Fix code formatting & grammar mistakes

This commit is contained in:
2020-09-03 16:57:46 +03:00
committed by Федоренко Дмитрий Витальевич
parent 33d1abd14c
commit 740d38ccce

View File

@@ -29,7 +29,6 @@
#include "pimathcomplex.h" #include "pimathcomplex.h"
template<typename T> template<typename T>
inline bool _PIMathMatrixNullCompare(const T v) { inline bool _PIMathMatrixNullCompare(const T v) {
static_assert(std::is_floating_point<T>::value, "Type must be floating point"); static_assert(std::is_floating_point<T>::value, "Type must be floating point");
@@ -40,6 +39,7 @@ template<>
inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) { inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
return (abs(v) < float(1E-200)); return (abs(v) < float(1E-200));
} }
template<> template<>
inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) { inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
return (abs(v) < double(1E-200)); return (abs(v) < double(1E-200));
@@ -56,6 +56,7 @@ inline bool _PIMathMatrixNullCompare<complexd >(const complexd v) {
#define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v) #define PIMM_FOR_R(v) for (uint v = 0; v < Rows; ++v)
#pragma pack(push, 1) #pragma pack(push, 1)
//! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix //! \brief A class that works with square matrix operations, the input data of which are columns, rows and the data type of the matrix
template<uint Rows, uint Cols = Rows, typename Type = double> template<uint Rows, uint Cols = Rows, typename Type = double>
class PIP_EXPORT PIMathMatrixT { class PIP_EXPORT PIMathMatrixT {
@@ -68,14 +69,23 @@ class PIP_EXPORT PIMathMatrixT {
static_assert(Cols > 0, "Column count must be > 0"); static_assert(Cols > 0, "Column count must be > 0");
public: public:
PIMathMatrixT() { resize(Rows, Cols); } PIMathMatrixT() { resize(Rows, Cols); }
PIMathMatrixT(const PIVector<Type> & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];}
PIMathMatrixT(const PIVector<Type> &val) {
resize(Rows, Cols);
int i = 0;
PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];
}
/** /**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
* *
* @return identitied matrix of type PIMathMatrixT * @return identitied matrix of type PIMathMatrixT
*/ */
static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix identity() {
_CMatrix tm = _CMatrix();
PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0));
return tm;
}
/** /**
* @brief Creates a matrix that is filled with elements * @brief Creates a matrix that is filled with elements
@@ -83,7 +93,11 @@ public:
* @param v is a parameter the type and value of which is selected and later filled into the matrix * @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix of type PIMathMatrixT * @return filled matrix of type PIMathMatrixT
*/ */
static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;} static _CMatrix filled(const Type &v) {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = v;
return tm;
}
/** /**
* @brief Rotation the matrix by an "angle". Works only with 2x2 matrix, * @brief Rotation the matrix by an "angle". Works only with 2x2 matrix,
@@ -168,7 +182,11 @@ public:
* @param index is the number of the selected column * @param index is the number of the selected column
* @return column in PIMathVectorT format * @return column in PIMathVectorT format
*/ */
_CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;} _CMCol col(uint index) {
_CMCol tv;
PIMM_FOR_R(i) tv[i] = m[i][index];
return tv;
}
/** /**
* @brief Method which returns the selected row in PIMathVectorT format * @brief Method which returns the selected row in PIMathVectorT format
@@ -176,7 +194,11 @@ public:
* @param index is the number of the selected row * @param index is the number of the selected row
* @return row in PIMathVectorT format * @return row in PIMathVectorT format
*/ */
_CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;} _CMRow row(uint index) {
_CMRow tv;
PIMM_FOR_C(i) tv[i] = m[index][i];
return tv;
}
/** /**
* @brief Set the selected column in matrix * @brief Set the selected column in matrix
@@ -185,7 +207,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the column * @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;} _CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) m[i][index] = v[i];
return *this;
}
/** /**
* @brief Set the selected row in matrix * @brief Set the selected row in matrix
