Merge pull request 'tests' (#36) from tests into master
Reviewed-on: https://git.shs.tools/SHS/pip/pulls/36
This commit was merged in pull request #36.
This commit is contained in:
@@ -1,5 +1,7 @@
|
||||
/*! \file pimathmatrix.h
|
||||
* \brief PIMathMatrix
|
||||
*
|
||||
* This file declare math matrix class, which performs various matrix operations
|
||||
*/
|
||||
/*
|
||||
PIP - Platform Independent Primitives
|
||||
@@ -26,20 +28,37 @@
|
||||
#include "pimathvector.h"
|
||||
#include "pimathcomplex.h"
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Inline funtion of compare with zero different types
|
||||
*
|
||||
* @param v is input parameter of type T
|
||||
* @return true if zero, false if not zero
|
||||
*/
|
||||
template<typename T>
|
||||
inline bool _PIMathMatrixNullCompare(const T v) {
|
||||
static_assert(std::is_floating_point<T>::value, "Type must be floating point");
|
||||
return (piAbs(v) < T(1E-200));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inline funtion of compare with zero colmplexf type
|
||||
*
|
||||
* @param v is input parameter of type colmplexf
|
||||
* @return true if zero, false if not zero
|
||||
*/
|
||||
template<>
|
||||
inline bool _PIMathMatrixNullCompare<complexf >(const complexf v) {
|
||||
inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
|
||||
return (abs(v) < float(1E-200));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inline funtion of compare with zero complexd type
|
||||
*
|
||||
* @param v is input parameter of type colmplexd
|
||||
* @return true if zero, false if not zero
|
||||
*/
|
||||
template<>
|
||||
inline bool _PIMathMatrixNullCompare<complexd >(const complexd v) {
|
||||
inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
|
||||
return (abs(v) < double(1E-200));
|
||||
}
|
||||
|
||||
@@ -54,6 +73,12 @@ inline bool _PIMathMatrixNullCompare<complexd >(const complexd v) {
|
||||
#define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v)
|
||||
|
||||
#pragma pack(push, 1)
|
||||
|
||||
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
|
||||
//! @tparam Rows rows number of matrix
|
||||
//! @tparam Сols columns number of matrix
|
||||
//! @tparam Type is the data type of the matrix. There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
|
||||
//! of the C++ language are implemented
|
||||
template<uint Rows, uint Cols = Rows, typename Type = double>
|
||||
class PIP_EXPORT PIMathMatrixT {
|
||||
typedef PIMathMatrixT<Rows, Cols, Type> _CMatrix;
|
||||
@@ -64,50 +89,411 @@ class PIP_EXPORT PIMathMatrixT {
|
||||
static_assert(Rows > 0, "Row count must be > 0");
|
||||
static_assert(Cols > 0, "Column count must be > 0");
|
||||
public:
|
||||
PIMathMatrixT() {resize(Rows, Cols);}
|
||||
PIMathMatrixT(const PIVector<Type> & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];}
|
||||
/**
|
||||
* @brief Constructor that calls the private resize method
|
||||
*
|
||||
* @return identitied matrix of type PIMathMatrixT
|
||||
*/
|
||||
PIMathMatrixT() { resize(Rows, Cols); }
|
||||
|
||||
static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;}
|
||||
static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;}
|
||||
static _CMatrix rotation(double angle) {return _CMatrix();}
|
||||
static _CMatrix rotationX(double angle) {return _CMatrix();}
|
||||
static _CMatrix rotationY(double angle) {return _CMatrix();}
|
||||
static _CMatrix rotationZ(double angle) {return _CMatrix();}
|
||||
static _CMatrix scaleX(double factor) {return _CMatrix();}
|
||||
static _CMatrix scaleY(double factor) {return _CMatrix();}
|
||||
static _CMatrix scaleZ(double factor) {return _CMatrix();}
|
||||
/**
|
||||
* @brief Constructor that calls the private resize method
|
||||
*
|
||||
* @param val is the PIVector with which the matrix is filled
|
||||
* @return identitied matrix of type PIMathMatrixT
|
||||
*/
|
||||
PIMathMatrixT(const PIVector<Type> &val) {
|
||||
resize(Rows, Cols);
|
||||
int i = 0;
|
||||
PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];
|
||||
}
|
||||
|
||||
uint cols() const {return Cols;}
|
||||
uint rows() const {return Rows;}
|
||||
_CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;}
|
||||
_CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;}
|
||||
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;}
|
||||
_CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;}
|
||||
_CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;}
|
||||
_CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;}
|
||||
_CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;}
|
||||
bool isSquare() const {return cols() == rows();}
|
||||
bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;}
|
||||
bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;}
|
||||
/**
|
||||
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
|
||||
*
|
||||
* @return identity matrix of type PIMathMatrixT
|
||||
*/
|
||||
static _CMatrix identity() {
|
||||
_CMatrix tm = _CMatrix();
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0));
|
||||
return tm;
|
||||
}
|
||||
|
||||
Type & at(uint row, uint col) {return m[row][col];}
|
||||
Type at(uint row, uint col) const {return m[row][col];}
|
||||
Type * operator [](uint row) {return m[row];}
|
||||
const Type * operator [](uint row) const {return m[row];}
|
||||
_CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;}
|
||||
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;}
|
||||
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
|
||||
void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];}
|
||||
void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];}
|
||||
void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;}
|
||||
void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;}
|
||||
_CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;}
|
||||
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;}
|
||||
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;}
|
||||
_CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;}
|
||||
_CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;}
|
||||
|
||||
Type determinant(bool * ok = 0) const {
|
||||
/**
|
||||
* @brief Creates a matrix that is filled with elements
|
||||
*
|
||||
* @param v is a parameter the type and value of which is selected and later filled into the matrix
|
||||
* @return filled matrix of type PIMathMatrixT
|
||||
*/
|
||||
static _CMatrix filled(const Type &v) {
|
||||
_CMatrix tm;
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] = v;
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param angle is the angle of rotation of the matrix
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix rotation(double angle) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param angle is the angle of rotation of the matrix along the X axis
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix rotationX(double angle) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param angle is the angle of rotation of the matrix along the Y axis
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix rotationY(double angle) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param angle is the angle of rotation of the matrix along the Z axis
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix rotationZ(double angle) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param factor is the value of scaling by X axis
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix scaleX(double factor) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param factor is the value of scaling by Y axis
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix scaleY(double factor) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix,
|
||||
* else return default construction of PIMathMatrixT
|
||||
*
|
||||
* @param factor is the value of scaling by Z axis
|
||||
* @return rotated matrix
|
||||
*/
|
||||
static _CMatrix scaleZ(double factor) { return _CMatrix(); }
|
||||
|
||||
/**
|
||||
* @brief Method which returns number of columns in matrix
|
||||
*
|
||||
* @return type uint shows number of columns
|
||||
*/
|
||||
uint cols() const { return Cols; }
|
||||
|
||||
/**
|
||||
* @brief Method which returns number of rows in matrix
|
||||
*
|
||||
* @return type uint shows number of rows
|
||||
*/
|
||||
uint rows() const { return Rows; }
|
||||
|
||||
/**
|
||||
* @brief Method which returns the selected column in PIMathVectorT format.
