Rewrite executor to template & come back executor unit tests

This commit is contained in:
5 changed files with 169 additions and 92 deletions

View File

@@ -1,74 +0,0 @@
/*
PIP - Platform Independent Primitives
Stephan Fomenko
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "executor.h"
PIThreadPoolExecutor::PIThreadPoolExecutor(size_t corePoolSize, PIBlockingDequeue<std::function<void()>> *taskQueue_) : isShutdown_(false), taskQueue(taskQueue_) {
for (size_t i = 0; i < corePoolSize; ++i) {
PIThread * thread = new PIThread([&, i](){
auto runnable = taskQueue->poll(100, std::function<void()>());
if (runnable) {
runnable();
}
if (isShutdown_ && taskQueue->size() == 0) threadPool[i]->stop();
});
threadPool.push_back(thread);
thread->start();
}
}
bool PIThreadPoolExecutor::awaitTermination(int timeoutMs) {
PITimeMeasurer measurer;
for (size_t i = 0; i < threadPool.size(); ++i) {
int dif = timeoutMs - (int)measurer.elapsed_m();
if (dif < 0) return false;
if (!threadPool[i]->waitForFinish(dif)) return false;
}
return true;
}
void PIThreadPoolExecutor::shutdownNow() {
isShutdown_ = true;
for (size_t i = 0; i < threadPool.size(); ++i) threadPool[i]->stop();
}
PIThreadPoolExecutor::~PIThreadPoolExecutor() {
shutdownNow();
while (threadPool.size() > 0) delete threadPool.take_back();
delete taskQueue;
}
void PIThreadPoolExecutor::execute(const std::function<void()> &runnable) {
if (!isShutdown_) taskQueue->offer(runnable);
}
bool PIThreadPoolExecutor::isShutdown() const {
return isShutdown_;
}
void PIThreadPoolExecutor::shutdown() {
isShutdown_ = true;
}

View File

@@ -1,8 +1,7 @@
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "executor.h" #include "executor.h"
#include "pimutex.h" #include "pimutex.h"
#include "testutil.h"
const int WAIT_THREAD_TIME_MS = 30;
TEST(ExcutorIntegrationTest, execute_is_runnable_invoke) { TEST(ExcutorIntegrationTest, execute_is_runnable_invoke) {
PIMutex m; PIMutex m;
@@ -14,11 +13,13 @@ TEST(ExcutorIntegrationTest, execute_is_runnable_invoke) {
m.unlock(); m.unlock();
}); });
piMSleep(WAIT_THREAD_TIME_MS); piMSleep(WAIT_THREAD_TIME_MS);
m.lock();
ASSERT_EQ(invokedRunnables, 1); ASSERT_EQ(invokedRunnables, 1);
m.unlock();
} }
TEST(ExcutorIntegrationTest, execute_is_not_execute_after_shutdown) { TEST(ExcutorIntegrationTest, execute_is_not_execute_after_shutdown) {
bool isRunnableInvoke = false; volatile bool isRunnableInvoke = false;
PIThreadPoolExecutor executorService(1); PIThreadPoolExecutor executorService(1);
executorService.shutdown(); executorService.shutdown();
executorService.execute([&]() { executorService.execute([&]() {
@@ -29,7 +30,7 @@ TEST(ExcutorIntegrationTest, execute_is_not_execute_after_shutdown) {
} }
TEST(ExcutorIntegrationTest, execute_is_execute_before_shutdown) { TEST(ExcutorIntegrationTest, execute_is_execute_before_shutdown) {
bool isRunnableInvoke = false; volatile bool isRunnableInvoke = false;
PIThreadPoolExecutor executorService(1); PIThreadPoolExecutor executorService(1);
executorService.execute([&]() { executorService.execute([&]() {
piMSleep(WAIT_THREAD_TIME_MS); piMSleep(WAIT_THREAD_TIME_MS);

