Fix code formatting & grammar mistakes

This commit is contained in:
2020-09-03 16:57:46 +03:00
committed by Федоренко Дмитрий Витальевич
parent 33d1abd14c
commit 740d38ccce

View File

@@ -29,7 +29,6 @@
#include "pimathcomplex.h"
template<typename T>
inline bool _PIMathMatrixNullCompare(const T v) {
static_assert(std::is_floating_point<T>::value, "Type must be floating point");
@@ -37,11 +36,12 @@ inline bool _PIMathMatrixNullCompare(const T v) {
}
template<>
inline bool _PIMathMatrixNullCompare<complexf >(const complexf v) {
inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
return (abs(v) < float(1E-200));
}
template<>
inline bool _PIMathMatrixNullCompare<complexd >(const complexd v) {
inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
return (abs(v) < double(1E-200));
}
@@ -56,6 +56,7 @@ inline bool _PIMathMatrixNullCompare<complexd >(const complexd v) {
#define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v)
#pragma pack(push, 1)
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
template<uint Rows, uint Cols = Rows, typename Type = double>
class PIP_EXPORT PIMathMatrixT {
@@ -67,15 +68,24 @@ class PIP_EXPORT PIMathMatrixT {
static_assert(Rows > 0, "Row count must be > 0");
static_assert(Cols > 0, "Column count must be > 0");
public:
PIMathMatrixT() {resize(Rows, Cols);}
PIMathMatrixT(const PIVector<Type> & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];}
PIMathMatrixT() { resize(Rows, Cols); }
PIMathMatrixT(const PIVector<Type> &val) {
resize(Rows, Cols);
int i = 0;
PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];
}
/**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @return identitied matrix of type PIMathMatrixT
*/
static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;}
static _CMatrix identity() {
_CMatrix tm = _CMatrix();
PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Creates a matrix that is filled with elements
@@ -83,16 +93,20 @@ public:
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT
*/
static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;}
static _CMatrix filled(const Type &v) {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = v;
return tm;
}
/**
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
* else return default construction of PIMathMatrixT
*
*
* @param angle is the angle of rotation of the matrix
* @return rotated matrix
*/
static _CMatrix rotation(double angle) {return _CMatrix();}
static _CMatrix rotation(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix,
@@ -101,7 +115,7 @@ public:
* @param angle is the angle of rotation of the matrix along the X axis
* @return rotated matrix
*/
static _CMatrix rotationX(double angle) {return _CMatrix();}
static _CMatrix rotationX(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix,
@@ -110,7 +124,7 @@ public:
* @param angle is the angle of rotation of the matrix along the Y axis
* @return rotated matrix
*/
static _CMatrix rotationY(double angle) {return _CMatrix();}
static _CMatrix rotationY(double angle) { return _CMatrix(); }
/**
* @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix,
@@ -119,7 +133,7 @@ public:
* @param angle is the angle of rotation of the matrix along the Z axis
* @return rotated matrix
*/
static _CMatrix rotationZ(double angle) {return _CMatrix();}
static _CMatrix rotationZ(double angle) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix,
@@ -128,7 +142,7 @@ public:
* @param factor is the value of scaling by X axis
* @return rotated matrix
*/
static _CMatrix scaleX(double factor) {return _CMatrix();}
static _CMatrix scaleX(double factor) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix,
@@ -137,7 +151,7 @@ public:
* @param factor is the value of scaling by Y axis
* @return rotated matrix
*/
static _CMatrix scaleY(double factor) {return _CMatrix();}
static _CMatrix scaleY(double factor) { return _CMatrix(); }
/**
* @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix,
@@ -146,21 +160,21 @@ public:
* @param factor is the value of scaling by Z axis
* @return rotated matrix
*/
static _CMatrix scaleZ(double factor) {return _CMatrix();}
static _CMatrix scaleZ(double factor) { return _CMatrix(); }
/**
* @brief Method which returns number of columns in matrix
*
* @return type uint shows number of columns
*/
uint cols() const {return Cols;}
