PIMathMatrix.h documentation correction

This commit is contained in:
2020-10-01 15:34:24 +03:00
parent 8bc421dc30
commit e16243d64b
2 changed files with 94 additions and 111 deletions

View File

@@ -29,10 +29,10 @@
#include "pimathcomplex.h" #include "pimathcomplex.h"
/** /**
* @brief Inline funtion of compare with zero different types * @brief Floating point number specific comparison between value of matrix passed as parameter and zero
* *
* @param v is input parameter of type T * @param v floating point parameter for comparison
* @return true if zero, false if not zero * @return true if v in locality of zero, otherwise false
*/ */
template<typename T> template<typename T>
inline bool _PIMathMatrixNullCompare(const T v) { inline bool _PIMathMatrixNullCompare(const T v) {
@@ -41,10 +41,10 @@ inline bool _PIMathMatrixNullCompare(const T v) {
} }
/** /**
* @brief Inline funtion of compare with zero colmplexf type * @brief Floating point number specific comparison between parameter value of matrix of complexf type and zero
* *
* @param v is input parameter of type colmplexf * @param v is input parameter of type colmplexf
* @return true if zero, false if not zero * @return true if absolute value of v in locality of zero, otherwise false
*/ */
template<> template<>
inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) { inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
@@ -52,10 +52,10 @@ inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
} }
/** /**
* @brief Inline funtion of compare with zero complexd type * @brief Floating point number specific comparison between parameter value of matrix of complexd type and zero
* *
* @param v is input parameter of type colmplexd * @param v is input parameter of type colmplexd
* @return true if zero, false if not zero * @return true if absolute value of v in locality of zero, otherwise false
*/ */
template<> template<>
inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) { inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
@@ -120,10 +120,10 @@ public:
} }
/** /**
* @brief Creates a matrix that is filled with elements * @brief Creates a matrix and sets it with elements equal to value "v"
* *
* @param v is a parameter the type and value of which is selected and later filled into the matrix * @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT * @return filled matrix of type PIMathMatrixT equal to "v"
*/ */
static _CMatrix filled(const Type &v) { static _CMatrix filled(const Type &v) {
_CMatrix tm; _CMatrix tm;
@@ -145,7 +145,7 @@ public:
* else return default construction of PIMathMatrixT * else return default construction of PIMathMatrixT
* *
* @param angle is the angle of rotation of the matrix along the X axis * @param angle is the angle of rotation of the matrix along the X axis
* @return rotated matrix * @return rotated matrix along the X axis
*/ */
static _CMatrix rotationX(double angle) { return _CMatrix(); } static _CMatrix rotationX(double angle) { return _CMatrix(); }
@@ -154,7 +154,7 @@ public:
* else return default construction of PIMathMatrixT * else return default construction of PIMathMatrixT
* *
* @param angle is the angle of rotation of the matrix along the Y axis * @param angle is the angle of rotation of the matrix along the Y axis
* @return rotated matrix * @return rotated matrix along the Y axis
*/ */
static _CMatrix rotationY(double angle) { return _CMatrix(); } static _CMatrix rotationY(double angle) { return _CMatrix(); }
@@ -163,7 +163,7 @@ public:
* else return default construction of PIMathMatrixT * else return default construction of PIMathMatrixT
* *
* @param angle is the angle of rotation of the matrix along the Z axis * @param angle is the angle of rotation of the matrix along the Z axis
* @return rotated matrix * @return rotated matrix along the Z axis
*/ */
static _CMatrix rotationZ(double angle) { return _CMatrix(); } static _CMatrix rotationZ(double angle) { return _CMatrix(); }
@@ -172,7 +172,7 @@ public:
* else return default construction of PIMathMatrixT * else return default construction of PIMathMatrixT
* *
* @param factor is the value of scaling by X axis * @param factor is the value of scaling by X axis
* @return rotated matrix * @return rotated matrix along the axis X
*/ */
static _CMatrix scaleX(double factor) { return _CMatrix(); } static _CMatrix scaleX(double factor) { return _CMatrix(); }
@@ -181,7 +181,7 @@ public:
