diff --git a/libs/main/math/pimathmatrix.h b/libs/main/math/pimathmatrix.h index 9a767dd5..fe1c6a66 100644 --- a/libs/main/math/pimathmatrix.h +++ b/libs/main/math/pimathmatrix.h @@ -85,19 +85,19 @@ class PIP_EXPORT PIMathMatrixT { static_assert(Rows > 0, "Row count must be > 0"); static_assert(Cols > 0, "Column count must be > 0"); public: - /** - * @brief Constructor that calls the private resize method - * - * @return identitied matrix of type PIMathMatrixT - */ + /** + * @brief Constructor that calls the private resize method + * + * @return identitied matrix of type PIMathMatrixT + */ PIMathMatrixT() { resize(Rows, Cols); } - /** - * @brief Constructor that calls the private resize method - * - * @param val is the PIVector with which the matrix is ​​filled - * @return identitied matrix of type PIMathMatrixT - */ + /** + * @brief Constructor that calls the private resize method + * + * @param val is the PIVector with which the matrix is ​​filled + * @return identitied matrix of type PIMathMatrixT + */ PIMathMatrixT(const PIVector &val) { resize(Rows, Cols); int i = 0; @@ -105,10 +105,10 @@ public: } /** - * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros - * - * @return identity matrix of type PIMathMatrixT - */ + * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros + * + * @return identity matrix of type PIMathMatrixT + */ static _CMatrix identity() { _CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); @@ -116,11 +116,11 @@ public: } /** - * @brief Creates a matrix that is filled with elements - * - * @param v is a parameter the type and value of which is selected and later filled into the matrix - * @return filled matrix of type PIMathMatrixT - */ + * @brief Creates a matrix that is filled with elements + * + * @param v is a parameter the type and value of which is selected and later filled into the matrix + * @return filled matrix of type PIMathMatrixT + */ static _CMatrix filled(const Type &v) { _CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; @@ -128,73 +128,73 @@ public: } /** - * @brief Rotation the matrix by an "angle". Works only with 2x2 matrix, - * else return default construction of PIMathMatrixT - * - * @param angle is the angle of rotation of the matrix - * @return rotated matrix - */ + * @brief Rotation the matrix by an "angle". Works only with 2x2 matrix, + * else return default construction of PIMathMatrixT + * + * @param angle is the angle of rotation of the matrix + * @return rotated matrix + */ static _CMatrix rotation(double angle) { return _CMatrix(); } /** - * @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix, - * else return default construction of PIMathMatrixT - * - * @param angle is the angle of rotation of the matrix along the X axis - * @return rotated matrix - */ + * @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix, + * else return default construction of PIMathMatrixT + * + * @param angle is the angle of rotation of the matrix along the X axis + * @return rotated matrix + */ static _CMatrix rotationX(double angle) { return _CMatrix(); } /** - * @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix, - * else return default construction of PIMathMatrixT - * - * @param angle is the angle of rotation of the matrix along the Y axis - * @return rotated matrix - */ + * @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix, + * else return default construction of PIMathMatrixT + * + * @param angle is the angle of rotation of the matrix along the Y axis + * @return rotated matrix + */ static _CMatrix rotationY(double angle) { return _CMatrix(); } /** - * @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix, - * else return default construction of PIMathMatrixT - * - * @param angle is the angle of rotation of the matrix along the Z axis - * @return rotated matrix - */ + * @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix, + * else return default construction of PIMathMatrixT + * + * @param angle is the angle of rotation of the matrix along the Z axis + * @return rotated matrix + */ static _CMatrix rotationZ(double angle) { return _CMatrix(); } /** - * @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix, - * else return default construction of PIMathMatrixT - * - * @param factor is the value of scaling by X axis - * @return rotated matrix - */ + * @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix, + * else return default construction of PIMathMatrixT + * + * @param factor is the value of scaling by X axis + * @return rotated matrix + */ static _CMatrix scaleX(double factor) { return _CMatrix(); } /** - * @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix, - * else return default construction of PIMathMatrixT - * - * @param factor is the value of scaling by Y axis - * @return