pip_cmg and picodeinfo.h doc

This commit is contained in:
2022-08-03 14:14:24 +03:00
parent e6aa3c34d4
commit 54cc6c55b2
3 changed files with 419 additions and 9 deletions

297
doc/pages/code_model.md Normal file
View File

@@ -0,0 +1,297 @@
\~english \page code_model Code generation
\~russian \page code_model Генерация кода
\~english
\~russian
# Введение
Кодогенерация помогает в случаях, когда нужен доступ к строковому представлению
сущностей (классов, перечислений, ...), либо автоматизированная де/сериализация
структур и классов.
Например, необходимо для создания интерфейса получить в готовом виде список
пар "имя" = "значение" от какого-либо перечисления, либо обойти список
вложенных в класс структур с дополнительными метками. Или просто описать
структуру любой сложности, пометить поля номерами и получить готовые операторы
де/сериализации для PIBinaryStream с возможностью будущих изменений и сохранением
обратной совместимости.
# pip_cmg
PIP предоставляет утилиту, которая берет на вход файлы исходного кода, пути
включения, параметры и макросы, и на выходе создает h/cpp пару файлов с
необходимым функционалом. В зависимости от параметров, в этих файлах будут
присутствовать секции:
* метаинформации о сущностях;
* операторы де/сериализации;
* возможность получить PIVariant любого члена структуры по имени.
Параметры обработки:
* -s - не следовать "#include" внутри файлов;
* -I<include_dir> - добавить папку включения (например, -I.. -I../some_dir -I/usr/include);
* -D<define> - добавить макрос, PICODE всегда объявлен (например, -DMY_DEFINE добавит макрос MY_DEFINE).
Параметры создания:
* -A - создать всё;
* -M - создать метаинформацию (имена и типы всех членов, иерархия включения);
* -E - создать перечисления (списки перечислений);
* -S - создать операторы де/сериализации;
* -G - создать методы получения значений переменных по именам;
* -o <output_file> - имя файлов модели без расширения (например, "ccm" - создадутся файлы "ccm.h" и "ccm.cpp")
# CMake
Для автоматизации кодогенерации существует CMake макрос pip_code_model, который сам вызывает pip_cmg и
следит за актуальностью модели.
Формат вызова макроса:
\code{.cmake}
pip_code_model(<out_var> file0 [file1 ...] [OPTIONS opt0 [opt1 ...] ] [NAME name])
\endcode
Параметры:
* out_var - имя переменной, куда будут записаны абсолютные пути сгенерённых файлов;
* file... - файлы для генерации, допускаются относительные или абсолютные пути;
* OPTIONS - передаваемые в pip_cmg параметры, например, "-Es";
* NAME - базовое имя файлов модели, если не указано, то используется "ccm_${PROJECT_NAME}".
Этот макрос сам включает все пути для PIP.
Для получения актуальных параметров pip_cmg можно вызывать "pip_cmg -v".
# Подробности
## Метаинформация
Метаинформация - это текстовое представление всех членов и методов структуры или класса C++.
Для доступа к ним используется PICodeInfo::classesInfo->value("name"), который возвращает
указатель на структуру PICodeInfo::ClassInfo, содержащую всю информацию о сущности.
В любой структуре PICodeInfo есть поле "MetaMap meta", содержащее произвольные
данные, видимые для кодогенератора, но невидимые для компилятора.
Для этого используется макрос PIMETA(), который необходимо вписать после объявления
переменной, метода либо сущности, например:
\code{.cpp}
struct MyStruct: Header PIMETA(type=in,port=5005) {
ushort calcChecksum() const PIMETA(show=true);
bool checkChecksum() const;
void setChecksum();
uchar block_id PIMETA(type=int) = 0;
};
enum FOV { // Поле зрения
fovWide PIMETA(label="Широкое",angle=90),
fovNormal PIMETA(label="Нормальное",angle=60),
fovNarrow PIMETA(label="Узкое",angle=30)
};
\endcode
В этом примере в каждом месте, где указана PIMETA, её можно будет получить через "MetaMap meta".