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param index is the number of the selected column
|
||||
* @return column in PIMathVectorT format
|
||||
*/
|
||||
_CMCol col(uint index) {
|
||||
_CMCol tv;
|
||||
PIMM_FOR_R(i) tv[i] = m[i][index];
|
||||
return tv;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which returns the selected row in PIMathVectorT format
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param index is the number of the selected row
|
||||
* @return row in PIMathVectorT format
|
||||
*/
|
||||
_CMRow row(uint index) {
|
||||
_CMRow tv;
|
||||
PIMM_FOR_C(i) tv[i] = m[index][i];
|
||||
return tv;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the selected column in matrix.
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param index is the number of the selected column
|
||||
* @param v is a vector of the type _CMCol that needs to fill the column
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &setCol(uint index, const _CMCol &v) {
|
||||
PIMM_FOR_R(i) m[i][index] = v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the selected row in matrix
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param index is the number of the selected row
|
||||
* @param v is a vector of the type _CMCol that needs to fill the row
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &setRow(uint index, const _CMRow &v) {
|
||||
PIMM_FOR_C(i) m[index][i] = v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which changes selected rows in a matrix.
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param r0 is the number of the first selected row
|
||||
* @param r1 is the number of the second selected row
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &swapRows(uint r0, uint r1) {
|
||||
Type t;
|
||||
PIMM_FOR_C(i) {
|
||||
t = m[r0][i];
|
||||
m[r0][i] = m[r1][i];
|
||||
m[r1][i] = t;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which changes selected columns in a matrix.
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param c0 is the number of the first selected column
|
||||
* @param c1 is the number of the second selected column
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &swapCols(uint c0, uint c1) {
|
||||
Type t;
|
||||
PIMM_FOR_R(i) {
|
||||
t = m[i][c0];
|
||||
m[i][c0] = m[i][c1];
|
||||
m[i][c1] = t;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which fills the matrix with selected value
|
||||
*
|
||||
* @param v is a parameter the type and value of which is selected and later filled into the matrix
|
||||
* @return filled matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &fill(const Type &v) {
|
||||
PIMM_FOR_WB(r, c) m[r][c] = v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which checks if matrix is square
|
||||
*
|
||||
* @return true if matrix is square, else false
|
||||
*/
|
||||
bool isSquare() const { return cols() == rows(); }
|
||||
|
||||
/**
|
||||
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
|
||||
*
|
||||
* @return true if matrix is identitied, else false
|
||||
*/
|
||||
bool isIdentity() const {
|
||||
PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which checks if every elements of matrix are zeros
|
||||
*
|
||||
* @return true if matrix is null, else false
|
||||
*/
|
||||
bool isNull() const {
|
||||
PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Full access to elements reference by row "row" and col "col".
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param row is a parameter that shows the row number of the matrix of the selected element
|
||||
* @param col is a parameter that shows the column number of the matrix of the selected element
|
||||
* @return reference to element of matrix by row "row" and col "col"
|
||||
*/
|
||||
Type &at(uint row, uint col) { return m[row][col]; }
|
||||
|
||||
/**
|
||||
* @brief Full access to element by row "row" and col "col".