uint cols() const { return Cols; }
/**
* @brief Method which returns number of rows in matrix
*
* @return type uint shows number of rows
*/
uint rows() const {return Rows;}
uint rows() const { return Rows; }
/**
* @brief Method which returns the selected column in PIMathVectorT format
@@ -168,7 +182,11 @@ public:
* @param index is the number of the selected column
* @return column in PIMathVectorT format
*/
_CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;}
_CMCol col(uint index) {
_CMCol tv;
PIMM_FOR_R(i) tv[i] = m[i][index];
return tv;
}
/**
* @brief Method which returns the selected row in PIMathVectorT format
@@ -176,7 +194,11 @@ public:
* @param index is the number of the selected row
* @return row in PIMathVectorT format
*/
_CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;}
_CMRow row(uint index) {
_CMRow tv;
PIMM_FOR_C(i) tv[i] = m[index][i];
return tv;
}
/**
* @brief Set the selected column in matrix
@@ -185,7 +207,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;}
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) m[i][index] = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
@@ -194,7 +219,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;}
_CMatrix &setRow(uint index, const _CMRow &v) {
PIMM_FOR_C(i) m[index][i] = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix
@@ -203,7 +231,15 @@ public:
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;}
_CMatrix &swapRows(uint r0, uint r1) {
Type t;
PIMM_FOR_C(i) {
t = m[r0][i];
m[r0][i] = m[r1][i];
m[r1][i] = t;
}
return *this;
}
/**
* @brief Method which changes selected columns in a matrix
@@ -212,7 +248,15 @@ public:
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
_CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;}
_CMatrix &swapCols(uint c0, uint c1) {
Type t;
PIMM_FOR_R(i) {
t = m[i][c0];
m[i][c0] = m[i][c1];
m[i][c1] = t;
}
return *this;
}
/**
* @brief Method which fills the matrix with selected value
@@ -220,28 +264,37 @@ public:
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;}
_CMatrix &fill(const Type &v) {
PIMM_FOR_WB(r, c) m[r][c] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const {return cols() == rows();}
bool isSquare() const { return cols() == rows(); }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;}
bool isIdentity() const {
PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;}
bool isNull() const {
PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false;
return true;
}
/**
* @brief Full access to elements reference by row "row" and col "col"
@@ -250,7 +303,7 @@ public:
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return reference to element of matrix by row "row" and col "col"
*/
Type & at(uint row, uint col) {return m[row][col];}
Type &at(uint row, uint col) { return m[row][col]; }
/**
* @brief Full access to element by row "row" and col "col"
@@ -259,7 +312,7 @@ public:
* @param col is a parameter that shows the column number of the matrix of the selected element
* @return element of matrix by row "row" and col "col"
*/
Type at(uint row, uint col) const {return m[row][col];}
Type at(uint row, uint col) const { return m[row][col]; }
/**
* @brief Full access to the matrix row pointer
@@ -267,7 +320,7 @@ public:
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
Type * operator [](uint row) {return m[row];}
Type *operator[](uint row) { return m[row]; }
/**
* @brief Read-only access to the matrix row pointer
@@ -275,7 +328,7 @@ public:
* @param row is a row of necessary matrix
* @return matrix row pointer
*/
const Type * operator [](uint row) const {return m[row];}
const Type *operator[](uint row) const { return m[row]; }
/**
* @brief Matrix assignment to matrix "sm"
@@ -283,7 +336,10 @@ public:
* @param sm matrix for the assigment
* @return matrix equal with sm
*/
_CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;}
_CMatrix &operator=(const _CMatrix &sm) {
memcpy(m, sm.m, sizeof(Type) * Cols * Rows);
return *this;
}
/**
* @brief Compare with matrix "sm"
@@ -291,7 +347,10 @@ public:
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;}
bool operator==(const _CMatrix &sm) const {
PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false;
return true;
}
/**
* @brief Compare with matrix "sm"
@@ -299,42 +358,46 @@ public:
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];}