* else return default construction of PIMathMatrixT * else return default construction of PIMathMatrixT
* *
* @param factor is the value of scaling by Y axis * @param factor is the value of scaling by Y axis
* @return rotated matrix * @return rotated matrix along the axis Y
*/ */
static _CMatrix scaleY(double factor) { return _CMatrix(); } static _CMatrix scaleY(double factor) { return _CMatrix(); }
@@ -190,26 +190,26 @@ public:
* else return default construction of PIMathMatrixT * else return default construction of PIMathMatrixT
* *
* @param factor is the value of scaling by Z axis * @param factor is the value of scaling by Z axis
* @return rotated matrix * @return rotated matrix along the axis Z
*/ */
static _CMatrix scaleZ(double factor) { return _CMatrix(); } static _CMatrix scaleZ(double factor) { return _CMatrix(); }
/** /**
* @brief Method which returns number of columns in matrix * @brief Method which returns number of columns in this matrix
* *
* @return type uint shows number of columns * @return number of columns
*/ */
uint cols() const { return Cols; } uint cols() const { return Cols; }
/** /**
* @brief Method which returns number of rows in matrix * @brief Method which returns number of rows in this matrix
* *
* @return type uint shows number of rows * @return number of rows
*/ */
uint rows() const { return Rows; } uint rows() const { return Rows; }
/** /**
* @brief Method which returns the selected column in PIMathVectorT format. * @brief Method which returns the selected column of this matrix in PIMathVectorT format.
* If you enter an index out of the border of the matrix there will be "undefined behavior" * If you enter an index out of the border of the matrix there will be "undefined behavior"
* *
* @param index is the number of the selected column * @param index is the number of the selected column
@@ -222,7 +222,7 @@ public:
} }
/** /**
* @brief Method which returns the selected row in PIMathVectorT format * @brief Method which returns the selected row of this matrix in PIMathVectorT format.
* If you enter an index out of the border of the matrix there will be "undefined behavior" * If you enter an index out of the border of the matrix there will be "undefined behavior"
* *
* @param index is the number of the selected row * @param index is the number of the selected row
@@ -261,7 +261,7 @@ public:
} }
/** /**
* @brief Method which changes selected rows in this matrix. * @brief Method which permutes the values of two selected rows among themselves in this matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior" * If you enter an index out of the border of the matrix there will be "undefined behavior"
* *
* @param r0 is the number of the first selected row * @param r0 is the number of the first selected row
@@ -279,7 +279,7 @@ public:
} }
/** /**
* @brief Method which changes selected columns in this matrix. * @brief Method which permutes the values of two selected columns among themselves in this matrix.
* If you enter an index out of the border of the matrix there will be "undefined behavior" * If you enter an index out of the border of the matrix there will be "undefined behavior"
* *
* @param c0 is the number of the first selected column * @param c0 is the number of the first selected column
@@ -308,7 +308,7 @@ public:
} }
/** /**
* @brief Method which checks if matrix is square * @brief Method which checks if this matrix is square
* *
* @return true if matrix is square, else false * @return true if matrix is square, else false
*/ */
@@ -335,24 +335,14 @@ public:
} }
/** /**
* @brief Full access to elements reference by row "row" and col "col". * @brief Read-only access to elements reference by row "row" and column "col".
* If you enter an index out of the border of the matrix there will be "undefined behavior" * If you enter an index out of the border of the matrix there will be "undefined behavior"
* *
* @param row is a parameter that shows the row number of the matrix of the selected element * @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element * @param col is a parameter that shows the column number of the matrix of the selected element
* @return reference to element of matrix by row "row" and col "col" * @return reference to element of this matrix
*/ */
Type &at(uint row, uint col) { return m[row][col]; } const Type &at(uint row, uint col) { return m[row][col]; }
/**
* @brief Full access to element by row "row" and col "col".