View File

@@ -0,0 +1,102 @@
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include "executor.h"
#include "testutil.h"
using ::testing::_;
using ::testing::SetArgReferee;
using ::testing::DoAll;
using ::testing::DeleteArg;
using ::testing::Return;
using ::testing::AtLeast;
using ::testing::ByRef;
using ::testing::Eq;
using ::testing::Ge;
using ::testing::Pointee;
using ::testing::IsNull;
using ::testing::NiceMock;
typedef std::function<void()> VoidFunc;
namespace std {
inline bool operator ==(const VoidFunc& s, const VoidFunc& v) {
// TODO VoidFunc operator ==
return true;
}
}
class MockThread {
public:
std::function<void()> runnnable;
MockThread(std::function<void()> runnnable) : runnnable(runnnable) { }
MOCK_METHOD0(start, bool());
MOCK_METHOD0(stop, void());
MOCK_METHOD1(waitForStart, bool(int timeout_msecs));
MOCK_METHOD1(waitForFinish, bool(int timeout_msecs));
};
class MockDeque : public PIBlockingDequeue<VoidFunc> {
public:
MOCK_METHOD1(offer, bool(const VoidFunc&));
MOCK_METHOD0(take, VoidFunc());
MOCK_METHOD1(poll, VoidFunc(int));
MOCK_METHOD0(capacity, size_t());
MOCK_METHOD0(remainingCapacity, size_t());
};
typedef PIThreadPoolExecutorTemplate<NiceMock<MockThread>, MockDeque> PIThreadPoolExecutorMoc_t;
class PIThreadPoolExecutorMoc : public PIThreadPoolExecutorMoc_t {
public:
explicit PIThreadPoolExecutorMoc(size_t corePoolSize) : PIThreadPoolExecutorMoc_t(corePoolSize) { }
template<typename Function>
explicit PIThreadPoolExecutorMoc(size_t corePoolSize, Function onBeforeStart) : PIThreadPoolExecutorMoc_t(corePoolSize, onBeforeStart) { }
PIVector<testing::NiceMock<MockThread>*>* getThreadPool() { return &threadPool; }
bool isShutdown() { return isShutdown_; }
MockDeque* getTaskQueue() { return &taskQueue; }
};
TEST(ExecutorUnitTest, is_corePool_created) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
ASSERT_EQ(THREAD_COUNT, executor.getThreadPool()->size());
}
TEST(ExecutorUnitTest, is_corePool_started) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT, [](MockThread* thread){
EXPECT_CALL(*thread, start())
.WillOnce(Return(true));
});
EXPECT_EQ(THREAD_COUNT, executor.getThreadPool()->size());
executor.getThreadPool()->forEach([](MockThread* thread){
EXPECT_CALL(*thread, stop())
.WillOnce(Return());
});
}
TEST(ExecutorUnitTest, execute_is_added_to_taskQueue) {
VoidFunc voidFunc = [](){};
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
EXPECT_CALL(*executor.getTaskQueue(), offer(Eq(voidFunc)))
.WillOnce(Return(true));
executor.execute(voidFunc);
}
TEST(ExecutorUnitTest, is_corePool_execute_queue_elements) {
bool is_executed = false;
PIThreadPoolExecutorMoc executor(1);
EXPECT_EQ(executor.getThreadPool()->size(), 1);
EXPECT_CALL(*executor.getTaskQueue(), poll(Ge(0)))
.WillOnce(Return([&](){ is_executed = true; }));
executor.getThreadPool()->at(0)->runnnable();
ASSERT_TRUE(is_executed);
}
/* FIXME
TEST(ExecutorUnitTest, shutdown_is_stop_threads) {
PIThreadPoolExecutorMoc executor(THREAD_COUNT);
executor.shutdown();
}
*/

View File

@@ -8,9 +8,9 @@
* Minimum wait thread start, switch context or another interthread communication action time. Increase it if tests * Minimum wait thread start, switch context or another interthread communication action time. Increase it if tests
* write "Start thread timeout reach!" message. You can reduce it if you want increase test performance. * write "Start thread timeout reach!" message. You can reduce it if you want increase test performance.
*/ */
const int WAIT_THREAD_TIME_MS = 40; const int WAIT_THREAD_TIME_MS = 10;
const int THREAD_COUNT = 5; const int THREAD_COUNT = 2;
class TestUtil: public PIObject { class TestUtil: public PIObject {
PIOBJECT(TestUtil) PIOBJECT(TestUtil)
@@ -55,6 +55,7 @@ public:
return !isTimeout; return !isTimeout;
} }
}; };
#endif //AWRCANFLASHER_TESTUTIL_H #endif //AWRCANFLASHER_TESTUTIL_H