rotated matrix - */ + * @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix, + * else return default construction of PIMathMatrixT + * + * @param factor is the value of scaling by Y axis + * @return rotated matrix + */ static _CMatrix scaleY(double factor) { return _CMatrix(); } /** - * @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix, - * else return default construction of PIMathMatrixT - * - * @param factor is the value of scaling by Z axis - * @return rotated matrix - */ + * @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix, + * else return default construction of PIMathMatrixT + * + * @param factor is the value of scaling by Z axis + * @return rotated matrix + */ static _CMatrix scaleZ(double factor) { return _CMatrix(); } /** - * @brief Method which returns number of columns in matrix - * - * @return type uint shows number of columns - */ + * @brief Method which returns number of columns in matrix + * + * @return type uint shows number of columns + */ uint cols() const { return Cols; } /** @@ -205,12 +205,12 @@ public: uint rows() const { return Rows; } /** - * @brief Method which returns the selected column in PIMathVectorT format. - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param index is the number of the selected column - * @return column in PIMathVectorT format - */ + * @brief Method which returns the selected column in PIMathVectorT format. + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param index is the number of the selected column + * @return column in PIMathVectorT format + */ _CMCol col(uint index) { _CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; @@ -218,12 +218,12 @@ public: } /** - * @brief Method which returns the selected row in PIMathVectorT format - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param index is the number of the selected row - * @return row in PIMathVectorT format - */ + * @brief Method which returns the selected row in PIMathVectorT format + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param index is the number of the selected row + * @return row in PIMathVectorT format + */ _CMRow row(uint index) { _CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; @@ -231,39 +231,39 @@ public: } /** - * @brief Set the selected column in matrix. - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param index is the number of the selected column - * @param v is a vector of the type _CMCol that needs to fill the column - * @return matrix type _CMatrix - */ + * @brief Set the selected column in matrix. + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param index is the number of the selected column + * @param v is a vector of the type _CMCol that needs to fill the column + * @return matrix type _CMatrix + */ _CMatrix &setCol(uint index, const _CMCol &v) { PIMM_FOR_R(i) m[i][index] = v[i]; return *this; } /** - * @brief Set the selected row in matrix - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param index is the number of the selected row - * @param v is a vector of the type _CMCol that needs to fill the row - * @return matrix type _CMatrix - */ + * @brief Set the selected row in matrix + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param index is the number of the selected row + * @param v is a vector of the type _CMCol that needs to fill the row + * @return matrix type _CMatrix + */ _CMatrix &setRow(uint index, const _CMRow &v) { PIMM_FOR_C(i) m[index][i] = v[i]; return *this; } /** - * @brief Method which changes selected rows in a matrix. - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param r0 is the number of the first selected row - * @param r1 is the number of the second selected row - * @return matrix type _CMatrix - */ + * @brief Method which changes selected rows in a matrix. + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param r0 is the number of the first selected row + * @param r1 is the number of the second selected row + * @return matrix type _CMatrix + */ _CMatrix &swapRows(uint r0, uint r1) { Type t; PIMM_FOR_C(i) { @@ -275,13 +275,13 @@ public: } /** - * @brief Method which changes selected columns in a matrix. - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param c0 is the number of the first selected column - * @param c1 is the number of the second selected column - * @return matrix type _CMatrix - */ + * @brief Method which changes selected columns in a matrix. + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param c0 is the number of the first selected column + * @param c1 is the number of the second selected column + * @return matrix type _CMatrix + */ _CMatrix &swapCols(uint c0, uint c1) { Type t; PIMM_FOR_R(i) { @@ -293,142 +293,142 @@ public: } /** - * @brief Method which fills the matrix with selected value - * - * @param