* If you enter an index out of the border of the matrix there will be "undefined behavior"
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return element of matrix by row "row" and col "col"
*/
Type at(uint row, uint col) const { return m[row][col]; }
/** /**
* @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior" * @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
@@ -371,10 +361,10 @@ public:
const Type *operator[](uint row) const { return m[row]; } const Type *operator[](uint row) const { return m[row]; }
/** /**
* @brief Matrix assignment to matrix "sm" * @brief Assignment all elements of this matrix with all elements of matrix "sm"
* *
* @param sm matrix for the assigment * @param sm matrix used for the assignment
* @return this matrix equal with sm * @return matrix whose each element is equal to each element of the matrix "sm"
*/ */
_CMatrix &operator=(const _CMatrix &sm) { _CMatrix &operator=(const _CMatrix &sm) {
memcpy(m, sm.m, sizeof(Type) * Cols * Rows); memcpy(m, sm.m, sizeof(Type) * Cols * Rows);
@@ -382,9 +372,9 @@ public:
} }
/** /**
* @brief Compare with matrix "sm" * @brief Compare all elements of this matrix with all elements of matrix "sm"
* *
* @param sm matrix for the compare * @param sm matrix used for the compare
* @return if matrices are equal true, else false * @return if matrices are equal true, else false
*/ */
bool operator==(const _CMatrix &sm) const { bool operator==(const _CMatrix &sm) const {
@@ -393,36 +383,36 @@ public:
} }
/** /**
* @brief Compare with matrix "sm" * @brief Compare all elements of this matrix with all elements of matrix "sm"
* *
* @param sm matrix for the compare * @param sm matrix used for the compare
* @return if matrices are not equal true, else false * @return if matrices are not equal true, else false
*/ */
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/** /**
* @brief Addition assignment with matrix "sm" * @brief Addition all elements of this matrix with all elements matrix "sm"
* *
* @param sm matrix for the addition assigment * @param sm matrix for the addition assigment
*/ */
void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; } void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; }
/** /**
* @brief Subtraction assignment with matrix "sm" * @brief Subtraction all elements of this matrix with all elements matrix "sm"
* *
* @param sm matrix for the subtraction assigment * @param sm matrix for the subtraction assigment
*/ */
void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; } void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; }
/** /**
* @brief Multiplication assignment with value "v" * @brief Multiplication all elements of this matrix with value "v"
* *
* @param v value for the multiplication assigment * @param v value for the multiplication assigment
*/ */
void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; } void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; }
/** /**
* @brief Division assignment with value "v" * @brief Division all elements of this matrix with value "v"
* *
* @param v value for the division assigment * @param v value for the division assigment
*/ */
@@ -440,7 +430,7 @@ public:
} }
/** /**
* @brief Matrix addition * @brief Addition all elements of this matrix with all elements of matrix "sm"
* *
* @param sm is matrix term * @param sm is matrix term
* @return the result of matrix addition * @return the result of matrix addition
@@ -452,7 +442,7 @@ public:
} }
/** /**
* @brief Matrix substraction * @brief Substraction all elements of this matrix with all elements of matrix "sm"
* *
* @param sm is matrix subtractor * @param sm is matrix subtractor
* @return the result of matrix substraction * @return the result of matrix substraction
@@ -464,7 +454,7 @@ public:
} }
/** /**
* @brief Matrix multiplication * @brief Multiplication all elements of this matrix with value "v"
* *
* @param v is value factor * @param v is value factor
* @return the result of matrix multiplication * @return the result of matrix multiplication
@@ -476,7 +466,7 @@ public:
} }
/** /**
* @brief Matrix division * @brief Division all elements of this matrix with value "v"
* *
* @param v is value divider * @param v is value divider
* @return the result of matrix division * @return the result of matrix division
@@ -731,11 +721,11 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Co
#endif #endif
/** /**
* @brief Add matrix "m" at the end of matrix and return reference to matrix * @brief Outputting the matrix to the console
* *
* @param s PICout type * @param s PICout type
* @param m PIMathMatrixT type * @param the matrix type PIMathMatrixT that we print to the console
* @return bitwise left PICout * @return PIMathMatrix printed to the console
*/ */
template<uint Rows, uint Cols, typename Type> template<uint Rows, uint Cols, typename Type>
inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) { inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
@@ -965,7 +955,7 @@ public:
} }
/** /**
* @brief Method which replace selected columns in this matrix. You cannot use an index larger than the number of columns, * @brief Method which permutes the values of two selected columns among themselves in this matrix. You cannot use an index larger than the number of columns,
* otherwise there will be "undefined behavior" * otherwise there will be "undefined behavior"
* *
* @param r0 is the number of the first selected row * @param r0 is the number of the first selected row
@@ -978,7 +968,7 @@ public:
} }
/** /**
* @brief Method which replace selected rows in this matrix. You cannot use an index larger than the number of rows, * @briefMethod which permutes the values of two selected rows among themselves in this matrix. You cannot use an index larger than the number of rows,
* otherwise there will be "undefined behavior" * otherwise there will be "undefined behavior"
* *
* @param c0 is the number of the first selected row * @param c0 is the number of the first selected row
@@ -1036,9 +1026,9 @@ public:
bool isValid() const { return !PIVector2D<Type>::isEmpty(); } bool isValid() const { return !PIVector2D<Type>::isEmpty(); }
/** /**
* @brief Matrix assignment to matrix "v" * @brief Assignment all elements of this matrix with all elements of matrix "sm"
* *
* @param v matrix for the assigment * @param v matrix used for the assigment
* @return reference to this matrix equal with v * @return reference to this matrix equal with v
*/ */
_CMatrix &operator=(const PIVector<PIVector<Type> > &v) { _CMatrix &operator=(const PIVector<PIVector<Type> > &v) {
@@ -1047,9 +1037,9 @@ public:
} }
/** /**
* @brief Compare with matrix "sm" * @brief Compare all elements of this matrix with all elements of matrix "sm"
* *
* @param sm matrix for the compare * @param sm matrix used for the compare
* @return if matrices are equal true, else false * @return if matrices are equal true, else false
*/ */
bool operator==(const _CMatrix &sm) const { bool operator==(const _CMatrix &sm) const {
@@ -1058,36 +1048,36 @@ public:
} }
/** /**
* @brief Compare with matrix "sm" * @brief Compare all elements of this matrix with all elements of matrix "sm"
* *
* @param sm matrix for the compare * @param sm matrix used for the compare
* @return if matrices are not equal true, else false * @return if matrices are not equal true, else false
*/ */
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/** /**
* @brief Addition assignment with matrix "sm" * @brief Addition all elements of this matrix with all elements matrix "sm"
* *
* @param sm matrix for the addition assigment * @param sm matrix for the addition assigment
*/ */
void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; } void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; }
/** /**
* @brief Subtraction assignment with matrix "sm" * @brief Subtraction all elements of this matrix with all elements matrix "sm"
* *
* @param sm matrix for the subtraction assigment * @param sm matrix for the subtraction assigment
*/ */
void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; } void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; }
/** /**
* @brief Multiplication assignment with value "v" * @brief Multiplication all elements of this matrix with value "v"
* *
* @param v value for the multiplication assigment * @param v value for the multiplication assigment
*/ */
void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; } void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; }
/** /**
* @brief Division assignment with value "v" * @brief Division all elements of this matrix with value "v"
* *
* @param v value for the division assigment * @param v value for the division assigment
*/ */
@@ -1105,7 +1095,7 @@ public:
} }
/** /**
* @brief Matrix addition * @brief Addition all elements of this matrix with all elements of matrix "sm"
* *
* @param sm is matrix term * @param sm is matrix term
* @return the result of matrix addition * @return the result of matrix addition
@@ -1117,7 +1107,7 @@ public:
} }
/** /**
* @brief Matrix subtraction * @brief Substraction all elements of this matrix with all elements of matrix "sm"
* *
* @param sm is matrix subtractor * @param sm is matrix subtractor
* @return the result of matrix subtraction * @return the result of matrix subtraction
@@ -1129,7 +1119,7 @@ public:
} }
/** /**
* @brief Matrix multiplication * @brief Multiplication all elements of this matrix with value "v"
* *
* @param v is value factor * @param v is value factor
* @return the result of matrix multiplication * @return the result of matrix multiplication
@@ -1141,7 +1131,7 @@ public:
} }
/** /**
