier
* @ param fm second matrix multiplier
//! \ param fm second matrix multiplier
* @ return vector that is the result of multiplication
//! \ return vector that is the result of multiplication
*/
//! \~russian
//! \brief Умножения вектора на матрицу.
//! \details Если вы введете индекс вне границ матрицы, то поведение не определено ("undefined behavior").
//! \param sv второй множитель-вектор.
//! \param fm первый множитель-матрица.
//! \return вектор, являющийся результатом умножения.
template < typename Type >
template < typename Type >
inline PIMathVector < Type > operator * ( const PIMathVector < Type > & sv ,
inline PIMathVector < Type > operator * ( const PIMathVector < Type > & sv ,
const PIMathMatrix < Type > & fm ) {
const PIMathMatrix < Type > & fm ) {
@@ -1260,13 +1502,16 @@ inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
return tv ;
return tv ;
}
}
/**
//! \~english
* \brief Multiplying value of type Type and matrix
//! \brief Multiplying a value of type ` Type` by a matrix.
*
//! \param x first multiplier of type `Type`.
* @param x first multiplier of type Type
//! \param v second matrix multiplier.
* @param v second matrix multiplier
//! \return matrix that is the result of multiplication.
* @return matrix that is the result of multiplicatio n
//! \~russia n
*/
//! \brief Умножение значения тип `Type` на матрицу.
//! \param x первый множитель типа `Type`.
//! \param v второй множитель-матрица.
//! \return матрица, являющаяся результатом умножения.
template < typename Type >
template < typename Type >
inline PIMathMatrix < Type > operator * ( const Type & x , const PIMathMatrix < Type > & v ) {
inline PIMathMatrix < Type > operator * ( const Type & x , const PIMathMatrix < Type > & v ) {
return v * x ;
return v * x ;
@@ -1275,12 +1520,14 @@ inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v)
typedef PIMathMatrix < int > PIMathMatrixi ;
typedef PIMathMatrix < int > PIMathMatrixi ;
typedef PIMathMatrix < double > PIMathMatrixd ;
typedef PIMathMatrix < double > PIMathMatrixd ;
/**
//! \~english
* \brief Searching hermitian matrix
//! \brief Searching hermitian matrix.
*
//! \param m conjugate transpose matrix.
* @param m conjugate transpose matrix
//! \return result of the hermitian.
* @return result of the hermit ian
//! \~russ ian
*/
//! \brief Поиск эрмитовой матрицы.
//! \param m сопряженная транспонированная матрица.
//! \return результат преобразования.
template < typename T >
template < typename T >
PIMathMatrix < complex < T > > hermitian ( const PIMathMatrix < complex < T > > & m ) {
PIMathMatrix < complex < T > > hermitian ( const PIMathMatrix < complex < T > > & m ) {
PIMathMatrix < complex < T > > ret ( m ) ;
PIMathMatrix < complex < T > > ret ( m ) ;
эта функция должна возвращать _CMatrix &
И хорошо бы сделать функцию rotated которая вернет копию