v is a parameter the type and value of which is selected and later filled into the matrix - * @return filled matrix type _CMatrix - */ + * @brief Method which fills the matrix with selected value + * + * @param v is a parameter the type and value of which is selected and later filled into the matrix + * @return filled matrix type _CMatrix + */ _CMatrix &fill(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] = v; return *this; } /** - * @brief Method which checks if matrix is square - * - * @return true if matrix is square, else false - */ + * @brief Method which checks if matrix is square + * + * @return true if matrix is square, else false + */ bool isSquare() const { return cols() == rows(); } /** - * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros - * - * @return true if matrix is identitied, else false - */ + * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros + * + * @return true if matrix is identitied, else false + */ bool isIdentity() const { PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true; } /** - * @brief Method which checks if every elements of matrix are zeros - * - * @return true if matrix is null, else false - */ + * @brief Method which checks if every elements of matrix are zeros + * + * @return true if matrix is null, else false + */ bool isNull() const { PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true; } /** - * @brief Full access to elements reference by row "row" and col "col". - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param row is a parameter that shows the row number of the matrix of the selected element - * @param col is a parameter that shows the column number of the matrix of the selected element - * @return reference to element of matrix by row "row" and col "col" - */ + * @brief Full access to elements reference by row "row" and col "col". + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param row is a parameter that shows the row number of the matrix of the selected element + * @param col is a parameter that shows the column number of the matrix of the selected element + * @return reference to element of matrix by row "row" and col "col" + */ Type &at(uint row, uint col) { return m[row][col]; } /** - * @brief Full access to element by row "row" and col "col". - * If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param row is a parameter that shows the row number of the matrix of the selected element - * @param col is a parameter that shows the column number of the matrix of the selected element - * @return element of matrix by row "row" and col "col" - */ + * @brief Full access to element by row "row" and col "col". + * If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param row is a parameter that shows the row number of the matrix of the selected element + * @param col is a parameter that shows the column number of the matrix of the selected element + * @return element of matrix by row "row" and col "col" + */ Type at(uint row, uint col) const { return m[row][col]; } /** - * @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param row is a row of necessary matrix - * @return matrix row pointer - */ + * @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param row is a row of necessary matrix + * @return matrix row pointer + */ Type *operator[](uint row) { return m[row]; } /** - * @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT - * - * @param row is a row of necessary matrix - * @return matrix row pointer - */ + * @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT + * + * @param row is a row of necessary matrix + * @return matrix row pointer + */ const Type *operator[](uint row) const { return m[row]; } /** - * @brief Matrix assignment to matrix "sm" - * - * @param sm matrix for the assigment - * @return matrix equal with sm - */ + * @brief Matrix assignment to matrix "sm" + * + * @param sm matrix for the assigment + * @return matrix equal with sm + */ _CMatrix &operator=(const _CMatrix &sm) { memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this; } /** - * @brief Compare with matrix "sm" - * - * @param sm matrix for the compare - * @return if matrices are equal true, else false - */ + * @brief Compare with matrix "sm" + * + * @param sm matrix for the compare + * @return if matrices are equal true, else false + */ bool operator==(const _CMatrix &sm) const { PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true; } /** - * @brief Compare with matrix "sm" - * - * @param sm matrix for the compare - * @return if matrices are not equal true, else false - */ + * @brief Compare with matrix "sm" + * + * @param sm matrix for the compare + * @return if matrices are not equal true, else false + */ bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } /** - * @brief