@@ -194,7 +219,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the row * @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;} _CMatrix &setRow(uint index, const _CMRow &v) {
PIMM_FOR_C(i) m[index][i] = v[i];
return *this;
}
/** /**
* @brief Method which changes selected rows in a matrix * @brief Method which changes selected rows in a matrix
@@ -203,7 +231,15 @@ public:
* @param r1 is the number of the second selected row * @param r1 is the number of the second selected row
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;} _CMatrix &swapRows(uint r0, uint r1) {
Type t;
PIMM_FOR_C(i) {
t = m[r0][i];
m[r0][i] = m[r1][i];
m[r1][i] = t;
}
return *this;
}
/** /**
* @brief Method which changes selected columns in a matrix * @brief Method which changes selected columns in a matrix
@@ -212,7 +248,15 @@ public:
* @param c1 is the number of the second selected column * @param c1 is the number of the second selected column
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;} _CMatrix &swapCols(uint c0, uint c1) {
Type t;
PIMM_FOR_R(i) {
t = m[i][c0];
m[i][c0] = m[i][c1];
m[i][c1] = t;
}
return *this;
}
/** /**
* @brief Method which fills the matrix with selected value * @brief Method which fills the matrix with selected value
@@ -220,7 +264,10 @@ public:
* @param v is a parameter the type and value of which is selected and later filled into the matrix * @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix * @return filled matrix type _CMatrix
*/ */
_CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;} _CMatrix &fill(const Type &v) {
PIMM_FOR_WB(r, c) m[r][c] = v;
return *this;
}
/** /**
* @brief Method which checks if matrix is square * @brief Method which checks if matrix is square
@@ -234,14 +281,20 @@ public:
* *
* @return true if matrix is identitied, else false * @return true if matrix is identitied, else false
*/ */
bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;} bool isIdentity() const {
PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false;
return true;
}
/** /**
* @brief Method which checks if every elements of matrix are zeros * @brief Method which checks if every elements of matrix are zeros
* *
* @return true if matrix is null, else false * @return true if matrix is null, else false
*/ */
bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;} bool isNull() const {
PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false;
return true;
}
/** /**
* @brief Full access to elements reference by row "row" and col "col" * @brief Full access to elements reference by row "row" and col "col"
@@ -283,7 +336,10 @@ public:
* @param sm matrix for the assigment * @param sm matrix for the assigment
* @return matrix equal with sm * @return matrix equal with sm
*/ */
_CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;} _CMatrix &operator=(const _CMatrix &sm) {
memcpy(m, sm.m, sizeof(Type) * Cols * Rows);
return *this;
}
/** /**
* @brief Compare with matrix "sm" * @brief Compare with matrix "sm"
@@ -291,7 +347,10 @@ public:
* @param sm matrix for the compare * @param sm matrix for the compare
* @return if matrices are equal true, else false * @return if matrices are equal true, else false
*/ */
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;} bool operator==(const _CMatrix &sm) const {
PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false;
return true;
}
/** /**
* @brief Compare with matrix "sm" * @brief Compare with matrix "sm"
@@ -334,7 +393,11 @@ public:
* *
* @return the result of matrix substraction * @return the result of matrix substraction
*/ */
_CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;} _CMatrix operator-() const {
_CMatrix tm;
PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c];
return tm;
}
/** /**
* @brief Matrix addition * @brief Matrix addition
@@ -342,7 +405,11 @@ public:
* @param sm is matrix term * @param sm is matrix term
* @return the result of matrix addition * @return the result of matrix addition
*/ */
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;} _CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c];
return tm;
}
/** /**
* @brief Matrix substraction * @brief Matrix substraction
@@ -350,7 +417,11 @@ public:
* @param sm is matrix subtractor * @param sm is matrix subtractor
* @return the result of matrix substraction * @return the result of matrix substraction
*/ */
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;} _CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c];