void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; }
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];}
void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; }
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;}
void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; }
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;}
void operator/=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] /= v; }
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;}
_CMatrix operator-() const {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c];
return tm;
}
/**
* @brief Matrix addition
@@ -342,7 +405,11 @@ public:
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;}
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c];
return tm;
}
/**
* @brief Matrix substraction
@@ -350,7 +417,11 @@ public:
* @param sm is matrix subtractor
* @return the result of matrix substraction
*/
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;}
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c];
return tm;
}
/**
* @brief Matrix multiplication
@@ -358,7 +429,11 @@ public:
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;}
_CMatrix operator*(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] *= v;
return tm;
}
/**
* @brief Matrix division
@@ -366,14 +441,18 @@ public:
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;}
_CMatrix operator/(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] /= v;
return tm;
}
/**
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
Type determinant(bool * ok = 0) const {
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
Type ret = Type(0);
@@ -393,7 +472,7 @@ public:
*
* @return transformed upper triangular matrix
*/
_CMatrix & toUpperTriangular(bool * ok = 0) {
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (Cols != Rows) {
if (ok != 0) *ok = false;
return *this;
@@ -419,7 +498,7 @@ public:
for (uint k = i; k < Cols; ++k) smat.m[k][j] -= mul * smat.m[k][i];
}
if (i < Cols - 1) {
if (fabs(smat.m[i+1][i+1]) < Type(1E-200)) {
if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
if (ok != 0) *ok = false;
return *this;
}
@@ -435,7 +514,7 @@ public:
*
* @return inverted matrix
*/
_CMatrix & invert(bool * ok = 0) {
_CMatrix &invert(bool *ok = 0) {
static_assert(Cols == Rows, "Only square matrix invertable");
_CMatrix mtmp = _CMatrix::identity(), smat(*this);
bool ndet;
@@ -462,7 +541,7 @@ public:
for (uint k = 0; k < Cols; ++k) mtmp.m[k][j] -= mul * mtmp.m[k][i];
}
if (i < Cols - 1) {
if (fabs(smat.m[i+1][i+1]) < Type(1E-200)) {
if (fabs(smat.m[i + 1][i + 1]) < Type(1E-200)) {
if (ok != 0) *ok = false;
return *this;
}
@@ -488,34 +567,120 @@ public:
*
* @return inverted matrix
*/
_CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;}
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrixI transposed() const {_CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; return tm;}
_CMatrixI transposed() const {
_CMatrixI tm;
PIMM_FOR_WB(r, c) tm[c][r] = m[r][c];
return tm;
}
private:
void resize(uint rows_, uint cols_, const Type & new_value = Type()) {r_ = rows_; c_ = cols_; PIMM_FOR_WB(r, c) m[r][c] = new_value;}
void resize(uint rows_, uint cols_, const Type &new_value = Type()) {
r_ = rows_;
c_ = cols_;
PIMM_FOR_WB(r, c) m[r][c] = new_value;
}
int c_, r_;
Type m[Rows][Cols];
};
#pragma pack(pop)
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;}
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = factor; tm[1][1] = 1.; return tm;}
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = 1.; tm[1][1] = factor; return tm;}
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = tm[1][1] = c;
tm[0][1] = -s;
tm[1][0] = s;
return tm;
}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = s; tm[1][2] = -s; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = -s; tm[0][2] = s; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = s; tm[0][1] = -s; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {PIMathMatrixT<3u, 3u> tm; tm[1][1] = tm[2][2] = 1.; tm[0][0] = factor; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[2][2] = 1.; tm[1][1] = factor; return tm;}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[1][1] = 1.; tm[2][2] = factor; return tm;}
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = factor;
tm[1][1] = 1.;
return tm;
}