|
||||
* If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param row is a parameter that shows the row number of the matrix of the selected element
|
||||
* @param col is a parameter that shows the column number of the matrix of the selected element
|
||||
* @return element of matrix by row "row" and col "col"
|
||||
*/
|
||||
Type at(uint row, uint col) const { return m[row][col]; }
|
||||
|
||||
/**
|
||||
* @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param row is a row of necessary matrix
|
||||
* @return matrix row pointer
|
||||
*/
|
||||
Type *operator[](uint row) { return m[row]; }
|
||||
|
||||
/**
|
||||
* @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param row is a row of necessary matrix
|
||||
* @return matrix row pointer
|
||||
*/
|
||||
const Type *operator[](uint row) const { return m[row]; }
|
||||
|
||||
/**
|
||||
* @brief Matrix assignment to matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the assigment
|
||||
* @return matrix equal with sm
|
||||
*/
|
||||
_CMatrix &operator=(const _CMatrix &sm) {
|
||||
memcpy(m, sm.m, sizeof(Type) * Cols * Rows);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compare with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the compare
|
||||
* @return if matrices are equal true, else false
|
||||
*/
|
||||
bool operator==(const _CMatrix &sm) const {
|
||||
PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compare with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the compare
|
||||
* @return if matrices are not equal true, else false
|
||||
*/
|
||||
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
|
||||
|
||||
/**
|
||||
* @brief Addition assignment with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the addition assigment
|
||||
*/
|
||||
void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; }
|
||||
|
||||
/**
|
||||
* @brief Subtraction assignment with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the subtraction assigment
|
||||
*/
|
||||
void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; }
|
||||
|
||||
/**
|
||||
* @brief Multiplication assignment with value "v"
|
||||
*
|
||||
* @param v value for the multiplication assigment
|
||||
*/
|
||||
void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; }
|
||||
|
||||
/**
|
||||
* @brief Division assignment with value "v"
|
||||
*
|
||||
* @param v value for the division assigment
|
||||
*/
|
||||
void operator/=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] /= v; }
|
||||
|
||||
/**
|
||||
* @brief Matrix substraction
|
||||
*
|
||||
* @return the result of matrix substraction
|
||||
*/
|
||||
_CMatrix operator-() const {
|
||||
_CMatrix tm;
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c];
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix addition
|
||||
*
|
||||
* @param sm is matrix term
|
||||
* @return the result of matrix addition
|
||||
*/
|
||||
_CMatrix operator+(const _CMatrix &sm) const {
|
||||
_CMatrix tm = _CMatrix(*this);
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c];
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix substraction
|
||||
*
|
||||
* @param sm is matrix subtractor
|
||||
* @return the result of matrix substraction
|
||||
*/
|
||||
_CMatrix operator-(const _CMatrix &sm) const {
|
||||
_CMatrix tm = _CMatrix(*this);
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c];
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix multiplication
|
||||
*
|
||||
* @param v is value factor
|
||||
* @return the result of matrix multiplication
|
||||
*/
|
||||
_CMatrix operator*(const Type &v) const {
|
||||
_CMatrix tm = _CMatrix(*this);
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] *= v;
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix division
|
||||
*
|
||||
* @param v is value divider
|
||||
* @return the result of matrix division
|
||||
*/
|
||||
_CMatrix operator/(const Type &v) const {
|
||||
_CMatrix tm = _CMatrix(*this);
|
||||
PIMM_FOR_WB(r, c) tm.m[r][c] /= v;
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Determinant of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return matrix determinant
|
||||
*/
|
||||
Type determinant(bool *ok = 0) const {
|
||||
_CMatrix m(*this);
|
||||
bool k;
|
||||
Type ret = Type(0);
|
||||
@@ -122,7 +508,13 @@ public:
|
||||
return ret;
|
||||
}
|
||||
|
||||
_CMatrix & toUpperTriangular(bool * ok = 0) {
|
||||
/**
|
||||
* @brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return copy of transformed upper triangular matrix
|
||||
*/
|
||||
_CMatrix &toUpperTriangular(bool *ok = 0) {
|
||||
if (Cols != Rows) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
@@ -148,7 +540,7 @@ public:
|
||||
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
|
||||
}
|
||||
if (i < Cols - 1) {
|
||||
if (fabs(smat.m[i+1][i+1]) < Type(1E-200)) {
|
||||
if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
}
|
||||
@@ -159,7 +551,13 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
_CMatrix & invert(bool * ok = 0) {
|
||||
/**
|
||||
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return copy of inverted matrix
|
||||
*/
|
||||
_CMatrix &invert(bool *ok = 0) {
|
||||
static_assert(Cols == Rows, "Only square matrix invertable");
|
||||
_CMatrix mtmp = _CMatrix::identity(), smat(*this);
|
||||
bool ndet;
|
||||
@@ -186,7 +584,7 @@ public:
|
||||
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i];
|
||||
}
|
||||
if (i < Cols - 1) {
|
||||
if (fabs(smat.m[i+1][i+1]) < Type(1E-200)) {
|
||||
if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
}
|
||||
@@ -206,41 +604,160 @@ public:
|
||||
memcpy(m, mtmp.m, sizeof(Type) * Cols * Rows);
|
||||
return *this;
|
||||
}
|
||||
_CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;}
|
||||
_CMatrixI transposed() const {_CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; return tm;}
|