return tm;
}
/** /**
* @brief Matrix multiplication * @brief Matrix multiplication
@@ -358,7 +429,11 @@ public:
* @param v is value factor * @param v is value factor
* @return the result of matrix multiplication * @return the result of matrix multiplication
*/ */
_CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;} _CMatrix operator*(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] *= v;
return tm;
}
/** /**
* @brief Matrix division * @brief Matrix division
@@ -366,7 +441,11 @@ public:
* @param v is value divider * @param v is value divider
* @return the result of matrix division * @return the result of matrix division
*/ */
_CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;} _CMatrix operator/(const Type &v) const {
_CMatrix tm = _CMatrix(*this);
PIMM_FOR_WB(r, c) tm.m[r][c] /= v;
return tm;
}
/** /**
* @brief Determinant of the matrix is calculated * @brief Determinant of the matrix is calculated
@@ -488,34 +567,120 @@ public:
* *
* @return inverted matrix * @return inverted matrix
*/ */
_CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/** /**
* @brief Matrix transposition operation * @brief Matrix transposition operation
* *
* @return transposed matrix * @return transposed matrix
*/ */
_CMatrixI transposed() const {_CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; return tm;} _CMatrixI transposed() const {
_CMatrixI tm;
PIMM_FOR_WB(r, c) tm[c][r] = m[r][c];
return tm;
}
private: private:
void resize(uint rows_, uint cols_, const Type & new_value = Type()) {r_ = rows_; c_ = cols_; PIMM_FOR_WB(r, c) m[r][c] = new_value;} void resize(uint rows_, uint cols_, const Type &new_value = Type()) {
r_ = rows_;
c_ = cols_;
PIMM_FOR_WB(r, c) m[r][c] = new_value;
}
int c_, r_; int c_, r_;
Type m[Rows][Cols]; Type m[Rows][Cols];
}; };
#pragma pack(pop) #pragma pack(pop)
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<2u, 2u> tm; tm[0][0] = tm[1][1] = c; tm[0][1] = -s; tm[1][0] = s; return tm;} template<>
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = factor; tm[1][1] = 1.; return tm;} inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::rotation(double angle) {
template<> inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {PIMathMatrixT<2u, 2u> tm; tm[0][0] = 1.; tm[1][1] = factor; return tm;} double c = cos(angle), s = sin(angle);
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = tm[1][1] = c;
tm[0][1] = -s;
tm[1][0] = s;
return tm;
}
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[0][0] = 1.; tm[1][1] = tm[2][2] = c; tm[2][1] = s; tm[1][2] = -s; return tm;} template<>
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[1][1] = 1.; tm[0][0] = tm[2][2] = c; tm[2][0] = -s; tm[0][2] = s; return tm;} inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleX(double factor) {
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {double c = cos(angle), s = sin(angle); PIMathMatrixT<3u, 3u> tm; tm[2][2] = 1.; tm[0][0] = tm[1][1] = c; tm[1][0] = s; tm[0][1] = -s; return tm;} PIMathMatrixT<2u, 2u> tm;
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {PIMathMatrixT<3u, 3u> tm; tm[1][1] = tm[2][2] = 1.; tm[0][0] = factor; return tm;} tm[0][0] = factor;
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[2][2] = 1.; tm[1][1] = factor; return tm;} tm[1][1] = 1.;
template<> inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {PIMathMatrixT<3u, 3u> tm; tm[0][0] = tm[1][1] = 1.; tm[2][2] = factor; return tm;} return tm;
}
template<>
inline PIMathMatrixT<2u, 2u> PIMathMatrixT<2u, 2u>::scaleY(double factor) {
PIMathMatrixT<2u, 2u> tm;
tm[0][0] = 1.;
tm[1][1] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationX(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = 1.;
tm[1][1] = tm[2][2] = c;
tm[2][1] = s;
tm[1][2] = -s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationY(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[1][1] = 1.;
tm[0][0] = tm[2][2] = c;
tm[2][0] = -s;
tm[0][2] = s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::rotationZ(double angle) {
double c = cos(angle), s = sin(angle);
PIMathMatrixT<3u, 3u> tm;
tm[2][2] = 1.;
tm[0][0] = tm[1][1] = c;
tm[1][0] = s;
tm[0][1] = -s;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleX(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[1][1] = tm[2][2] = 1.;
tm[0][0] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleY(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = tm[2][2] = 1.;