Addition assignment with matrix "sm" - * - * @param sm matrix for the addition assigment - */ - void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; } + * @brief Addition assignment with matrix "sm" + * + * @param sm matrix for the addition assigment + */ + void operator+=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c]; } /** - * @brief Subtraction assignment with matrix "sm" - * - * @param sm matrix for the subtraction assigment - */ + * @brief Subtraction assignment with matrix "sm" + * + * @param sm matrix for the subtraction assigment + */ void operator-=(const _CMatrix &sm) { PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c]; } /** - * @brief Multiplication assignment with value "v" - * - * @param v value for the multiplication assigment - */ + * @brief Multiplication assignment with value "v" + * + * @param v value for the multiplication assigment + */ void operator*=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] *= v; } /** - * @brief Division assignment with value "v" - * - * @param v value for the division assigment - */ + * @brief Division assignment with value "v" + * + * @param v value for the division assigment + */ void operator/=(const Type &v) { PIMM_FOR_WB(r, c) m[r][c] /= v; } /** - * @brief Matrix substraction - * - * @return the result of matrix substraction - */ + * @brief Matrix substraction + * + * @return the result of matrix substraction + */ _CMatrix operator-() const { _CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; @@ -436,11 +436,11 @@ public: } /** - * @brief Matrix addition - * - * @param sm is matrix term - * @return the result of matrix addition - */ + * @brief Matrix addition + * + * @param sm is matrix term + * @return the result of matrix addition + */ _CMatrix operator+(const _CMatrix &sm) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; @@ -448,11 +448,11 @@ public: } /** - * @brief Matrix substraction - * - * @param sm is matrix subtractor - * @return the result of matrix substraction - */ + * @brief Matrix substraction + * + * @param sm is matrix subtractor + * @return the result of matrix substraction + */ _CMatrix operator-(const _CMatrix &sm) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; @@ -460,11 +460,11 @@ public: } /** - * @brief Matrix multiplication - * - * @param v is value factor - * @return the result of matrix multiplication - */ + * @brief Matrix multiplication + * + * @param v is value factor + * @return the result of matrix multiplication + */ _CMatrix operator*(const Type &v) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; @@ -472,11 +472,11 @@ public: } /** - * @brief Matrix division - * - * @param v is value divider - * @return the result of matrix division - */ + * @brief Matrix division + * + * @param v is value divider + * @return the result of matrix division + */ _CMatrix operator/(const Type &v) const { _CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; @@ -484,10 +484,10 @@ public: } /** - * @brief Determinant of the matrix is ​​calculated - * - * @return matrix determinant - */ + * @brief Determinant of the matrix is ​​calculated + * + * @return matrix determinant + */ Type determinant(bool *ok = 0) const { _CMatrix m(*this); bool k; @@ -504,10 +504,10 @@ public: } /** - * @brief Transforming matrix to upper triangular - * - * @return copy of transformed upper triangular matrix - */ + * @brief Transforming matrix to upper triangular + * + * @return copy of transformed upper triangular matrix + */ _CMatrix &toUpperTriangular(bool *ok = 0) { if (Cols != Rows) { if (ok != 0) *ok = false; @@ -546,10 +546,10 @@ public: } /** - * @brief Matrix inversion operation - * - * @return copy of inverted matrix - */ + * @brief Matrix inversion operation + * + * @return copy of inverted matrix + */ _CMatrix &invert(bool *ok = 0) { static_assert(Cols == Rows, "Only square matrix invertable"); _CMatrix mtmp = _CMatrix::identity(), smat(*this); @@ -599,10 +599,10 @@ public: } /** - * @brief Matrix inversion operation - * - * @return inverted matrix - */ + * @brief Matrix inversion operation + * + * @return inverted matrix + */ _CMatrix inverted(bool *ok = 0) const { _CMatrix tm(*this); tm.invert(ok); @@ -610,10 +610,10 @@ public: } /** - * @brief Matrix transposition operation - * - * @return transposed matrix - */ + * @brief Matrix transposition operation + * + * @return transposed matrix + */ _CMatrixI transposed() const { _CMatrixI tm; PIMM_FOR_WB(r, c) tm[c][r] = m[r][c]; @@ -859,33 +859,33 @@ class PIP_EXPORT PIMathMatrix : public PIVector2D { typedef PIMathMatrix _CMatrix; typedef PIMathVector _CMCol; public: - /** - * @brief Constructor of class PIMathMatrix, which creates a matrix - * - * @param cols is number of matrix column uint type - * @param rows is number