## Перечисления
Перечисления записываются отдельно, для доступа к ним используется PICodeInfo::enumsInfo->value("name"),
который возвращает указатель на структуру PICodeInfo::EnumInfo, содержащую всю информацию о перечеслении.
## Операторы де/сериализации
Эти операторы создаются в h файле для всех сутрктур и классов, в которых есть хотя бы один член,
доступный для работы. Операторы работают с PIBinaryStream в двух вариантах - простом или через PIChunkStream.
Для каждой структуры можно указать режим де/сериализации с помощью фиксированного поля в PIMETA:
* нет указаний - работа через PIChunkStream;
* simple-stream - работа просто через PIBinaryStream;
* no-stream - не создавать операторы.
Например, для структуры
\code{.cpp}
struct DateTime {
uchar seconds;
uchar minutes;
uchar hours;
uchar days;
uchar months;
uchar years;
};
\endcode
создадутся операторы
\code{.cpp}
BINARY_STREAM_WRITE(DateTime) {
PIChunkStream cs;
cs << cs.chunk(1, v.seconds);
cs << cs.chunk(2, v.minutes);
cs << cs.chunk(3, v.hours);
cs << cs.chunk(4, v.days);
cs << cs.chunk(5, v.months);
cs << cs.chunk(6, v.years);
s << cs.data();
return s;
}
BINARY_STREAM_READ (DateTime) {
PIByteArray csba; s >> csba;
PIChunkStream cs(csba);
while (!cs.atEnd()) {
switch (cs.read()) {
case 1: cs.get(v.seconds); break;
case 2: cs.get(v.minutes); break;
case 3: cs.get(v.hours); break;
case 4: cs.get(v.days); break;
case 5: cs.get(v.months); break;
case 6: cs.get(v.years); break;
}
}
return s;
}
\endcode
, где порядок id последовательнен.
Для структуры
\code{.cpp}
struct DateTime PIMETA(simple-stream) {
uchar seconds;
uchar minutes;
uchar hours;
uchar days;
uchar months;
uchar years;
};
\endcode
создадутся операторы
\code{.cpp}
BINARY_STREAM_WRITE(DateTime) {
s << v.seconds;
s << v.minutes;
s << v.hours;
s << v.days;
s << v.months;
s << v.years;
return s;
}
BINARY_STREAM_READ (DateTime) {
s >> v.seconds;
s >> v.minutes;
s >> v.hours;
s >> v.days;
s >> v.months;
s >> v.years;
return s;
}
\endcode
Для структуры
\code{.cpp}
struct DateTime PIMETA(no-stream) {
uchar seconds;
uchar minutes;
uchar hours;
uchar days;
uchar months;
uchar years;
};
\endcode
не создадутся операторы
В режиме работы через PIChunkStream также можно указать индивидуальные id,
что очень полезно для сохранения обратной совместимости структур разных версий:
Для структуры
\code{.cpp}
struct DateTime {
PIMETA(id=10) uchar seconds;
PIMETA(id=11) uchar minutes;
PIMETA(id=12) uchar hours;
PIMETA(id=20) uchar days;
PIMETA(id=21) uchar months;
PIMETA(id=22) uchar years;
};
\endcode
\code{.cpp}
BINARY_STREAM_WRITE(DateTime) {
PIChunkStream cs;
cs << cs.chunk(10, v.seconds);
cs << cs.chunk(11, v.minutes);