tm[1][1] = factor;
return tm;
}
template<>
inline PIMathMatrixT<3u, 3u> PIMathMatrixT<3u, 3u>::scaleZ(double factor) {
PIMathMatrixT<3u, 3u> tm;
tm[0][0] = tm[1][1] = 1.;
tm[2][2] = factor;
return tm;
}
#ifdef PIP_STD_IOSTREAM #ifdef PIP_STD_IOSTREAM
template<uint Rows, uint Cols, typename Type> template<uint Rows, uint Cols, typename Type>
@@ -523,7 +688,14 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Co
#endif #endif
template<uint Rows, uint Cols, typename Type> template<uint Rows, uint Cols, typename Type>
inline PICout operator <<(PICout s, const PIMathMatrixT<Rows, Cols, Type> & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << PICoutManipulators::NewLine << " ";} s << "}"; return s;} inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
s << "{";
PIMM_FOR_I(r, c) s << m[r][c];
if (c < Cols - 1 || r < Rows - 1) s << ", "; }
if (r < Rows - 1) s << PICoutManipulators::NewLine << " "; }
s << "}";
return s;
}
/// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1} /// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1}
template<uint CR, uint Rows0, uint Cols1, typename Type> template<uint CR, uint Rows0, uint Cols1, typename Type>
@@ -617,32 +789,53 @@ class PIP_EXPORT PIMathMatrix : public PIVector2D<Type> {
typedef PIMathVector<Type> _CMCol; typedef PIMathVector<Type> _CMCol;
public: public:
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); } PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> & val) {_V2D::resize(rows, cols); int i=0; PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];}
PIMathMatrix(const PIVector<PIVector<Type> > & val) {if(!val.isEmpty()) {_V2D::resize(val.size(), val[0].size()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];}} PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> &val) {
PIMathMatrix(const PIVector2D<Type> & val) {if(!val.isEmpty()) {_V2D::resize(val.rows(), val.cols()); PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);}} _V2D::resize(rows, cols);
int i = 0;
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];
}
PIMathMatrix(const PIVector<PIVector<Type> > &val) {
if (!val.isEmpty()) {
_V2D::resize(val.size(), val[0].size());
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[r][c];
}
}
PIMathMatrix(const PIVector2D<Type> &val) {
if (!val.isEmpty()) {
_V2D::resize(val.rows(), val.cols());
PIMM_FOR_I(c, r) _V2D::element(r, c) = val.element(r, c);
}
}
/** /**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros * @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
* *
* @param cols is number of matrix column uint type * @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type * @param rows is number of matrix row uint type
* @return identitied matrix of type PIMathMatrix * @return identity matrix of type PIMathMatrix
*/ */
static _CMatrix identity(const uint cols, const uint rows) {_CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0)); return tm;} static _CMatrix identity(const uint cols, const uint rows) {
_CMatrix tm(cols, rows);
for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0));
return tm;
}
/** /**
* @brief Сreates a matrix whose row equal to vector * @brief Creates a matrix whose row equal to vector
* *
* @param val is the vector type PIMathVector * @param val is the vector type PIMathVector
* @return matrix identitied by vector * @return identity matrix by vector
*/ */
static _CMatrix matrixRow(const PIMathVector<Type> &val) { return _CMatrix(val.size(), 1, val.toVector()); } static _CMatrix matrixRow(const PIMathVector<Type> &val) { return _CMatrix(val.size(), 1, val.toVector()); }
/** /**
* @brief Сreates a matrix whose column equal to vector * @brief Creates a matrix whose column equal to vector
* *
* @param val is the vector type PIMathVector * @param val is the vector type PIMathVector
* @return matrix identitied by vector * @return identity matrix by vector
*/ */
static _CMatrix matrixCol(const PIMathVector<Type> &val) { return _CMatrix(1, val.size(), val.toVector()); } static _CMatrix matrixCol(const PIMathVector<Type> &val) { return _CMatrix(1, val.size(), val.toVector()); }
@@ -653,7 +846,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the column * @param v is a vector of the type _CMCol that needs to fill the column
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) _V2D::element(i, index) = v[i]; return *this;} _CMatrix &setCol(uint index, const _CMCol &v) {
PIMM_FOR_R(i) _V2D::element(i, index) = v[i];