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = 1.;
tm[1][1] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = 1.;
tm[1][1] = tm[2][2] = c;
tm[2][1] = s;
tm[1][2] = -s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[1][1] = 1.;
tm[0][0] = tm[2][2] = c;
tm[2][0] = -s;
tm[0][2] = s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[2][2] = 1.;
tm[0][0] = tm[1][1] = c;
tm[1][0] = s;
tm[0][1] = -s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[1][1] = tm[2][2] = 1.;
tm[0][0] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = tm[2][2] = 1.;
tm[1][1] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = tm[1][1] = 1.;
tm[2][2] = factor;
return tm;
}
#ifdef PIP_STD_IOSTREAM
template<uint Rows, uint Cols, typename Type>
@@ -523,12 +688,19 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Co
#endif
template<uint Rows, uint Cols, typename Type>
inline PICout operator <<(PICout s, const PIMathMatrixT<Rows, Cols, Type> & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << PICoutManipulators::NewLine << " ";} s << "}"; return s;}
inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
s << "{";
PIMM_FOR_I(r, c) s << m[r][c];
if (c < Cols - 1 || r < Rows - 1) s << ", "; }
if (r < Rows - 1) s << PICoutManipulators::NewLine << " "; }
s << "}";
return s;
}
/// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1}
template<uint CR, uint Rows0, uint Cols1, typename Type>
inline PIMathMatrixT<Rows0, Cols1, Type> operator *(const PIMathMatrixT<Rows0, CR, Type> & fm,
const PIMathMatrixT<CR, Cols1, Type> & sm) {
inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR, Type> &fm,
const PIMathMatrixT<CR, Cols1, Type> &sm) {
PIMathMatrixT<Rows0, Cols1, Type> tm;
Type t;
for (uint j = 0; j < Rows0; ++j) {
@@ -544,8 +716,8 @@ inline PIMathMatrixT<Rows0, Cols1, Type> operator *(const PIMathMatrixT<Rows0, C
/// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows}
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Rows, Type> operator *(const PIMathMatrixT<Rows, Cols, Type> & fm,
const PIMathVectorT<Cols, Type> & sv) {
inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type> &fm,
const PIMathVectorT<Cols, Type> &sv) {
PIMathVectorT<Rows, Type> tv;
Type t;
for (uint j = 0; j < Rows; ++j) {
@@ -559,8 +731,8 @@ inline PIMathVectorT<Rows, Type> operator *(const PIMathMatrixT<Rows, Cols, Type
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Cols, Type> operator *(const PIMathVectorT<Rows, Type> & sv,
const PIMathMatrixT<Rows, Cols, Type> & fm) {
inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
const PIMathMatrixT<Rows, Cols, Type> &fm) {
PIMathVectorT<Cols, Type> tv;
Type t;
for (uint j = 0; j < Cols; ++j) {
@@ -574,7 +746,7 @@ inline PIMathVectorT<Cols, Type> operator *(const PIMathVectorT<Rows, Type> & sv
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
template<uint Cols, uint Rows, typename Type>
inline PIMathMatrixT<Rows, Cols, Type> operator *(const Type & x, const PIMathMatrixT<Rows, Cols, Type> & v) {
inline PIMathMatrixT<Rows, Cols, Type> operator*(const Type &x, const PIMathMatrixT<Rows, Cols, Type> &v) {
return v * x;
}
@@ -616,35 +788,56 @@ class PIP_EXPORT PIMathMatrix : public PIVector2D<Type> {
typedef PIMathMatrix<Type> _CMatrix;
typedef PIMathVector<Type> _CMCol;
public:
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type & f = Type()) {_V2D::resize(rows, cols, f);}
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> & val) {_V2D::resize(rows, cols); int i=0; PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];}
PIMathMatrix(const PIVector<PIVector<Type> > & val) {if(!val.isEmpty()) {_V2D::resize(val.size(), val[0].size()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];}}
PIMathMatrix(const PIVector2D<Type> & val) {if(!val.isEmpty()) {_V2D::resize(val.rows(), val.cols()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);}}
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> &val) {
_V2D::resize(rows, cols);
int i = 0;
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];
}
PIMathMatrix(const PIVector<PIVector<Type> > &val) {
if (!val.isEmpty()) {
_V2D::resize(val.size(), val[0].size());
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];
}
}
PIMathMatrix(const PIVector2D<Type> &val) {
if (!val.isEmpty()) {
_V2D::resize(val.rows(), val.cols());
PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);
}
}
/**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
* @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @return identitied matrix of type PIMathMatrix
* @return identity matrix of type PIMathMatrix
*/
static _CMatrix identity(const uint cols, const uint rows) {_CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0)); return tm;}
static _CMatrix identity(const uint cols, const uint rows) {
_CMatrix tm(cols, rows);
for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0));
return tm;
}
/**
* @brief Сreates a matrix whose row equal to vector
* @brief Creates a matrix whose row equal to vector
*
* @param val is the vector type PIMathVector
* @return matrix identitied by vector
* @return identity matrix by vector
*/
static _CMatrix matrixRow(const PIMathVector<Type> & val) {return _CMatrix(val.size(), 1, val.toVector());}
static _CMatrix matrixRow(const PIMathVector<Type> &val) { return _CMatrix(val.size(), 1, val.toVector()); }
/**
* @brief Сreates a matrix whose column equal to vector
* @brief Creates a matrix whose column equal to vector
*
* @param val is the vector type PIMathVector
* @return matrix identitied by vector
* @return identity matrix by vector
*/
static _CMatrix matrixCol(const PIMathVector<Type> & val) {return _CMatrix(1, val.size(), val.toVector());}
static _CMatrix matrixCol(const PIMathVector<Type> &val) { return _CMatrix(1, val.size(), val.toVector()); }
/**
* @brief Set the selected column in matrix
@@ -653,7 +846,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix
*/
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) _V2D::element(i, index) = v[i]; return *this;}
_CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) _V2D::element(i, index) = v[i];
return *this;
}
/**
* @brief Set the selected row in matrix
@@ -662,7 +858,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
*/
_CMatrix & setRow(uint index, const _CMCol & v) {PIMM_FOR_C(i) _V2D::element(index, i) = v[i]; return *this;}
_CMatrix &setRow(uint index, const _CMCol &v) {
PIMM_FOR_C(i) _V2D::element(index, i) = v[i];
return *this;
}
/**
* @brief Method which changes selected rows in a matrix
@@ -671,7 +870,10 @@ public:
* @param r1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix & swapCols(uint r0, uint r1) {PIMM_FOR_C(i) {piSwap(_V2D::element(i, r0), _V2D::element(i, r1));} return *this;}
_CMatrix &swapCols(uint r0, uint r1) {
PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); }
return *this;
}
/**
* @brief Method which changes selected columns in a matrix
@@ -680,7 +882,10 @@ public:
* @param c1 is the number of the second selected column
* @return matrix type _CMatrix
*/
_CMatrix & swapRows(uint c0, uint c1) {PIMM_FOR_R(i) {piSwap(_V2D::element(c0, i), _V2D::element(c1, i));} return *this;}
_CMatrix &swapRows(uint c0, uint c1) {
PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); }
return *this;
}
/**
* @brief Method which fills the matrix with selected value
@@ -688,35 +893,44 @@ public:
* @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix
*/
_CMatrix & fill(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] = v; return *this;}
_CMatrix &fill(const Type &v) {
PIMM_FOR_A(i) _V2D::mat[i] = v;
return *this;
}
/**
* @brief Method which checks if matrix is square
*
* @return true if matrix is square, else false
*/
bool isSquare() const {return _V2D::cols_ == _V2D::rows_;}
bool isSquare() const { return _V2D::cols_ == _V2D::rows_; }
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
*/
bool isIdentity() const {PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0)) return false; return true;}
bool isIdentity() const {
PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
return true;
}
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
*/
bool isNull() const {PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false; return true;}
bool isNull() const {
PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false;
return true;
}
/**
* @brief Method which checks if matrix is empty
*
* @return true if matrix is valid, else false
*/
bool isValid() const {return !PIVector2D<Type>::isEmpty();}
bool isValid() const { return !PIVector2D<Type>::isEmpty(); }
/**
* @brief Matrix assignment to matrix "v"
@@ -724,7 +938,10 @@ public:
* @param v matrix for the assigment