cs << cs.chunk(12, v.hours);
cs << cs.chunk(20, v.days);
cs << cs.chunk(21, v.months);
cs << cs.chunk(22, v.years);
s << cs.data();
return s;
}
BINARY_STREAM_READ (DateTime) {
PIByteArray csba; s >> csba;
PIChunkStream cs(csba);
while (!cs.atEnd()) {
switch (cs.read()) {
case 10: cs.get(v.seconds); break;
case 11: cs.get(v.minutes); break;
case 12: cs.get(v.hours); break;
case 20: cs.get(v.days); break;
case 21: cs.get(v.months); break;
case 22: cs.get(v.years); break;
}
}
return s;
}
\endcode
Если в этом режиме какую-либо переменную надо проигнорировать, то вместо
числа id можно указать "-":
\code{.cpp}
struct DateTime {
PIMETA(id=10) uchar seconds;
PIMETA(id=11) uchar minutes;
PIMETA(id=-) uchar hours;
PIMETA(id=20) uchar days;
PIMETA(id=21) uchar months;
PIMETA(id=-) uchar years;
};
\endcode
\code{.cpp}
BINARY_STREAM_WRITE(DateTime) {
PIChunkStream cs;
cs << cs.chunk(10, v.seconds);
cs << cs.chunk(11, v.minutes);
cs << cs.chunk(20, v.days);
cs << cs.chunk(21, v.months);
s << cs.data();
return s;
}
BINARY_STREAM_READ (DateTime) {
PIByteArray csba; s >> csba;
PIChunkStream cs(csba);
while (!cs.atEnd()) {
switch (cs.read()) {
case 10: cs.get(v.seconds); break;
case 11: cs.get(v.minutes); break;
case 20: cs.get(v.days); break;
case 21: cs.get(v.months); break;
}
}
return s;
}
\endcode
# Интеграция в проект
При использовании CMake достаточно включить содержимое переменной out_var в приложение
или библиотеку, и включить через "#include" сгенерированный заголовочный файл в нужном месте.
После этого перечисления и метаинформация будут загружены в момент запуска, до int main(),
а операторы станут доступны через заголовочный файл.
CMakeLists.txt:
\code{.cmake}
project(myapp)
pip_code_model(CCM "structures.h" OPTIONS "-EMs")
add_executable(${PROJECT_NAME} ${CPPS} ${CCM})
\endcode
C++:
\code{.cpp}
#include "ccm_myapp.h"
...
PICodeInfo::EnumInfo * ei = PICodeInfo::enumsInfo->value("MyEnum", 0);
if (ei) {
ei->members.forEach([](const PICodeInfo::EnumeratorInfo & e){piCout << e.name << "=" << e.value;});
}
\endcode

View File

@@ -1,8 +1,8 @@
/*! \file picodeinfo.h /*! \file picodeinfo.h
* \ingroup Code * \ingroup Code
* \~\brief * \~\brief
* \~english C++ code info structs * \~english C++ code info structs. See \ref code_model.
* \~russian Структуры для C++ кода * \~russian Структуры для C++ кода. Подробнее \ref code_model.
*/ */
/* /*
PIP - Platform Independent Primitives PIP - Platform Independent Primitives
@@ -34,17 +34,24 @@
class PIVariant; class PIVariant;
//! \~english Namespace contains structures for code generation. See \ref code_model.
//! \~russian Пространство имен содержит структуры для кодогенерации. Подробнее \ref code_model.