return *this;
}
/** /**
* @brief Set the selected row in matrix * @brief Set the selected row in matrix
@@ -662,7 +858,10 @@ public:
* @param v is a vector of the type _CMCol that needs to fill the row * @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & setRow(uint index, const _CMCol & v) {PIMM_FOR_C(i) _V2D::element(index, i) = v[i]; return *this;} _CMatrix &setRow(uint index, const _CMCol &v) {
PIMM_FOR_C(i) _V2D::element(index, i) = v[i];
return *this;
}
/** /**
* @brief Method which changes selected rows in a matrix * @brief Method which changes selected rows in a matrix
@@ -671,7 +870,10 @@ public:
* @param r1 is the number of the second selected row * @param r1 is the number of the second selected row
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & swapCols(uint r0, uint r1) {PIMM_FOR_C(i) {piSwap(_V2D::element(i, r0), _V2D::element(i, r1));} return *this;} _CMatrix &swapCols(uint r0, uint r1) {
PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); }
return *this;
}
/** /**
* @brief Method which changes selected columns in a matrix * @brief Method which changes selected columns in a matrix
@@ -680,7 +882,10 @@ public:
* @param c1 is the number of the second selected column * @param c1 is the number of the second selected column
* @return matrix type _CMatrix * @return matrix type _CMatrix
*/ */
_CMatrix & swapRows(uint c0, uint c1) {PIMM_FOR_R(i) {piSwap(_V2D::element(c0, i), _V2D::element(c1, i));} return *this;} _CMatrix &swapRows(uint c0, uint c1) {
PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); }
return *this;
}
/** /**
* @brief Method which fills the matrix with selected value * @brief Method which fills the matrix with selected value
@@ -688,7 +893,10 @@ public:
* @param v is a parameter the type and value of which is selected and later filled into the matrix * @param v is a parameter the type and value of which is selected and later filled into the matrix
* @return filled matrix type _CMatrix * @return filled matrix type _CMatrix
*/ */
_CMatrix & fill(const Type & v) {PIMM_FOR_A(i) _V2D::mat[i] = v; return *this;} _CMatrix &fill(const Type &v) {
PIMM_FOR_A(i) _V2D::mat[i] = v;
return *this;
}
/** /**
* @brief Method which checks if matrix is square * @brief Method which checks if matrix is square
@@ -702,14 +910,20 @@ public:
* *
* @return true if matrix is identitied, else false * @return true if matrix is identitied, else false
*/ */
bool isIdentity() const {PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0)) return false; return true;} bool isIdentity() const {
PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
return true;
}
/** /**
* @brief Method which checks if every elements of matrix are zeros * @brief Method which checks if every elements of matrix are zeros
* *
* @return true if matrix is null, else false * @return true if matrix is null, else false
*/ */
bool isNull() const {PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false; return true;} bool isNull() const {
PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false;
return true;
}
/** /**
* @brief Method which checks if matrix is empty * @brief Method which checks if matrix is empty
@@ -724,7 +938,10 @@ public:
* @param v matrix for the assigment * @param v matrix for the assigment
* @return matrix equal with v * @return matrix equal with v
*/ */
_CMatrix & operator =(const PIVector<PIVector<Type> > & v) {*this = _CMatrix(v); return *this;} _CMatrix &operator=(const PIVector<PIVector<Type> > &v) {
*this = _CMatrix(v);
return *this;
}
/** /**
* @brief Compare with matrix "sm" * @brief Compare with matrix "sm"
@@ -732,7 +949,10 @@ public:
* @param sm matrix for the compare * @param sm matrix for the compare
* @return if matrices are equal true, else false * @return if matrices are equal true, else false
*/ */
bool operator ==(const _CMatrix & sm) const {PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false; return true;} bool operator==(const _CMatrix &sm) const {
PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false;
return true;
}
/** /**
* @brief Compare with matrix "sm" * @brief Compare with matrix "sm"
@@ -775,7 +995,11 @@ public:
* *
* @return the result of matrix substraction * @return the result of matrix substraction
*/ */
_CMatrix operator -() const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i]; return tm;} _CMatrix operator-() const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i];