* @brief Matrix division * @brief Division all elements of this matrix with value "v"
* *
* @param v is value divider * @param v is value divider
* @return the result of matrix division * @return the result of matrix division
@@ -1328,7 +1318,7 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m
#endif #endif
/** /**
* @brief Inline operator for outputting the matrix to the console * @brief Outputting the matrix to the console
* *
* @param s PICout type * @param s PICout type
* @param the matrix type PIMathMatrix that we print to the console * @param the matrix type PIMathMatrix that we print to the console
@@ -1349,7 +1339,7 @@ inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
} }
/** /**
* @brief Inline operator for serializing a matrix into a PIByteArray * @brief Serializing a matrix into a PIByteArray
* *
* @param s PIByteArray type * @param s PIByteArray type
* @param v PIMathMatrix type * @param v PIMathMatrix type
@@ -1362,7 +1352,7 @@ inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix<Type> &v) {
} }
/** /**
* @brief Inline operator to deserialize matrix from PIByteArray * @brief Deserializing matrix from PIByteArray
* *
* @param s PIByteArray type * @param s PIByteArray type
* @param v PIMathMatrix type * @param v PIMathMatrix type

View File

@@ -128,57 +128,51 @@ public:
/** /**
* @brief Method that returns the cos of the current vector and vector "v" * @brief Method that returns the cos of the current vector and vector "v"
* If the vectors have different dimensions, it returns false
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return cos value of the angle between two vectors * @return cos value of the angle between two vectors
*/ */
Type angleCos(const _CVector & v) const {if(v.size() != Size) return false; Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);} Type angleCos(const _CVector & v) const {Type tv = v.length() * length(); return (tv == Type(0) ? Type(0) : ((*this) ^ v) / tv);}
/** /**
* @brief Method that returns the sin of the current vector and vector "v". Works only with vectors which consists of 3 elements. * @brief Method that returns the sin of the current vector and vector "v". Works only with vectors which consists of 3 elements
* If the vectors have different dimensions, it returns false
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return sin value of the angle between two vector * @return sin value of the angle between two vector
*/ */
Type angleSin(const _CVector & v) const {if(v.size() != Size) return false; Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);} Type angleSin(const _CVector & v) const {Type tv = angleCos(v); return sqrt(Type(1) - tv * tv);}
/** /**
* @brief Method that returns the angle between of the current vector and vector "v" in Rad. * @brief Method that returns the angle between of the current vector and vector "v" in Rad
* If the vectors have different dimensions, it returns false
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return value of the angle between two vectors in Rad * @return value of the angle between two vectors in Rad
*/ */
Type angleRad(const _CVector & v) const {if(v.size() != Size) return false; return acos(angleCos(v));} Type angleRad(const _CVector & v) const {return acos(angleCos(v));}
/** /**
* @brief Method that returns the angle between of the current vector and vector "v" in Deg. * @brief Method that returns the angle between of the current vector and vector "v" in Deg
* If the vectors have different dimensions, it returns false
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return value of the angle between two vectors in Deg * @return value of the angle between two vectors in Deg
*/ */
Type angleDeg(const _CVector & v) const {if(v.size() != Size) return false; return toDeg(acos(angleCos(v)));} Type angleDeg(const _CVector & v) const {return toDeg(acos(angleCos(v)));}
/** /**
* @brief Method that returns the angle elevation between of the current vector and vector "v" in Deg. * @brief Method that returns the angle elevation between of the current vector and vector "v" in Deg
* If the vectors have different dimensions, it returns false
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return value of the angle elevation between two vectors in Deg * @return value of the angle elevation between two vectors in Deg
*/ */
Type angleElevation(const _CVector & v) const {if(v.size() != Size) return false; _CVector z = v - *this; double c = z.angleCos(*this); return 90.0 - acos(c) * rad2deg;} Type angleElevation(const _CVector & v) const {_CVector z = v - *this; double c = z.angleCos(*this); return 90.0 - acos(c) * rad2deg;}
/** /**
* @brief Method that returns a vector equal to the projection of the current vector onto the vector "v". * @brief Method that returns a vector equal to the projection of the current vector onto the vector "v".