of matrix row uint type - * @param f is type of matrix elements - */ + /** + * @brief Constructor of class PIMathMatrix, which creates a matrix + * + * @param cols is number of matrix column uint type + * @param rows is number of matrix row uint type + * @param f is type of matrix elements + */ PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); } - /** - * @brief Constructor of class PIMathMatrix, which creates a matrix - * - * @param cols is number of matrix column uint type - * @param rows is number of matrix row uint type - * @param val is PIVector of matrix elements - */ + /** + * @brief Constructor of class PIMathMatrix, which creates a matrix + * + * @param cols is number of matrix column uint type + * @param rows is number of matrix row uint type + * @param val is PIVector of matrix elements + */ PIMathMatrix(const uint cols, const uint rows, const PIVector &val) { _V2D::resize(rows, cols); int i = 0; PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++]; } - /** - * @brief Constructor of class PIMathMatrix, which creates a matrix - * - * @param val is PIVector of PIVector, which creates matrix - */ + /** + * @brief Constructor of class PIMathMatrix, which creates a matrix + * + * @param val is PIVector of PIVector, which creates matrix + */ PIMathMatrix(const PIVector > &val) { if (!val.isEmpty()) { _V2D::resize(val.size(), val[0].size()); @@ -893,11 +893,11 @@ public: } } - /** - * @brief Constructor of class PIMathMatrix, which creates a matrix - * - * @param val is PIVector2D, which creates matrix - */ + /** + * @brief Constructor of class PIMathMatrix, which creates a matrix + * + * @param val is PIVector2D, which creates matrix + */ PIMathMatrix(const PIVector2D &val) { if (!val.isEmpty()) { _V2D::resize(val.rows(), val.cols()); @@ -905,194 +905,193 @@ public: } } - /** - * @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros - * - * @param cols is number of matrix column uint type - * @param rows is number of matrix row uint type - * @return identity matrix of type PIMathMatrix - */ + /** + * @brief Creates a matrix whose main diagonal is filled with ones and the remaining elements are zeros + * + * @param cols is number of matrix column uint type + * @param rows is number of matrix row uint type + * @return identity matrix of type PIMathMatrix + */ static _CMatrix identity(const uint cols, const uint rows) { _CMatrix tm(cols, rows); for (uint r = 0; r < rows; ++r) for (uint c = 0; c < cols; ++c) tm.element(r, c) = (c == r ? Type(1) : Type(0)); return tm; } - - /** - * @brief Creates a row matrix of every element that is equal to every element of the vector - * - * @param val is the vector type PIMathVector - * @return row matrix of every element that is equal to every element of the vector - */ + /** + * @brief Creates a row matrix of every element that is equal to every element of the vector + * + * @param val is the vector type PIMathVector + * @return row matrix of every element that is equal to every element of the vector + */ static _CMatrix matrixRow(const PIMathVector &val) { return _CMatrix(val.size(), 1, val.toVector()); } /** - * @brief Creates a column matrix of every element that is equal to every element of the vector - * - * @param val is the vector type PIMathVector - * @return column matrix of every element that is equal to every element of the vector - */ + * @brief Creates a column matrix of every element that is equal to every element of the vector + * + * @param val is the vector type PIMathVector + * @return column matrix of every element that is equal to every element of the vector + */ static _CMatrix matrixCol(const PIMathVector &val) { return _CMatrix(1, val.size(), val.toVector()); } /** - * @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix - * or index larger than the number of columns otherwise there will be a SEGFAULT - * - * @param index is the number of the selected column - * @param v is a vector of the type _CMCol that needs to fill the column - * @return matrix type _CMatrix - */ + * @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix + * or index larger than the number of columns otherwise there will be a SEGFAULT + * + * @param index is the number of the selected column + * @param v is a vector of the type _CMCol that needs to fill the column + * @return matrix type _CMatrix + */ _CMatrix &setCol(uint index, const _CMCol &v) { PIMM_FOR_R(i) _V2D::element(i, index) = v[i]; return *this; } /** - * @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix, - * or index larger than the number of rows otherwise there will be a SEGFAULT - * @param index is the number of the selected row - * @param v is a vector of the type _CMCol that needs to fill the row - * @return matrix type _CMatrix - */ + * @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix, + * or index larger than the number of rows otherwise there will be a SEGFAULT + * @param index is the number of the selected row + * @param v is a vector of the type _CMCol that needs to fill the row + * @return matrix type _CMatrix + */ _CMatrix &setRow(uint index, const _CMCol &v) { PIMM_FOR_C(i) _V2D::element(index, i) = v[i]; return *this; } /** - * @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns, - * otherwise there will be a SEGFAULT - * - * @param r0 is the number of the first selected row - * @param r1 is the number of the second selected row - * @return matrix type _CMatrix - */ + * @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns, + * otherwise there will be a SEGFAULT + * + * @param r0 is the number of the first selected row + * @param r1 is the number of the second selected row + * @return matrix type _CMatrix + */ _CMatrix &swapCols(uint r0, uint r1) { PIMM_FOR_C(i) { piSwap(_V2D::element(i, r0), _V2D::element(i, r1)); } return *this; } - /** - * @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows, - * otherwise there will be a SEGFAULT - * - * @param c0 is the number of the first selected row - * @param c1 is the number of the second selected row - * @return matrix type _CMatrix - */ + /** + * @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows, + * otherwise there will be a SEGFAULT + * + * @param c0 is the number of the first selected row + * @param c1 is the number of the second selected row + * @return matrix type _CMatrix + */ _CMatrix &swapRows(uint c0, uint c1) { PIMM_FOR_R(i) { piSwap(_V2D::element(c0, i), _V2D::element(c1, i)); } return *this; } /** - * @brief Method which fills the matrix with selected value - * - * @param v is a parameter the type and value of which is selected and later filled into the matrix - * @return filled matrix type _CMatrix - */ + * @brief Method which fills the matrix with selected value + * + * @param v is a parameter the type and value of which is selected and later filled into the matrix + * @return filled matrix type _CMatrix + */ _CMatrix &fill(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] = v; return *this; } /** - * @brief Method which checks if matrix is square - * - * @return true if matrix is square, else false - */ + * @brief Method which checks if matrix is square + * + * @return true if matrix is square, else false + */ bool isSquare() const { return _V2D::cols_ == _V2D::rows_; } /** - * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros - * - * @return true if matrix is identity, else false - */ + * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros + * + * @return true if matrix is identity, else false + */ bool isIdentity() const { PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false; return true; } /** - * @brief Method which checks if every elements of matrix are zeros - * - * @return true if matrix elements equal to zero, else false - */ + * @brief Method which checks if every elements of matrix are zeros + * + * @return true if matrix elements equal to zero, else false + */ bool isNull() const { PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false; return true; } /** - * @brief Method which checks if matrix is empty - * - * @return true if matrix is valid, else false - */ + * @brief Method which checks if matrix is empty + * + * @return true if matrix is valid, else false + */ bool isValid() const { return !PIVector2D::isEmpty(); } /** - * @brief Matrix assignment to matrix "v" - * - * @param v matrix for the assigment - * @return matrix equal with v - */ + * @brief Matrix assignment to matrix "v" + * + * @param v matrix for the assigment + * @return matrix equal with v + */ _CMatrix &operator=(const PIVector > &v) { *this = _CMatrix(v); return *this; } /** - * @brief Compare with matrix "sm" - * - * @param sm matrix for the compare - * @return if matrices are equal true, else false - */ + * @brief Compare with matrix "sm" + * + * @param sm matrix for the compare + * @return if matrices are equal true, else false + */ bool operator==(const _CMatrix &sm) const { PIMM_FOR_A(i) if (_V2D::mat[i] != sm.mat[i]) return false; return true; } /** - * @brief Compare with matrix "sm" - * - * @param sm matrix for the compare - * @return if matrices are not equal true, else false - */ + * @brief Compare with matrix "sm" + * + * @param sm matrix for the compare + * @return if matrices are not equal true, else false + */ bool operator!=(const _CMatrix &sm) const { return !