return tm;
}
/** /**
* @brief Matrix addition * @brief Matrix addition
@@ -783,15 +1007,23 @@ public:
* @param sm is matrix term * @param sm is matrix term
* @return the result of matrix addition * @return the result of matrix addition
*/ */
_CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] += sm.mat[i]; return tm;} _CMatrix operator+(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] += sm.mat[i];
return tm;
}
/** /**
* @brief Matrix substraction * @brief Matrix subtraction
* *
* @param sm is matrix subtractor * @param sm is matrix subtractor
* @return the result of matrix substraction * @return the result of matrix subtraction
*/ */
_CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i]; return tm;} _CMatrix operator-(const _CMatrix &sm) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i];
return tm;
}
/** /**
* @brief Matrix multiplication * @brief Matrix multiplication
@@ -799,7 +1031,11 @@ public:
* @param v is value factor * @param v is value factor
* @return the result of matrix multiplication * @return the result of matrix multiplication
*/ */
_CMatrix operator *(const Type & v) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] *= v; return tm;} _CMatrix operator*(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] *= v;
return tm;
}
/** /**
* @brief Matrix division * @brief Matrix division
@@ -807,7 +1043,11 @@ public:
* @param v is value divider * @param v is value divider
* @return the result of matrix division * @return the result of matrix division
*/ */
_CMatrix operator /(const Type & v) const {_CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] /= v; return tm;} _CMatrix operator/(const Type &v) const {
_CMatrix tm(*this);
PIMM_FOR_A(i) tm.mat[i] /= v;
return tm;
}
/** /**
* @brief Determinant of the matrix is calculated * @brief Determinant of the matrix is calculated
@@ -954,14 +1194,22 @@ public:
* *
* @return inverted matrix * @return inverted matrix
*/ */
_CMatrix inverted(bool * ok = 0) const {_CMatrix tm(*this); tm.invert(ok); return tm;} _CMatrix inverted(bool *ok = 0) const {
_CMatrix tm(*this);
tm.invert(ok);
return tm;
}
/** /**
* @brief Matrix transposition operation * @brief Matrix transposition operation
* *
* @return transposed matrix * @return transposed matrix
*/ */
_CMatrix transposed() const {_CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c); return tm;} _CMatrix transposed() const {
_CMatrix tm(_V2D::rows_, _V2D::cols_);
PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c);
return tm;
}
}; };
@@ -971,12 +1219,30 @@ inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m
#endif #endif
template<typename Type> template<typename Type>
inline PICout operator <<(PICout s, const PIMathMatrix<Type> & m) {s << "Matrix{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";} s << "}"; return s;} inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
s << "Matrix{";
for (uint r = 0; r < m.rows(); ++r) {
for (uint c = 0; c < m.cols(); ++c) {
s << m.element(r, c);
if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";
}
if (r < m.rows() - 1) s << PICoutManipulators::NewLine << " ";
}
s << "}";
return s;
}
template<typename Type> template<typename Type>
inline PIByteArray & operator <<(PIByteArray & s, const PIMathMatrix<Type> & v) {s << (const PIVector2D<Type> &)v; return s;} inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix<Type> &v) {
s << (const PIVector2D<Type> &) v;
return s;
}
template<typename Type> template<typename Type>
inline PIByteArray & operator >>(PIByteArray & s, PIMathMatrix<Type> & v) {s >> (PIVector2D<Type> &)v; return s;} inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
s >> (PIVector2D<Type> &) v;
return s;
}
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0} /// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
@@ -1044,7 +1310,9 @@ typedef PIMathMatrix<double> PIMathMatrixd;
template<typename T> template<typename T>
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > &m) { PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > &m) {
PIMathMatrix<complex<T> > ret(m); PIMathMatrix<complex<T> > ret(m);
for (uint r = 0; r < ret.rows(); ++r) for (uint c = 0; c < ret.cols(); ++c) ret.element(r, c).imag(-(ret.element(r, c).imag())); for (uint r = 0; r < ret.rows(); ++r)
for (uint c = 0; c < ret.cols(); ++c)
ret.element(r, c).imag(-(ret.element(r, c).imag()));
return ret.transposed(); return ret.transposed();
} }