namespace PICodeInfo { namespace PICodeInfo {
//! \~english
//! Type modifiers
//! \~russian
//! Модификаторы типа
enum TypeFlag { enum TypeFlag {
NoFlag, NoFlag,
Const = 0x01, Const /** const */ = 0x01,
Static = 0x02, Static /** static */ = 0x02,
Mutable = 0x04, Mutable /** mutable */ = 0x04,
Volatile = 0x08, Volatile /** volatile */ = 0x08,
Inline = 0x10, Inline /** inline */ = 0x10,
Virtual = 0x20, Virtual /** virtual */ = 0x20,
Extern = 0x40 Extern /** extern */ = 0x40
}; };
typedef PIFlags<PICodeInfo::TypeFlag> TypeFlags; typedef PIFlags<PICodeInfo::TypeFlag> TypeFlags;
@@ -52,49 +59,145 @@ typedef PIMap<PIString, PIString> MetaMap;
typedef PIByteArray(*AccessValueFunction)(const void *, const char *); typedef PIByteArray(*AccessValueFunction)(const void *, const char *);
typedef const char*(*AccessTypeFunction)(const char *); typedef const char*(*AccessTypeFunction)(const char *);
//! \~english Type information
//! \~russian Информация о типе
struct PIP_EXPORT TypeInfo { struct PIP_EXPORT TypeInfo {
TypeInfo(const PIConstChars & n = PIConstChars(), const PIConstChars & t = PIConstChars(), PICodeInfo::TypeFlags f = 0, int b = -1) {name = n; type = t; flags = f; bits = b;} TypeInfo(const PIConstChars & n = PIConstChars(), const PIConstChars & t = PIConstChars(), PICodeInfo::TypeFlags f = 0, int b = -1) {name = n; type = t; flags = f; bits = b;}
//! \~english Returns if variable if bitfield
//! \~russian Возвращает битовым ли полем является переменная
bool isBitfield() const {return bits > 0;} bool isBitfield() const {return bits > 0;}
//! \~english Custom PIMETA content
//! \~russian Произвольное содержимое PIMETA
MetaMap meta; MetaMap meta;
//! \~english Name
//! \~russian Имя
PIConstChars name; PIConstChars name;
//! \~english Type
//! \~russian Тип
PIConstChars type; PIConstChars type;
//! \~english Modifiers
//! \~russian Модификаторы
PICodeInfo::TypeFlags flags; PICodeInfo::TypeFlags flags;
//! \~english Bitfield variable bit count
//! \~russian Количество бит битового поля
int bits; int bits;
}; };
//! \~english Method information
//! \~russian Информация о методе
struct PIP_EXPORT FunctionInfo { struct PIP_EXPORT FunctionInfo {
//! \~english Custom PIMETA content
//! \~russian Произвольное содержимое PIMETA
MetaMap meta; MetaMap meta;
//! \~english Name
//! \~russian Имя
PIConstChars name; PIConstChars name;
//! \~english Return type
//! \~russian Возвращаемые тип
TypeInfo return_type; TypeInfo return_type;
//! \~english Arguments types
//! \~russian Типы аргументов
PIVector<PICodeInfo::TypeInfo> arguments; PIVector<PICodeInfo::TypeInfo> arguments;
}; };
//! \~english Class or struct information
//! \~russian Информация о классе или структуре
struct PIP_EXPORT ClassInfo { struct PIP_EXPORT ClassInfo {
ClassInfo() {has_name = true;} ClassInfo() {has_name = true;}
//! \~english Custom PIMETA content
//! \~russian Произвольное содержимое PIMETA
MetaMap meta; MetaMap meta;
//! \~english Has name or not
//! \~russian Имеет или нет имя
bool has_name; bool has_name;
//! \~english Type
//! \~russian Тип
PIConstChars type; PIConstChars type;
//! \~english Name
//! \~russian Имя
PIConstChars name; PIConstChars name;
//! \~english Parent names
//! \~russian Имена родителей
PIVector<PIConstChars> parents; PIVector<PIConstChars> parents;
//! \~english Variables
//! \~russian Переменные
PIVector<PICodeInfo::TypeInfo> variables; PIVector<PICodeInfo::TypeInfo> variables;
//! \~english Methods
//! \~russian Методы
PIVector<PICodeInfo::FunctionInfo> functions; PIVector<PICodeInfo::FunctionInfo> functions;
//! \~english Subclass list
//! \~russian Список наследников
PIVector<PICodeInfo::ClassInfo * > children_info; PIVector<PICodeInfo::ClassInfo * > children_info;
}; };
//! \~english Enumerator information