* If the vectors have different dimensions, it returns this without changing anything
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return vector of type PIMathVectorT equal to the projection of the current vector onto the vector "v" * @return vector of type PIMathVectorT equal to the projection of the current vector onto the vector "v"
*/ */
_CVector projection(const _CVector & v) {if(v.size() != Size) return _CVector(*this); Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));} _CVector projection(const _CVector & v) {Type tv = v.length(); return (tv == Type(0) ? _CVector() : v * (((*this) ^ v) / tv));}
/** /**
* @brief Method that returns this normalized vector * @brief Method that returns this normalized vector
@@ -218,12 +212,11 @@ public:
bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;} bool isNull() const {PIMV_FOR(i, 0) if (c[i] != Type(0)) return false; return true;}
/** /**
* @brief Method which checks if current vector is orthogonal to vector "v". * @brief Method which checks if current vector is orthogonal to vector "v"
* If the vectors have different dimensions, it returns false
* *
* @param v vector of type PIMathVectorT * @param v vector of type PIMathVectorT
* @return true if vectors are orthogonal, else fal */ * @return true if vectors are orthogonal, else fal */
bool isOrtho(const _CVector & v) const {if(v.size() != Size) return false; return ((*this) ^ v) == Type(0);} bool isOrtho(const _CVector & v) const {return ((*this) ^ v) == Type(0);}
/** /**
* @brief Read-only access to elements reference by index of the vector element "index" * @brief Read-only access to elements reference by index of the vector element "index"
@@ -283,18 +276,18 @@ public:
bool operator !=(const _CVector & v) const {return !(*this == v);} bool operator !=(const _CVector & v) const {return !(*this == v);}
/** /**
* @brief Vector addition this vector with vector "v". If the vectors have different dimensions, it returns void() * @brief Vector addition this vector with vector "v"
* *
* @param v vector for the addition assigment * @param v vector for the addition assigment
*/ */
void operator +=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] += v[i];} void operator +=(const _CVector & v) {PIMV_FOR(i, 0) c[i] += v[i];}
/** /**
* @brief Subtraction assignmentthis vector with vector "v". If the vectors have different dimensions, it returns void() * @brief Subtraction assignmentthis vector with vector "v"
* *
* @param v vector for the subtraction assigment * @param v vector for the subtraction assigment
*/ */
void operator -=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] -= v[i];} void operator -=(const _CVector & v) {PIMV_FOR(i, 0) c[i] -= v[i];}
/** /**
* @brief Multiplication assignment this vector with value "v" * @brief Multiplication assignment this vector with value "v"
@@ -304,11 +297,11 @@ public:
void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;} void operator *=(const Type & v) {PIMV_FOR(i, 0) c[i] *= v;}
/** /**
* @brief Multiplication assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * @brief Multiplication assignment this vector with vector "v"
* *
* @param v vector for the multiplication assigment * @param v vector for the multiplication assigment
*/ */
void operator *=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] *= v[i];} void operator *=(const _CVector & v) {PIMV_FOR(i, 0) c[i] *= v[i];}
/** /**
* @brief Division assignment with this vector value "v" * @brief Division assignment with this vector value "v"
@@ -318,11 +311,11 @@ public:
void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;} void operator /=(const Type & v) {PIMV_FOR(i, 0) c[i] /= v;}
/** /**
* @brief Division assignment this vector with vector "v". If the vectors have different dimensions, it returns void() * @brief Division assignment this vector with vector "v"
* *
* @param v vector for the division assigment * @param v vector for the division assigment
*/ */
void operator /=(const _CVector & v) {if(v.size() != Size) return void(); PIMV_FOR(i, 0) c[i] /= v[i];} void operator /=(const _CVector & v) {PIMV_FOR(i, 0) c[i] /= v[i];}