||||
|
||||
/**
|
||||
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return inverted matrix
|
||||
*/
|
||||
_CMatrix inverted(bool *ok = 0) const {
|
||||
_CMatrix tm(*this);
|
||||
tm.invert(ok);
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix transposition operation. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @return transposed matrix
|
||||
*/
|
||||
_CMatrixI transposed() const {
|
||||
_CMatrixI tm;
|
||||
PIMM_FOR_WB(r, c) tm[c][r] = m[r][c];
|
||||
return tm;
|
||||
}
|
||||
|
||||
private:
|
||||
void resize(uint rows_, uint cols_, const Type & new_value = Type()) {r_ = rows_; c_ = cols_; PIMM_FOR_WB(r, c) m[r][c] = new_value;}
|
||||
void resize(uint rows_, uint cols_, const Type &new_value = Type()) {
|
||||
r_ = rows_;
|
||||
c_ = cols_;
|
||||
PIMM_FOR_WB(r, c) m[r][c] = new_value;
|
||||
}
|
||||
|
||||
int c_, r_;
|
||||
Type m[Rows][Cols];
|
||||
|
||||
};
|
||||
|
||||
#pragma pack(pop)
|
||||
|
||||
|
||||
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;}
|
||||
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = factor; tm[1][1] = 1.; return tm;}
|
||||
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = 1.; tm[1][1] = factor; return tm;}
|
||||
template<>
|
||||
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {
|
||||
double c = cos(angle), s = sin(angle);
|
||||
PIMathMatrixT<2u, 2u> tm;
|
||||
tm[0][0] = tm[1][1] = c;
|
||||
tm[0][1] = -s;
|
||||
tm[1][0] = s;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = s; tm[1][2] = -s; return tm;}
|
||||
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = -s; tm[0][2] = s; return tm;}
|
||||
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = s; tm[0][1] = -s; return tm;}
|
||||
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {PIMathMatrixT<3u, 3u> tm; tm[1][1] = tm[2][2] = 1.; tm[0][0] = factor; return tm;}
|
||||
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[2][2] = 1.; tm[1][1] = factor; return tm;}
|
||||
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[1][1] = 1.; tm[2][2] = factor; return tm;}
|
||||
template<>
|
||||
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {
|
||||
PIMathMatrixT<2u, 2u> tm;
|
||||
tm[0][0] = factor;
|
||||
tm[1][1] = 1.;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {
|
||||
PIMathMatrixT<2u, 2u> tm;
|
||||
tm[0][0] = 1.;
|
||||
tm[1][1] = factor;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {
|
||||
double c = cos(angle), s = sin(angle);
|
||||
PIMathMatrixT<3u, 3u> tm;
|
||||
tm[0][0] = 1.;
|
||||
tm[1][1] = tm[2][2] = c;
|
||||
tm[2][1] = s;
|
||||
tm[1][2] = -s;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {
|
||||
double c = cos(angle), s = sin(angle);
|
||||
PIMathMatrixT<3u, 3u> tm;
|
||||
tm[1][1] = 1.;
|
||||
tm[0][0] = tm[2][2] = c;
|
||||
tm[2][0] = -s;
|
||||
tm[0][2] = s;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {
|
||||
double c = cos(angle), s = sin(angle);
|
||||
PIMathMatrixT<3u, 3u> tm;
|
||||
tm[2][2] = 1.;
|
||||
tm[0][0] = tm[1][1] = c;
|
||||
tm[1][0] = s;
|
||||
tm[0][1] = -s;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {
|
||||
PIMathMatrixT<3u, 3u> tm;
|
||||
tm[1][1] = tm[2][2] = 1.;
|
||||
tm[0][0] = factor;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {
|
||||
PIMathMatrixT<3u, 3u> tm;
|
||||
tm[0][0] = tm[2][2] = 1.;
|
||||
tm[1][1] = factor;
|
||||
return tm;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {
|
||||
PIMathMatrixT<3u, 3u> tm;
|
||||
tm[0][0] = tm[1][1] = 1.;
|
||||
tm[2][2] = factor;
|
||||
return tm;
|
||||
}
|
||||
|
||||
#ifdef PIP_STD_IOSTREAM
|
||||
template<uint Rows, uint Cols, typename Type>
|
||||
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Cols, Type> & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << " ";} s << "}"; return s;}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Add matrix "m" at the end of matrix and return reference to matrix
|
||||
*
|
||||
* @param s PICout type
|
||||
* @param m PIMathMatrixT type
|
||||
* @return bitwise left PICout
|
||||
*/
|
||||
template<uint Rows, uint Cols, typename Type>
|
||||
inline PICout operator <<(PICout s, const PIMathMatrixT<Rows, Cols, Type> & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << PICoutManipulators::NewLine << " ";} s << "}"; return s;}
|
||||
inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
|
||||
s << "{";
|
||||
PIMM_FOR_I(r, c) s << m[r][c];
|
||||
if (c < Cols - 1 || r < Rows - 1) s << ", "; }
|
||||
if (r < Rows - 1) s << PICoutManipulators::NewLine << " "; }
|
||||
s << "}";
|
||||
return s;
|
||||
}
|
||||
|
||||
/// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1}
|
||||
/**
|
||||
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param fm first matrix multiplier
|
||||
* @param sm second matrix multiplier
|
||||
* @return matrix that is the result of multiplication
|
||||
*/
|
||||
template<uint CR, uint Rows0, uint Cols1, typename Type>
|
||||
inline PIMathMatrixT<Rows0, Cols1, Type> operator *(const PIMathMatrixT<Rows0, CR, Type> & fm,
|
||||
const PIMathMatrixT<CR, Cols1, Type> & sm) {
|
||||
inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR, Type> &fm,
|
||||
const PIMathMatrixT<CR, Cols1, Type> &sm) {
|
||||
PIMathMatrixT<Rows0, Cols1, Type> tm;
|
||||
Type t;
|
||||
for (uint j = 0; j < Rows0; ++j) {
|
||||
@@ -254,10 +771,16 @@ inline PIMathMatrixT<Rows0, Cols1, Type> operator *(const PIMathMatrixT<Rows0, C
|
||||
return tm;
|
||||
}
|
||||
|
||||
/// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows}
|
||||
/**
|
||||
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param fm first matrix multiplier
|
||||
* @param sv second vector multiplier
|
||||
* @return vector that is the result of multiplication
|
||||
*/
|
||||
template<uint Cols, uint Rows, typename Type>
|
||||
inline PIMathVectorT<Rows, Type> operator *(const PIMathMatrixT<Rows, Cols, Type> & fm,
