space correction

This commit is contained in:
Шишов Максим Денисович
2020-09-03 15:50:41 +03:00
committed by Gama
parent 3a038ef50b
commit 8163a68e03

View File

@@ -77,15 +77,14 @@ inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix //! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
template<uint Rows, uint Cols = Rows, typename Type = double> template<uint Rows, uint Cols = Rows, typename Type = double>
class PIP_EXPORT PIMathMatrixT { class PIP_EXPORT PIMathMatrixT {
typedef PIMathMatrixT<Rows, Cols, Type> _CMatrix; typedef PIMathMatrixT<Rows, Cols, Type> _CMatrix;
typedef PIMathMatrixT<Cols, Rows, Type> _CMatrixI; typedef PIMathMatrixT<Cols, Rows, Type> _CMatrixI;
typedef PIMathVectorT<Rows, Type> _CMCol; typedef PIMathVectorT<Rows, Type> _CMCol;
typedef PIMathVectorT<Cols, Type> _CMRow; typedef PIMathVectorT<Cols, Type> _CMRow;
static_assert(std::is_arithmetic<Type>::value, "Type must be arithmetic"); static_assert(std::is_arithmetic<Type>::value, "Type must be arithmetic");
static_assert(Rows > 0, "Row count must be > 0"); static_assert(Rows > 0, "Row count must be > 0");
static_assert(Cols > 0, "Column count must be > 0"); static_assert(Cols > 0, "Column count must be > 0");
public: public:
<<<<<<< HEAD
/** /**
* @brief Constructor that calls the private resize method * @brief Constructor that calls the private resize method
* *
@@ -490,308 +489,313 @@ public:
* @return matrix determinant * @return matrix determinant
*/ */
Type determinant(bool *ok = 0) const { Type determinant(bool *ok = 0) const {
=======
PIMathMatrixT() {resize(Rows, Cols);} PIMathMatrixT() {resize(Rows, Cols);}
PIMathMatrixT(const PIVector<Type> & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];} PIMathMatrixT(const PIVector<Type> & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];}
/** /**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
* *
* @return identitied matrix of type PIMathMatrixT * @return identitied matrix of type PIMathMatrixT
*/ */
static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;}
/** /**
* @brief Creates a matrix that is filled with elements * @brief Creates a matrix that is filled with elements
* *
* @param v is a parameter the type and value of which is selected and later filled into the matrix * @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT * @return filled matrix of type PIMathMatrixT
*/ */
static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;} static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;}
/** /**
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix, else return _CMatrix * @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
* * else return default construction of PIMathMatrixT
* @param angle is the angle of rotation of the matrix *
* @return rotated matrix * @param angle is the angle of rotation of the matrix
*/ * @return rotated matrix
*/
static _CMatrix rotation(double angle) {return _CMatrix();} static _CMatrix rotation(double angle) {return _CMatrix();}
/** /**
* @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix, else return _CMatrix * @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix,
* * else return default construction of PIMathMatrixT
* @param angle is the angle of rotation of the matrix along the X axis *
* @return rotated matrix * @param angle is the angle of rotation of the matrix along the X axis
*/ * @return rotated matrix
*/
static _CMatrix rotationX(double angle) {return _CMatrix();} static _CMatrix rotationX(double angle) {return _CMatrix();}
/** /**
* @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix, else return _CMatrix * @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix,
* * else return default construction of PIMathMatrixT
* @param angle is the angle of rotation of the matrix along the Y axis *
* @return rotated matrix * @param angle is the angle of rotation of the matrix along the Y axis
*/ * @return rotated matrix
*/
static _CMatrix rotationY(double angle) {return _CMatrix();} static _CMatrix rotationY(double angle) {return _CMatrix();}
/** /**
* @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix, else return _CMatrix * @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix,
* * else return default construction of PIMathMatrixT
* @param angle is the angle of rotation of the matrix along the Z axis *
* @return rotated matrix * @param angle is the angle of rotation of the matrix along the Z axis
*/ * @return rotated matrix
*/
static _CMatrix rotationZ(double angle) {return _CMatrix();} static _CMatrix rotationZ(double angle) {return _CMatrix();}
/** /**
* @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix, else return _CMatrix * @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* * else return default construction of PIMathMatrixT
* @param factor is the value of scaling by X axis *
* @return rotated matrix * @param factor is the value of scaling by X axis
*/ * @return rotated matrix
*/
static _CMatrix scaleX(double factor) {return _CMatrix();} static _CMatrix scaleX(double factor) {return _CMatrix();}
/** /**
* @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix, else return _CMatrix * @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix,
* * else return default construction of PIMathMatrixT
* @param factor is the value of scaling by Y axis *
* @return rotated matrix * @param factor is the value of scaling by Y axis
*/ * @return rotated matrix
*/
static _CMatrix scaleY(double factor) {return _CMatrix();} static _CMatrix scaleY(double factor) {return _CMatrix();}
/** /**