* @return matrix equal with v
*/
_CMatrix & operator =(const PIVector<PIVector<Type> > & v) {*this = _CMatrix(v); return *this;}
_CMatrix &operator=(const PIVector<PIVector<Type> > &v) {
*this = _CMatrix(v);
return *this;
}
/**
* @brief Compare with matrix "sm"
@@ -732,7 +949,10 @@ public:
* @param sm matrix for the compare
* @return if matrices are equal true, else false
*/
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false; return true;}
bool operator==(const _CMatrix &sm) const {
PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false;
return true;
}
/**
* @brief Compare with matrix "sm"
@@ -740,42 +960,46 @@ public:
* @param sm matrix for the compare
* @return if matrices are not equal true, else false
*/
bool operator !=(const _CMatrix & sm) const {return !(*this == sm);}
bool operator!=(const _CMatrix &sm) const { return !(*this == sm); }
/**
* @brief Addition assignment with matrix "sm"
*
* @param sm matrix for the addition assigment
*/
void operator +=(const _CMatrix & sm) {PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i];}
void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; }
/**
* @brief Subtraction assignment with matrix "sm"
*
* @param sm matrix for the subtraction assigment
*/
void operator -=(const _CMatrix & sm) {PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i];}
void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; }
/**
* @brief Multiplication assignment with value "v"
*
* @param v value for the multiplication assigment
*/
void operator *=(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] *= v;}
void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; }
/**
* @brief Division assignment with value "v"
*
* @param v value for the division assigment
*/
void operator /=(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] /= v;}
void operator/=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] /= v; }
/**
* @brief Matrix substraction
*
* @return the result of matrix substraction
*/
_CMatrix operator -() const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i]; return tm;}
_CMatrix operator-() const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i];
return tm;
}
/**
* @brief Matrix addition
@@ -783,15 +1007,23 @@ public:
* @param sm is matrix term
* @return the result of matrix addition
*/
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] += sm.mat[i]; return tm;}
_CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] += sm.mat[i];
return tm;
}
/**
* @brief Matrix substraction
* @brief Matrix subtraction
*
* @param sm is matrix subtractor
* @return the result of matrix substraction
* @return the result of matrix subtraction
*/
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i]; return tm;}
_CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i];
return tm;
}
/**
* @brief Matrix multiplication
@@ -799,7 +1031,11 @@ public:
* @param v is value factor
* @return the result of matrix multiplication
*/
_CMatrix operator *(const Type & v) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] *= v; return tm;}
_CMatrix operator*(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] *= v;
return tm;
}
/**
* @brief Matrix division
@@ -807,14 +1043,18 @@ public:
* @param v is value divider
* @return the result of matrix division
*/
_CMatrix operator /(const Type & v) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] /= v; return tm;}
_CMatrix operator/(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] /= v;
return tm;
}
/**
* @brief Determinant of the matrix is calculated
*
* @return matrix determinant
*/
Type determinant(bool * ok = 0) const {
Type determinant(bool *ok = 0) const {
_CMatrix m(*this);
bool k;
Type ret = Type(0);
@@ -834,7 +1074,7 @@ public:
*
* @return matrix trace
*/
Type trace(bool * ok = 0) const {
Type trace(bool *ok = 0) const {
Type ret = Type(0);
if (!isSquare()) {
if (ok != 0) *ok = false;
@@ -852,7 +1092,7 @@ public:
*
* @return transformed upper triangular matrix
*/
_CMatrix & toUpperTriangular(bool * ok = 0) {
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
return *this;
@@ -878,7 +1118,7 @@ public:
for (uint k = i; k < _V2D::cols_; ++k) smat.element(k, j) -= mul * smat.element(k, i);
}
if (i < _V2D::cols_ - 1) {
if (_PIMathMatrixNullCompare(smat.element(i+1, i+1))) {
if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) {