|
||||
const PIMathVectorT<Cols, Type> & sv) {
|
||||
inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type> &fm,
|
||||
const PIMathVectorT<Cols, Type> &sv) {
|
||||
PIMathVectorT<Rows, Type> tv;
|
||||
Type t;
|
||||
for (uint j = 0; j < Rows; ++j) {
|
||||
@@ -269,10 +792,16 @@ inline PIMathVectorT<Rows, Type> operator *(const PIMathMatrixT<Rows, Cols, Type
|
||||
return tv;
|
||||
}
|
||||
|
||||
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
|
||||
/**
|
||||
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param sv first vector multiplier
|
||||
* @param fm second matrix multiplier
|
||||
* @return vector that is the result of multiplication
|
||||
*/
|
||||
template<uint Cols, uint Rows, typename Type>
|
||||
inline PIMathVectorT<Cols, Type> operator *(const PIMathVectorT<Rows, Type> & sv,
|
||||
const PIMathMatrixT<Rows, Cols, Type> & fm) {
|
||||
inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
|
||||
const PIMathMatrixT<Rows, Cols, Type> &fm) {
|
||||
PIMathVectorT<Cols, Type> tv;
|
||||
Type t;
|
||||
for (uint j = 0; j < Cols; ++j) {
|
||||
@@ -284,9 +813,15 @@ inline PIMathVectorT<Cols, Type> operator *(const PIMathVectorT<Rows, Type> & sv
|
||||
return tv;
|
||||
}
|
||||
|
||||
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
|
||||
/**
|
||||
* @brief Multiplying value of type Type and matrix
|
||||
*
|
||||
* @param x first multiplier of type Type
|
||||
* @param fm second matrix multiplier
|
||||
* @return matrix that is the result of multiplication
|
||||
*/
|
||||
template<uint Cols, uint Rows, typename Type>
|
||||
inline PIMathMatrixT<Rows, Cols, Type> operator *(const Type & x, const PIMathMatrixT<Rows, Cols, Type> & v) {
|
||||
inline PIMathMatrixT<Rows, Cols, Type> operator*(const Type &x, const PIMathMatrixT<Rows, Cols, Type> &v) {
|
||||
return v * x;
|
||||
}
|
||||
|
||||
@@ -321,53 +856,310 @@ class PIMathMatrix;
|
||||
#define PIMM_FOR_C(v) for (uint v = 0; v < _V2D::cols_; ++v)
|
||||
#define PIMM_FOR_R(v) for (uint v = 0; v < _V2D::rows_; ++v)
|
||||
|
||||
//! \brief A class that works with matrix operations, the input data of which is the data type of the matrix
|
||||
//! @tparam There are can be basic C++ language data and different classes where the arithmetic operators(=, +=, -=, *=, /=, ==, !=, +, -, *, /)
|
||||
//! of the C++ language are implemented
|
||||
template<typename Type>
|
||||
class PIP_EXPORT PIMathMatrix : public PIVector2D<Type> {
|
||||
typedef PIVector2D<Type> _V2D;
|
||||
typedef PIVector2D<Type> _V2D;
|
||||
typedef PIMathMatrix<Type> _CMatrix;
|
||||
typedef PIMathVector<Type> _CMCol;
|
||||
public:
|
||||
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type & f = Type()) {_V2D::resize(rows, cols, f);}
|
||||
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> & val) {_V2D::resize(rows, cols); int i=0; PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];}
|
||||
PIMathMatrix(const PIVector<PIVector<Type> > & val) {if(!val.isEmpty()) {_V2D::resize(val.size(), val[0].size()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];}}
|
||||
PIMathMatrix(const PIVector2D<Type> & val) {if(!val.isEmpty()) {_V2D::resize(val.rows(), val.cols()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);}}
|
||||
/**
|
||||
* @brief Constructor of class PIMathMatrix, which creates a matrix
|
||||
*
|
||||
* @param cols is number of matrix column uint type
|
||||
* @param rows is number of matrix row uint type
|
||||
* @param f is type of matrix elements
|
||||
*/
|
||||
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
|
||||
|
||||
static _CMatrix identity(const uint cols, const uint rows) {_CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0)); return tm;}
|
||||
static _CMatrix matrixRow(const PIMathVector<Type> & val) {return _CMatrix(val.size(), 1, val.toVector());}
|
||||
static _CMatrix matrixCol(const PIMathVector<Type> & val) {return _CMatrix(1, val.size(), val.toVector());}
|
||||
/**
|
||||
* @brief Constructor of class PIMathMatrix, which creates a matrix
|
||||
*
|
||||
* @param cols is number of matrix column uint type
|
||||
* @param rows is number of matrix row uint type
|
||||
* @param val is PIVector<Type> of matrix elements
|
||||
*/
|
||||
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> &val) {
|
||||
_V2D::resize(rows, cols);
|
||||
int i = 0;
|
||||
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];
|
||||
}
|
||||
|
||||
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) _V2D::element(i, index) = v[i]; return *this;}
|
||||
_CMatrix & setRow(uint index, const _CMCol & v) {PIMM_FOR_C(i) _V2D::element(index, i) = v[i]; return *this;}
|
||||
_CMatrix & swapCols(uint r0, uint r1) {PIMM_FOR_C(i) {piSwap(_V2D::element(i, r0), _V2D::element(i, r1));} return *this;}
|
||||
_CMatrix & swapRows(uint c0, uint c1) {PIMM_FOR_R(i) {piSwap(_V2D::element(c0, i), _V2D::element(c1, i));} return *this;}
|
||||
_CMatrix & fill(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] = v; return *this;}
|
||||
bool isSquare() const {return _V2D::cols_ == _V2D::rows_;}
|
||||
bool isIdentity() const {PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0)) return false; return true;}
|
||||
bool isNull() const {PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false; return true;}
|
||||
bool isValid() const {return !PIVector2D<Type>::isEmpty();}
|
||||
|
||||
_CMatrix & operator =(const PIVector<PIVector<Type> > & v) {*this = _CMatrix(v); return *this;}
|
||||
bool operator ==(const _CMatrix & sm) const {
|
||||
if(_V2D::mat.size() != sm.mat.size())
|
||||
return false;
|
||||
PIMM_FOR_A(i) {
|
||||
if (_V2D::mat[i] != sm.mat[i])
|
||||
return false;
|
||||
/**
|
||||
* @brief Constructor of class PIMathMatrix, which creates a matrix
|
||||
*
|
||||
* @param val is PIVector<Type> of PIVector, which creates matrix
|
||||
*/
|
||||