(*this == sm); } /** - * @brief Addition assignment with matrix "sm" - * - * @param sm matrix for the addition assigment - */ + * @brief Addition assignment with matrix "sm" + * + * @param sm matrix for the addition assigment + */ void operator+=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] += sm.mat[i]; } /** - * @brief Subtraction assignment with matrix "sm" - * - * @param sm matrix for the subtraction assigment - */ + * @brief Subtraction assignment with matrix "sm" + * + * @param sm matrix for the subtraction assigment + */ void operator-=(const _CMatrix &sm) { PIMM_FOR_A(i) _V2D::mat[i] -= sm.mat[i]; } - /** - * @brief Multiplication assignment with value "v" - * - * @param v value for the multiplication assigment - */ + /** + * @brief Multiplication assignment with value "v" + * + * @param v value for the multiplication assigment + */ void operator*=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] *= v; } /** - * @brief Division assignment with value "v" - * - * @param v value for the division assigment - */ + * @brief Division assignment with value "v" + * + * @param v value for the division assigment + */ void operator/=(const Type &v) { PIMM_FOR_A(i) _V2D::mat[i] /= v; } - /** - * @brief Matrix substraction - * - * @return the result of matrix substraction - */ + /** + * @brief Matrix substraction + * + * @return the result of matrix substraction + */ _CMatrix operator-() const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] = -_V2D::mat[i]; @@ -1100,11 +1099,11 @@ public: } /** - * @brief Matrix addition - * - * @param sm is matrix term - * @return the result of matrix addition - */ + * @brief Matrix addition + * + * @param sm is matrix term + * @return the result of matrix addition + */ _CMatrix operator+(const _CMatrix &sm) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] += sm.mat[i]; @@ -1112,11 +1111,11 @@ public: } /** - * @brief Matrix subtraction - * - * @param sm is matrix subtractor - * @return the result of matrix subtraction - */ + * @brief Matrix subtraction + * + * @param sm is matrix subtractor + * @return the result of matrix subtraction + */ _CMatrix operator-(const _CMatrix &sm) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] -= sm.mat[i]; @@ -1124,11 +1123,11 @@ public: } /** - * @brief Matrix multiplication - * - * @param v is value factor - * @return the result of matrix multiplication - */ + * @brief Matrix multiplication + * + * @param v is value factor + * @return the result of matrix multiplication + */ _CMatrix operator*(const Type &v) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] *= v; @@ -1136,11 +1135,11 @@ public: } /** - * @brief Matrix division - * - * @param v is value divider - * @return the result of matrix division - */ + * @brief Matrix division + * + * @param v is value divider + * @return the result of matrix division + */ _CMatrix operator/(const Type &v) const { _CMatrix tm(*this); PIMM_FOR_A(i) tm.mat[i] /= v; @@ -1148,10 +1147,10 @@ public: } /** - * @brief Determinant of the matrix is ​​calculated. Works only with square matrix - * - * @return matrix determinant - */ + * @brief Determinant of the matrix is ​​calculated. Works only with square matrix + * + * @return matrix determinant + */ Type determinant(bool *ok = 0) const { _CMatrix m(*this); bool k; @@ -1168,10 +1167,10 @@ public: } /** - * @brief Trace of the matrix is calculated. Works only with square matrix - * - * @return matrix trace - */ + * @brief Trace of the matrix is calculated. Works only with square matrix + * + * @return matrix trace + */ Type trace(bool *ok = 0) const { Type ret = Type(0); if (!isSquare()) { @@ -1186,10 +1185,10 @@ public: } /** - * @brief Transforming matrix to upper triangular. Works only with square matrix - * - * @return copy of transformed upper triangular matrix - */ + * @brief Transforming matrix to upper triangular. Works only with square matrix + * + * @return copy of transformed upper triangular matrix + */ _CMatrix &toUpperTriangular(bool *ok = 0) { if (!isSquare()) { if (ok != 0) *ok = false; @@ -1228,10 +1227,10 @@ public: } /** - * @brief Matrix inversion operation. Works only with square matrix - * - * @return copy of inverted matrix - */ + * @brief Matrix inversion operation. Works only with square matrix + * + * @return copy of inverted matrix + */ _CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) { if (!isSquare()) { if (ok != 0) *ok = false; @@ -1288,10 +1287,10 @@ public: } /** - * @brief Matrix inversion operation - * - * @return inverted matrix - */ + * @brief Matrix inversion operation + * + * @return inverted matrix + */ _CMatrix inverted(bool *ok = 0) const { _CMatrix tm(*this); tm.invert(ok); @@ -1299,10 +1298,10 @@ public: } /** - * @brief Matrix transposition operation - * - * @return transposed matrix - */ + * @brief Matrix transposition operation + * + * @return transposed matrix + */ _CMatrix transposed() const { _CMatrix tm(_V2D::rows_, _V2D::cols_); PIMM_FOR(c, r) tm.element(c, r) = _V2D::element(r, c);