/** /**
* @brief Vector substraction this vector * @brief Vector substraction this vector
@@ -332,20 +325,20 @@ public:
_CVector operator -() const {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;} _CVector operator -() const {_CVector tv; PIMV_FOR(i, 0) tv[i] = -c[i]; return tv;}
/** /**
* @brief Vector addition this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * @brief Vector addition this vector with vector "v"
* *
* @param v is vector term * @param v is vector term
* @return the result of vector addition * @return the result of vector addition
*/ */
_CVector operator +(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;} _CVector operator +(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] += v[i]; return tv;}
/** /**
* @brief Vector substraction this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * @brief Vector substraction this vector with vector "v"
* *
* @param v is vector term * @param v is vector term
* @return the result of vector substraction * @return the result of vector substraction
*/ */
_CVector operator -(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;} _CVector operator -(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] -= v[i]; return tv;}
/** /**
* @brief Vector multiplication this vector with value "v" * @brief Vector multiplication this vector with value "v"
@@ -364,12 +357,12 @@ public:
_CVector operator /(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;} _CVector operator /(const Type & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v; return tv;}
/** /**
* @brief Vector division this vector with vector "v". If the vectors have different dimensions, it returns this without changing anything * @brief Vector division this vector with vector "v"
* *
* @param v is vector divider * @param v is vector divider
* @return the result of vector division * @return the result of vector division
*/ */
_CVector operator /(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v[i]; return tv;} _CVector operator /(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] /= v[i]; return tv;}
/** /**
* @brief Cross product of two vectors. Works only with vector containing three elements, otherwise returns current vector * @brief Cross product of two vectors. Works only with vector containing three elements, otherwise returns current vector
@@ -380,20 +373,20 @@ public:
_CVector operator *(const _CVector & v) const {if (Size != 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;} _CVector operator *(const _CVector & v) const {if (Size != 3) return _CVector(); _CVector tv; tv.fill(Type(1)); tv[0] = c[1]*v[2] - v[1]*c[2]; tv[1] = v[0]*c[2] - c[0]*v[2]; tv[2] = c[0]*v[1] - v[0]*c[1]; return tv;}
/** /**
* @brief Elementwise assignment of multiplication of two vectors. If the vectors have different dimensions, it returns this without changing anything * @brief Elementwise assignment of multiplication of two vectors
* *
* @param v is vector for multiplication * @param v is vector for multiplication
* @return resulting vector * @return resulting vector
*/ */
_CVector operator &(const _CVector & v) const {if(v.size() != Size) return _CVector(*this); _CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v[i]; return tv;} _CVector operator &(const _CVector & v) const {_CVector tv = _CVector(*this); PIMV_FOR(i, 0) tv[i] *= v[i]; return tv;}
/** /**
* @brief Absolute value of the dot product. If the vectors have different dimensions, it returns false * @brief Absolute value of the dot product
* *
* @param v is vector for dot product * @param v is vector for dot product
* @return resulting vector * @return resulting vector
*/ */
Type operator ^(const _CVector & v) const {if(v.size() != Size) return false; Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;} Type operator ^(const _CVector & v) const {Type tv(0); PIMV_FOR(i, 0) tv += c[i] * v[i]; return tv;}
PIMathMatrixT<1, Size, Type> transposed() const { PIMathMatrixT<1, Size, Type> transposed() const {
PIMathMatrixT<1, Size, Type> ret; PIMathMatrixT<1, Size, Type> ret;