PIMathMatrix(const PIVector<PIVector<Type> > &val) {
|
||||
if (!val.isEmpty()) {
|
||||
_V2D::resize(val.size(), val[0].size());
|
||||
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Constructor of class PIMathMatrix, which creates a matrix
|
||||
*
|
||||
* @param val is PIVector2D<Type>, which creates matrix
|
||||
*/
|
||||
PIMathMatrix(const PIVector2D<Type> &val) {
|
||||
if (!val.isEmpty()) {
|
||||
_V2D::resize(val.rows(), val.cols());
|
||||
PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
|
||||
*
|
||||
* @param cols is number of matrix column uint type
|
||||
* @param rows is number of matrix row uint type
|
||||
* @return identity matrix of type PIMathMatrix
|
||||
*/
|
||||
static _CMatrix identity(const uint cols, const uint rows) {
|
||||
_CMatrix tm(cols, rows);
|
||||
for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0));
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Creates a row matrix of every element that is equal to every element of the vector
|
||||
*
|
||||
* @param val is the vector type PIMathVector
|
||||
* @return row matrix of every element that is equal to every element of the vector
|
||||
*/
|
||||
static _CMatrix matrixRow(const PIMathVector<Type> &val) { return _CMatrix(val.size(), 1, val.toVector()); }
|
||||
|
||||
/**
|
||||
* @brief Creates a column matrix of every element that is equal to every element of the vector
|
||||
*
|
||||
* @param val is the vector type PIMathVector
|
||||
* @return column matrix of every element that is equal to every element of the vector
|
||||
*/
|
||||
static _CMatrix matrixCol(const PIMathVector<Type> &val) { return _CMatrix(1, val.size(), val.toVector()); }
|
||||
|
||||
/**
|
||||
* @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix
|
||||
* or index larger than the number of columns otherwise there will be "undefined behavior"
|
||||
*
|
||||
* @param index is the number of the selected column
|
||||
* @param v is a vector of the type _CMCol that needs to fill the column
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &setCol(uint index, const _CMCol &v) {
|
||||
PIMM_FOR_R(i) _V2D::element(i, index) = v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix,
|
||||
* or index larger than the number of rows otherwise there will be "undefined behavior"
|
||||
* @param index is the number of the selected row
|
||||
* @param v is a vector of the type _CMCol that needs to fill the row
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &setRow(uint index, const _CMCol &v) {
|
||||
PIMM_FOR_C(i) _V2D::element(index, i) = v[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns,
|
||||
* otherwise there will be "undefined behavior"
|
||||
*
|
||||
* @param r0 is the number of the first selected row
|
||||
* @param r1 is the number of the second selected row
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &swapCols(uint r0, uint r1) {
|
||||
PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); }
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows,
|
||||
* otherwise there will be "undefined behavior"
|
||||
*
|
||||
* @param c0 is the number of the first selected row
|
||||
* @param c1 is the number of the second selected row
|
||||
* @return matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &swapRows(uint c0, uint c1) {
|
||||
PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); }
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which fills the matrix with selected value
|
||||
*
|
||||
* @param v is a parameter the type and value of which is selected and later filled into the matrix
|
||||
* @return filled matrix type _CMatrix
|
||||
*/
|
||||
_CMatrix &fill(const Type &v) {
|
||||
PIMM_FOR_A(i) _V2D::mat[i] = v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which checks if matrix is square
|
||||
*
|
||||
* @return true if matrix is square, else false
|
||||
*/
|
||||
bool isSquare() const { return _V2D::cols_ == _V2D::rows_; }
|
||||
|
||||
/**
|
||||
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
|
||||
*
|
||||
* @return true if matrix is identity, else false
|
||||
*/
|
||||
bool isIdentity() const {
|
||||
PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
|
||||
return true;
|
||||
}
|
||||
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
|
||||
void operator +=(const _CMatrix & sm) {PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i];}
|
||||
void operator -=(const _CMatrix & sm) {PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i];}
|
||||
void operator *=(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] *= v;}
|
||||
void operator /=(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] /= v;}
|
||||
_CMatrix operator -() const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i]; return tm;}
|
||||
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] += sm.mat[i]; return tm;}
|
||||
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i]; return tm;}
|
||||
_CMatrix operator *(const Type & v) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] *= v; return tm;}
|
||||
_CMatrix operator /(const Type & v) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] /= v; return tm;}
|
||||
|
||||
Type determinant(bool * ok = 0) const {
|
||||
/**
|
||||
* @brief Method which checks if every elements of matrix are zeros
|
||||
*
|
||||
* @return true if matrix elements equal to zero, else false
|
||||
*/
|
||||
bool isNull() const {
|
||||
PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method which checks if matrix is empty
|
||||
*
|
||||
* @return true if matrix is valid, else false
|
||||
*/
|
||||
bool isValid() const { return !PIVector2D<Type>::isEmpty(); }
|
||||
|
||||
/**
|
||||
* @brief Matrix assignment to matrix "v"
|
||||
*
|
||||
* @param v matrix for the assigment
|
||||
* @return matrix equal with v
|
||||
*/
|
||||
_CMatrix &operator=(const PIVector<PIVector<Type> > &v) {