* @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix, else return _CMatrix * @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix,
* * else return default construction of PIMathMatrixT
* @param factor is the value of scaling by Z axis *
* @return rotated matrix * @param factor is the value of scaling by Z axis
*/ * @return rotated matrix
*/
static _CMatrix scaleZ(double factor) {return _CMatrix();} static _CMatrix scaleZ(double factor) {return _CMatrix();}
/** /**
* @brief Method which returns number of columns in matrix * @brief Method which returns number of columns in matrix
* *
* @return type uint shows number of columns * @return type uint shows number of columns
*/ */
uint cols() const {return Cols;} uint cols() const {return Cols;}
/** /**
* @brief Method which returns number of rows in matrix * @brief Method which returns number of rows in matrix
* *
* @return type uint shows number of rows * @return type uint shows number of rows
*/ */
uint rows() const {return Rows;} uint rows() const {return Rows;}
/** /**
* @brief Method which returns the selected column in PIMathVectorT format * @brief Method which returns the selected column in PIMathVectorT format
* *
* @param index is the number of the selected column * @param index is the number of the selected column
* @return column in PIMathVectorT format * @return column in PIMathVectorT format
*/ */
_CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;} _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;}
/** /**
* @brief Method which returns the selected row in PIMathVectorT format * @brief Method which returns the selected row in PIMathVectorT format
* *
* @param index is the number of the selected row * @param index is the number of the selected row
* @return row in PIMathVectorT format * @return row in PIMathVectorT format
*/ */
_CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;} _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;}
/** /**
* @brief Set the selected column in matrix * @brief Set the selected column in matrix
* *
* @param index is the number of the selected column * @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column * @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;} _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;}
/** /**
* @brief Set the selected row in matrix * @brief Set the selected row in matrix
* *
* @param index is the number of the selected row * @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row * @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;} _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;}
/** /**
* @brief Method which changes selected rows in a matrix * @brief Method which changes selected rows in a matrix
* *
* @param r0 is the number of the first selected row * @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row * @param r1 is the number of the second selected row
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;} _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;}
/** /**
* @brief Method which changes selected columns in a matrix * @brief Method which changes selected columns in a matrix
* *
* @param c0 is the number of the first selected column * @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column * @param c1 is the number of the second selected column
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;} _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;}
/** /**
* @brief Method which fills the matrix with selected value * @brief Method which fills the matrix with selected value
* *
* @param v is a parameter the type and value of which is selected and later filled into the matrix * @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix * @return filled matrix type _CMatrix
*/ */
_CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;} _CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;}
/** /**
* @brief Method which checks if matrix is square * @brief Method which checks if matrix is square
* *
* @return true if matrix is square, else false * @return true if matrix is square, else false
*/ */
bool isSquare() const {return cols() == rows();} bool isSquare() const {return cols() == rows();}
/** /**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
* *
* @return true if matrix is identitied, else false * @return true if matrix is identitied, else false
*/ */
bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;} bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;}
/** /**
* @brief Method which checks if every elements of matrix are zeros * @brief Method which checks if every elements of matrix are zeros
* *
* @return true if matrix is null, else false * @return true if matrix is null, else false
*/ */
bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;} bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;}
/** /**
* @brief Full access to elements reference by row "row" and col "col" * @brief Full access to elements reference by row "row" and col "col"
* *
* @param row is a parameter that shows the row number of the matrix of the selected element * @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element * @param col is a parameter that shows the column number of the matrix of the selected element
* @return reference to element of matrix by row "row" and col "col" * @return reference to element of matrix by row "row" and col "col"
*/ */
Type & at(uint row, uint col) {return m[row][col];} Type & at(uint row, uint col) {return m[row][col];}
/** /**
* @brief Full access to element by row "row" and col "col" * @brief Full access to element by row "row" and col "col"