//! \~russian Информация об элементе перечисления
struct PIP_EXPORT EnumeratorInfo { struct PIP_EXPORT EnumeratorInfo {
EnumeratorInfo(const PIConstChars & n = PIConstChars(), int v = 0) {name = n; value = v;} EnumeratorInfo(const PIConstChars & n = PIConstChars(), int v = 0) {name = n; value = v;}
PIVariantTypes::Enumerator toPIVariantEnumerator() {return PIVariantTypes::Enumerator(value, name.toString());} PIVariantTypes::Enumerator toPIVariantEnumerator() {return PIVariantTypes::Enumerator(value, name.toString());}
//! \~english Custom PIMETA content
//! \~russian Произвольное содержимое PIMETA
MetaMap meta; MetaMap meta;
//! \~english Name
//! \~russian Имя
PIConstChars name; PIConstChars name;
//! \~english Value
//! \~russian Значение
int value; int value;
}; };
//! \~english Enum information
//! \~russian Информация о перечислении
struct PIP_EXPORT EnumInfo { struct PIP_EXPORT EnumInfo {
//! \~english Returns member name with value "value"
//! \~russian Возвращает имя элемента со значением "value"
PIString memberName(int value) const; PIString memberName(int value) const;
//! \~english Returns member value with name "name"
//! \~russian Возвращает значение элемента с именем "name"
int memberValue(const PIString & name) const; int memberValue(const PIString & name) const;
//! \~english Returns as PIVariantTypes::Enum
//! \~russian Возвращает как PIVariantTypes::Enum
PIVariantTypes::Enum toPIVariantEnum(); PIVariantTypes::Enum toPIVariantEnum();
//! \~english Custom PIMETA content
//! \~russian Произвольное содержимое PIMETA
MetaMap meta; MetaMap meta;
//! \~english Name
//! \~russian Имя
PIConstChars name; PIConstChars name;
//! \~english Members
//! \~russian Элементы
PIVector<PICodeInfo::EnumeratorInfo> members; PIVector<PICodeInfo::EnumeratorInfo> members;
}; };
@@ -161,9 +264,17 @@ inline PICout operator <<(PICout s, const PICodeInfo::EnumInfo & v) {
return s; return s;
} }
//! \~english Pointer to single storage of PICodeInfo::ClassInfo, access by name
//! \~russian Указатель на единое хренилище PICodeInfo::ClassInfo, доступ по имени
extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::ClassInfo * > * classesInfo; extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::ClassInfo * > * classesInfo;
//! \~english Pointer to single storage of PICodeInfo::EnumInfo, access by name
//! \~russian Указатель на единое хренилище PICodeInfo::EnumInfo, доступ по имени
extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::EnumInfo * > * enumsInfo; extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::EnumInfo * > * enumsInfo;
extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::AccessValueFunction> * accessValueFunctions; extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::AccessValueFunction> * accessValueFunctions;
extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::AccessTypeFunction> * accessTypeFunctions; extern PIP_EXPORT PIMap<PIConstChars, PICodeInfo::AccessTypeFunction> * accessTypeFunctions;
inline PIByteArray getMemberValue(const void * p, const char * class_name, const char * member_name) { inline PIByteArray getMemberValue(const void * p, const char * class_name, const char * member_name) {

View File

@@ -35,9 +35,11 @@
//! //!
//! \~english //! \~english
//! These files provides parsing C++ code and storage to use results of \a pip_cmg utility. //! These files provides parsing C++ code and storage to use results of \a pip_cmg utility.
//! See \ref code_model.
//! //!
//! \~russian //! \~russian
//! Эти файлы обеспечивают разбор C++ кода и хранение результатов работы утилиты \a pip_cmg. //! Эти файлы обеспечивают разбор C++ кода и хранение результатов работы утилиты \a pip_cmg.
//! Подробнее \ref code_model.
//! //!
//! \~\authors //! \~\authors
//! \~english //! \~english