|
||||
*this = _CMatrix(v);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compare with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the compare
|
||||
* @return if matrices are equal true, else false
|
||||
*/
|
||||
bool operator==(const _CMatrix &sm) const {
|
||||
PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compare with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the compare
|
||||
* @return if matrices are not equal true, else false
|
||||
*/
|
||||
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
|
||||
|
||||
/**
|
||||
* @brief Addition assignment with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the addition assigment
|
||||
*/
|
||||
void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; }
|
||||
|
||||
/**
|
||||
* @brief Subtraction assignment with matrix "sm"
|
||||
*
|
||||
* @param sm matrix for the subtraction assigment
|
||||
*/
|
||||
void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; }
|
||||
|
||||
/**
|
||||
* @brief Multiplication assignment with value "v"
|
||||
*
|
||||
* @param v value for the multiplication assigment
|
||||
*/
|
||||
void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; }
|
||||
|
||||
/**
|
||||
* @brief Division assignment with value "v"
|
||||
*
|
||||
* @param v value for the division assigment
|
||||
*/
|
||||
void operator/=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] /= v; }
|
||||
|
||||
/**
|
||||
* @brief Matrix substraction
|
||||
*
|
||||
* @return the result of matrix substraction
|
||||
*/
|
||||
_CMatrix operator-() const {
|
||||
_CMatrix tm(*this);
|
||||
PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i];
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix addition
|
||||
*
|
||||
* @param sm is matrix term
|
||||
* @return the result of matrix addition
|
||||
*/
|
||||
_CMatrix operator+(const _CMatrix &sm) const {
|
||||
_CMatrix tm(*this);
|
||||
PIMM_FOR_A(i) tm.mat[i] += sm.mat[i];
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix subtraction
|
||||
*
|
||||
* @param sm is matrix subtractor
|
||||
* @return the result of matrix subtraction
|
||||
*/
|
||||
_CMatrix operator-(const _CMatrix &sm) const {
|
||||
_CMatrix tm(*this);
|
||||
PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i];
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix multiplication
|
||||
*
|
||||
* @param v is value factor
|
||||
* @return the result of matrix multiplication
|
||||
*/
|
||||
_CMatrix operator*(const Type &v) const {
|
||||
_CMatrix tm(*this);
|
||||
PIMM_FOR_A(i) tm.mat[i] *= v;
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix division
|
||||
*
|
||||
* @param v is value divider
|
||||
* @return the result of matrix division
|
||||
*/
|
||||
_CMatrix operator/(const Type &v) const {
|
||||
_CMatrix tm(*this);
|
||||
PIMM_FOR_A(i) tm.mat[i] /= v;
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Determinant of the self matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return matrix determinant
|
||||
*/
|
||||
Type determinant(bool *ok = 0) const {
|
||||
_CMatrix m(*this);
|
||||
bool k;
|
||||
Type ret = Type(0);
|
||||
@@ -382,7 +1174,13 @@ public:
|
||||
return ret;
|
||||
}
|
||||
|
||||
Type trace(bool * ok = 0) const {
|
||||
/**
|
||||
* @brief Trace of the matrix is calculated. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return matrix trace
|
||||
*/
|
||||
Type trace(bool *ok = 0) const {
|
||||
Type ret = Type(0);
|
||||
if (!isSquare()) {
|
||||
if (ok != 0) *ok = false;
|
||||
@@ -395,7 +1193,13 @@ public:
|
||||
return ret;
|
||||
}
|
||||
|
||||
_CMatrix & toUpperTriangular(bool * ok = 0) {
|
||||
/**
|
||||
* @brief Transforming matrix to upper triangular. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return copy of transformed upper triangular matrix
|
||||
*/
|
||||
_CMatrix &toUpperTriangular(bool *ok = 0) {
|
||||
if (!isSquare()) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
@@ -421,7 +1225,7 @@ public:
|
||||
for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i);
|
||||
}
|
||||
if (i < _V2D::cols_ - 1) {
|
||||
if (_PIMathMatrixNullCompare(smat.element(i+1, i+1))) {
|
||||
if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
}
|
||||
@@ -432,7 +1236,14 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
_CMatrix & invert(bool * ok = 0, _CMCol * sv = 0) {
|
||||
/**
|
||||
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @param sv is a vector multiplier
|
||||
* @return copy of inverted matrix
|
||||
*/
|
||||
_CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) {
|
||||
if (!isSquare()) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
@@ -464,7 +1275,7 @@ public:
|
||||
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
|
||||
}
|
||||
if (i < _V2D::cols_ - 1) {
|
||||
if (_PIMathMatrixNullCompare(smat.element(i+1, i+1))) {
|
||||
if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) {
|
||||
if (ok != 0) *ok = false;
|
||||
return *this;
|
||||
}
|
||||
@@ -486,8 +1297,29 @@ public:
|
||||
PIVector2D<Type>::swap(mtmp);
|
||||
return *this;
|
||||
}
|
||||
_CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;}
|
||||
_CMatrix transposed() const {_CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c); return tm;}
|
||||
|
||||
/**
|
||||
* @brief Matrix inversion operation. Works only with square matrix, nonzero matrices and invertible matrix
|
||||
*
|
||||
* @param ok is a parameter with which we can find out if the method worked correctly
|
||||
* @return inverted matrix
|
||||
*/
|
||||
_CMatrix inverted(bool *ok = 0) const {
|
||||
_CMatrix tm(*this);
|
||||
tm.invert(ok);
|
||||
return tm;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix transposition operation
|
||||
*
|
||||
* @return transposed matrix
|
||||
*/
|
||||
_CMatrix transposed() const {
|
||||
_CMatrix tm(_V2D::rows_, _V2D::cols_);