if (ok != 0) *ok = false;
return *this;
}
@@ -894,7 +1134,7 @@ public:
*
* @return inverted matrix
*/
_CMatrix & invert(bool * ok = 0, _CMCol * sv = 0) {
_CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) {
if (!isSquare()) {
if (ok != 0) *ok = false;
return *this;
@@ -926,7 +1166,7 @@ public:
if (sv != 0) (*sv)[j] -= mul * (*sv)[i];
}
if (i < _V2D::cols_ - 1) {
if (_PIMathMatrixNullCompare(smat.element(i+1, i+1))) {
if (_PIMathMatrixNullCompare(smat.element(i + 1, i + 1))) {
if (ok != 0) *ok = false;
return *this;
}
@@ -954,14 +1194,22 @@ public:
*
* @return inverted matrix
*/
_CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;}
_CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/**
* @brief Matrix transposition operation
*
* @return transposed matrix
*/
_CMatrix transposed() const {_CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c); return tm;}
_CMatrix transposed() const {
_CMatrix tm(_V2D::rows_, _V2D::cols_);
PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c);
return tm;
}
};
@@ -971,18 +1219,36 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m
#endif
template<typename Type>
inline PICout operator <<(PICout s, const PIMathMatrix<Type> & m) {s << "Matrix{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";} s << "}"; return s;}
inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
s << "Matrix{";
for (uint r = 0; r < m.rows(); ++r) {
for (uint c = 0; c < m.cols(); ++c) {
s << m.element(r, c);
if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";
}
if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";
}
s << "}";
return s;
}
template<typename Type>
inline PIByteArray & operator <<(PIByteArray & s, const PIMathMatrix<Type> & v) {s << (const PIVector2D<Type> &)v; return s;}
inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix<Type> &v) {
s << (const PIVector2D<Type> &) v;
return s;
}
template<typename Type>
inline PIByteArray & operator >>(PIByteArray & s, PIMathMatrix<Type> & v) {s >> (PIVector2D<Type> &)v; return s;}
inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
s >> (PIVector2D<Type> &) v;
return s;
}
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
template<typename Type>
inline PIMathMatrix<Type> operator *(const PIMathMatrix<Type> & fm,
const PIMathMatrix<Type> & sm) {
inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
const PIMathMatrix<Type> &sm) {
uint cr = fm.cols(), rows0 = fm.rows(), cols1 = sm.cols();
PIMathMatrix<Type> tm(cols1, rows0);
if (fm.cols() != sm.rows()) return tm;
@@ -1000,8 +1266,8 @@ inline PIMathMatrix<Type> operator *(const PIMathMatrix<Type> & fm,
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
template<typename Type>
inline PIMathVector<Type> operator *(const PIMathMatrix<Type> & fm,
const PIMathVector<Type> & sv) {
inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
const PIMathVector<Type> &sv) {
uint c = fm.cols(), r = fm.rows();
PIMathVector<Type> tv(r);
if (c != sv.size()) return tv;
@@ -1018,8 +1284,8 @@ inline PIMathVector<Type> operator *(const PIMathMatrix<Type> & fm,
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
template<typename Type>
inline PIMathVector<Type> operator *(const PIMathVector<Type> & sv,
const PIMathMatrix<Type> & fm) {
inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
const PIMathMatrix<Type> &fm) {
uint c = fm.cols(), r = fm.rows();
PIMathVector<Type> tv(c);
Type t;
@@ -1034,7 +1300,7 @@ inline PIMathVector<Type> operator *(const PIMathVector<Type> & sv,
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
template<typename Type>
inline PIMathMatrix<Type> operator *(const Type & x, const PIMathMatrix<Type> & v) {
inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v) {
return v * x;
}
@@ -1042,9 +1308,11 @@ typedef PIMathMatrix<int> PIMathMatrixi;
typedef PIMathMatrix<double> PIMathMatrixd;
template<typename T>
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > & m) {
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > &m) {
PIMathMatrix<complex<T> > ret(m);
for (uint r = 0; r < ret.rows(); ++r) for (uint c = 0; c < ret.cols(); ++c) ret.element(r, c).imag(-(ret.element(r, c).imag()));
for (uint r = 0; r < ret.rows(); ++r)
for (uint c = 0; c < ret.cols(); ++c)
ret.element(r, c).imag(-(ret.element(r, c).imag()));
return ret.transposed();
}