View File

@@ -27,12 +27,18 @@
* @brief Thread pools address two different problems: they usually provide improved performance when executing large * @brief Thread pools address two different problems: they usually provide improved performance when executing large
* numbers of asynchronous tasks, due to reduced per-task invocation overhead, and they provide a means of bounding and * numbers of asynchronous tasks, due to reduced per-task invocation overhead, and they provide a means of bounding and
* managing the resources, including threads, consumed when executing a collection of tasks. * managing the resources, including threads, consumed when executing a collection of tasks.
*
* TODO adapt documentation to template
*/ */
class PIThreadPoolExecutor { template <typename Thread_, typename Dequeue_>
class PIThreadPoolExecutorTemplate {
public: public:
explicit PIThreadPoolExecutor(size_t corePoolSize = 1, PIBlockingDequeue<std::function<void()> >* taskQueue_ = new PIBlockingDequeue<std::function<void()> >()); explicit PIThreadPoolExecutorTemplate(size_t corePoolSize = 1) : isShutdown_(false) { makePool(corePoolSize); }
virtual ~PIThreadPoolExecutor(); virtual ~PIThreadPoolExecutorTemplate() {
shutdownNow();
while (threadPool.size() > 0) delete threadPool.take_back();
}
/** /**
* @brief Executes the given task sometime in the future. The task execute in an existing pooled thread. If the task * @brief Executes the given task sometime in the future. The task execute in an existing pooled thread. If the task
@@ -41,24 +47,65 @@ public:
* *
* @param runnable not empty function for thread pool execution * @param runnable not empty function for thread pool execution
*/ */
void execute(const std::function<void()>& runnable); void execute(const std::function<void()> &runnable) {
if (!isShutdown_) taskQueue.offer(runnable);
void shutdownNow(); }
/** /**
* @brief Initiates an orderly shutdown in which previously submitted tasks are executed, but no new tasks will be * @brief Initiates an orderly shutdown in which previously submitted tasks are executed, but no new tasks will be
* accepted. Invocation has no additional effect if already shut down. This method does not wait for previously * accepted. Invocation has no additional effect if already shut down. This method does not wait for previously
* submitted tasks to complete execution. Use awaitTermination to do that. * submitted tasks to complete execution. Use awaitTermination to do that.
*/ */
void shutdown(); void shutdown() {
isShutdown_ = true;
}
bool isShutdown() const; void shutdownNow() {
isShutdown_ = true;
for (size_t i = 0; i < threadPool.size(); ++i) threadPool[i]->stop();
}
bool awaitTermination(int timeoutMs); bool isShutdown() const {
private: return isShutdown_;
}
bool awaitTermination(int timeoutMs) {
PITimeMeasurer measurer;
for (size_t i = 0; i < threadPool.size(); ++i) {
int dif = timeoutMs - (int)measurer.elapsed_m();
if (dif < 0) return false;
if (!threadPool[i]->waitForFinish(dif)) return false;
}
return true;
}
protected:
std::atomic_bool isShutdown_; std::atomic_bool isShutdown_;
PIBlockingDequeue<std::function<void()> >* taskQueue; Dequeue_ taskQueue;
PIVector<PIThread*> threadPool; PIVector<Thread_*> threadPool;
template<typename Function>
PIThreadPoolExecutorTemplate(size_t corePoolSize, Function onBeforeStart) : isShutdown_(false) {
makePool(corePoolSize, onBeforeStart);
}
void makePool(size_t corePoolSize, std::function<void(Thread_*)> onBeforeStart = [](Thread_*){}) {
for (size_t i = 0; i < corePoolSize; ++i) {
auto* thread = new Thread_([&, i](){
auto runnable = taskQueue.poll(100);
if (runnable) {
runnable();
}
if (isShutdown_ && taskQueue.size() == 0) threadPool[i]->stop();
});
threadPool.push_back(thread);
onBeforeStart(thread);
thread->start();
}
}
}; };
typedef PIThreadPoolExecutorTemplate<PIThread, PIBlockingDequeue<std::function<void()> > > PIThreadPoolExecutor;
#endif //PIP_TESTS_EXECUTOR_H #endif //PIP_TESTS_EXECUTOR_H