|
||||
PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c);
|
||||
return tm;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -496,19 +1328,64 @@ template<typename Type>
|
||||
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Inline operator for outputting the matrix to the console
|
||||
*
|
||||
* @param s PICout type
|
||||
* @param the matrix type PIMathMatrix that we print to the console
|
||||
* @return PIMathMatrix printed to the console
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PICout operator <<(PICout s, const PIMathMatrix<Type> & m) {s << "Matrix{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";} s << "}"; return s;}
|
||||
inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
|
||||
s << "Matrix{";
|
||||
for (uint r = 0; r < m.rows(); ++r) {
|
||||
for (uint c = 0; c < m.cols(); ++c) {
|
||||
s << m.element(r, c);
|
||||
if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";
|
||||
}
|
||||
if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";
|
||||
}
|
||||
s << "}";
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inline operator for serializing a matrix into a PIByteArray
|
||||
*
|
||||
* @param s PIByteArray type
|
||||
* @param v PIMathMatrix type
|
||||
* @return PIBiteArray serialized PIMathMatrix
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PIByteArray & operator <<(PIByteArray & s, const PIMathMatrix<Type> & v) {s << (const PIVector2D<Type> &)v; return s;}
|
||||
inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix<Type> &v) {
|
||||
s << (const PIVector2D<Type> &) v;
|
||||
return s;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Inline operator to deserialize matrix from PIByteArray
|
||||
*
|
||||
* @param s PIByteArray type
|
||||
* @param v PIMathMatrix type
|
||||
* @return PIMathMatrix deserialized from PIByteArray
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PIByteArray & operator >>(PIByteArray & s, PIMathMatrix<Type> & v) {s >> (PIVector2D<Type> &)v; return s;}
|
||||
inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
|
||||
s >> (PIVector2D<Type> &) v;
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
|
||||
/**
|
||||
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param fm first matrix multiplier
|
||||
* @param sm second matrix multiplier
|
||||
* @return matrix that is the result of multiplication
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PIMathMatrix<Type> operator *(const PIMathMatrix<Type> & fm,
|
||||
const PIMathMatrix<Type> & sm) {
|
||||
inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
|
||||
const PIMathMatrix<Type> &sm) {
|
||||
uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols();
|
||||
PIMathMatrix<Type> tm(cols1, rows0);
|
||||
if (fm.cols() != sm.rows()) return tm;
|
||||
@@ -524,10 +1401,16 @@ inline PIMathMatrix<Type> operator *(const PIMathMatrix<Type> & fm,
|
||||
return tm;
|
||||
}
|
||||
|
||||
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
|
||||
/**
|
||||
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param fm first matrix multiplier
|
||||
* @param sv second vector multiplier
|
||||
* @return vector that is the result of multiplication
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PIMathVector<Type> operator *(const PIMathMatrix<Type> & fm,
|
||||
const PIMathVector<Type> & sv) {
|
||||
inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
|
||||
const PIMathVector<Type> &sv) {
|
||||
uint c = fm.cols(), r = fm.rows();
|
||||
PIMathVector<Type> tv(r);
|
||||
if (c != sv.size()) return tv;
|
||||
@@ -541,11 +1424,16 @@ inline PIMathVector<Type> operator *(const PIMathMatrix<Type> & fm,
|
||||
return tv;
|
||||
}
|
||||
|
||||
|
||||
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
|
||||
/**
|
||||
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix there will be "undefined behavior"
|
||||
*
|
||||
* @param sv first vector multiplier
|
||||
* @param fm second matrix multiplier
|
||||
* @return vector that is the result of multiplication
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PIMathVector<Type> operator *(const PIMathVector<Type> & sv,
|
||||
const PIMathMatrix<Type> & fm) {
|
||||
inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
|
||||
const PIMathMatrix<Type> &fm) {
|
||||
uint c = fm.cols(), r = fm.rows();
|
||||
PIMathVector<Type> tv(c);
|
||||
Type t;
|
||||
@@ -558,19 +1446,33 @@ inline PIMathVector<Type> operator *(const PIMathVector<Type> & sv,
|
||||
return tv;
|
||||
}
|
||||
|
||||
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
|
||||
/**
|
||||
* @brief Multiplying value of type Type and matrix
|
||||
*
|
||||
* @param x first multiplier of type Type
|
||||
* @param fm second matrix multiplier
|
||||
* @return matrix that is the result of multiplication
|
||||
*/
|
||||
template<typename Type>
|
||||
inline PIMathMatrix<Type> operator *(const Type & x, const PIMathMatrix<Type> & v) {
|
||||
inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v) {
|
||||
return v * x;
|
||||
}
|
||||
|
||||
typedef PIMathMatrix<int> PIMathMatrixi;
|
||||
typedef PIMathMatrix<double> PIMathMatrixd;
|
||||
|
||||
/**
|
||||
* @brief Searching hermitian matrix
|
||||
*
|
||||
* @param m conjugate transpose matrix
|
||||
* @return result of the hermitian
|
||||
*/
|
||||
template<typename T>
|
||||
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > & m) {
|
||||
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > &m) {
|
||||
PIMathMatrix<complex<T> > ret(m);
|
||||
for (uint r = 0; r < ret.rows(); ++r) for (uint c = 0; c < ret.cols(); ++c) ret.element(r, c).imag(-(ret.element(r, c).imag()));
|
||||
for (uint r = 0; r < ret.rows(); ++r)
|
||||
for (uint c = 0; c < ret.cols(); ++c)
|
||||
ret.element(r, c).imag(-(ret.element(r, c).imag()));
|
||||
return ret.transposed();
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user