* *
* @param row is a parameter that shows the row number of the matrix of the selected element * @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element * @param col is a parameter that shows the column number of the matrix of the selected element
* @return element of matrix by row "row" and col "col" * @return element of matrix by row "row" and col "col"
*/ */
Type at(uint row, uint col) const {return m[row][col];} Type at(uint row, uint col) const {return m[row][col];}
/** /**
* @brief Full access to the matrix row pointer * @brief Full access to the matrix row pointer
* *
* @param row is a row of necessary matrix * @param row is a row of necessary matrix
* @return matrix row pointer * @return matrix row pointer
*/ */
Type * operator [](uint row) {return m[row];} Type * operator [](uint row) {return m[row];}
/** /**
* @brief Read-only access to the matrix row pointer * @brief Read-only access to the matrix row pointer
* *
* @param row is a row of necessary matrix * @param row is a row of necessary matrix
* @return matrix row pointer * @return matrix row pointer
*/ */
const Type * operator [](uint row) const {return m[row];} const Type * operator [](uint row) const {return m[row];}
/** /**
* @brief Matrix assignment to matrix "sm" * @brief Matrix assignment to matrix "sm"
* *
* @param sm matrix for the assigment * @param sm matrix for the assigment
* @return matrix equal with sm * @return matrix equal with sm
*/ */
_CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;} _CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;}
/** /**
* @brief Compare with matrix "sm" * @brief Compare with matrix "sm"
* *
* @param sm matrix for the compare * @param sm matrix for the compare
* @return if matrices are equal true, else false * @return if matrices are equal true, else false
*/ */
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;} bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;}
/** /**
* @brief Compare with matrix "sm" * @brief Compare with matrix "sm"
* *
* @param sm matrix for the compare * @param sm matrix for the compare
* @return if matrices are not equal true, else false * @return if matrices are not equal true, else false
*/ */
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
/** /**
* @brief Addition assignment with matrix "sm" * @brief Addition assignment with matrix "sm"
* *
* @param sm matrix for the addition assigment * @param sm matrix for the addition assigment
*/ */
void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];} void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];}
/** /**
* @brief Subtraction assignment with matrix "sm" * @brief Subtraction assignment with matrix "sm"
* *
* @param sm matrix for the subtraction assigment * @param sm matrix for the subtraction assigment
*/ */
void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];} void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];}
/** /**
* @brief Multiplication assignment with value "v" * @brief Multiplication assignment with value "v"
* *
* @param v value for the multiplication assigment * @param v value for the multiplication assigment
*/ */
void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;} void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;}
/** /**
* @brief Division assignment with value "v" * @brief Division assignment with value "v"
* *
* @param v value for the division assigment * @param v value for the division assigment
*/ */
void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;} void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;}
/** /**
* @brief Matrix substraction * @brief Matrix substraction
* *
* @return the result of matrix substraction * @return the result of matrix substraction
*/ */
_CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;} _CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;}
/** /**
* @brief Matrix addition * @brief Matrix addition
* *
* @param sm is matrix term * @param sm is matrix term
* @return the result of matrix addition * @return the result of matrix addition
*/ */
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;} _CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;}
/** /**
* @brief Matrix substraction * @brief Matrix substraction
* *
* @param sm is matrix subtractor * @param sm is matrix subtractor
* @return the result of matrix substraction * @return the result of matrix substraction
*/ */
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;} _CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;}
/** /**
* @brief Matrix multiplication * @brief Matrix multiplication
* *
* @param v is value factor * @param v is value factor
* @return the result of matrix multiplication * @return the result of matrix multiplication
*/ */
_CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;} _CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;}
/** /**
* @brief Matrix division * @brief Matrix division
* *
* @param v is value divider * @param v is value divider
* @return the result of matrix division * @return the result of matrix division
*/ */
_CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;} _CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;}
/** /**
* @brief Determinant of the matrix is calculated * @brief Determinant of the matrix is calculated
* *
* @return matrix determinant * @return matrix determinant
*/ */
Type determinant(bool * ok = 0) const { Type determinant(bool * ok = 0) const {
>>>>>>> 9544d5e... Rotation remake
_CMatrix m(*this); _CMatrix m(*this);
bool k; bool k;
Type ret = Type(0); Type ret = Type(0);