Improved PIBlockingDeque behaviour and unit tests for put, offer, take methods

- Methods put, offer, take begins working with move and copy semantics
- Mocking queue condition variables with GMock in Unit tests
- Rewrite part of unit tests
This commit is contained in:
2 changed files with 275 additions and 85 deletions

View File

@@ -70,10 +70,11 @@ public:
* *
* @param v the element to add * @param v the element to add
*/ */
void put(T && v) { template<typename Type>
void put(Type && v) {
mutex.lock(); mutex.lock();
cond_var_rem->wait(mutex, [&]() { return data_queue.size() < max_size; }); cond_var_rem->wait(mutex, [&]() { return data_queue.size() < max_size; });
data_queue.push_back(std::forward<T>(v)); data_queue.push_back(std::forward<Type>(v));
mutex.unlock(); mutex.unlock();
cond_var_add->notifyOne(); cond_var_add->notifyOne();
} }
@@ -106,10 +107,11 @@ public:
* @param timeoutMs how long to wait before giving up, in milliseconds * @param timeoutMs how long to wait before giving up, in milliseconds
* @return true if successful, or false if the specified waiting time elapses before space is available * @return true if successful, or false if the specified waiting time elapses before space is available
*/ */
bool offer(T && v, int timeoutMs) { template<typename Type>
bool offer(Type && v, int timeoutMs) {
mutex.lock(); mutex.lock();
bool isOk = cond_var_rem->waitFor(mutex, timeoutMs, [&]() { return data_queue.size() < max_size; } ); bool isOk = cond_var_rem->waitFor(mutex, timeoutMs, [&]() { return data_queue.size() < max_size; } );
if (isOk) data_queue.push_back(std::forward<T>(v)); if (isOk) data_queue.push_back(std::forward<Type>(v));
mutex.unlock(); mutex.unlock();
if (isOk) cond_var_add->notifyOne(); if (isOk) cond_var_add->notifyOne();
return isOk; return isOk;
@@ -140,7 +142,8 @@ public:
* return value is retrieved value * return value is retrieved value
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available * @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
*/ */
T poll(int timeoutMs, T && defaultVal = T(), bool * isOk = nullptr) { template<typename Type = T>
T poll(int timeoutMs, Type && defaultVal = Type(), bool * isOk = nullptr) {
mutex.lock(); mutex.lock();
bool isNotEmpty = cond_var_add->waitFor(mutex, timeoutMs, [&]() { return data_queue.size() != 0; }); bool isNotEmpty = cond_var_add->waitFor(mutex, timeoutMs, [&]() { return data_queue.size() != 0; });
T t; T t;
@@ -148,7 +151,7 @@ public:
t = std::move(data_queue.front()); t = std::move(data_queue.front());
data_queue.pop_front(); data_queue.pop_front();
} else { } else {
t = std::move(defaultVal); t = std::forward<Type>(defaultVal);
} }
mutex.unlock(); mutex.unlock();
if (isNotEmpty) cond_var_rem->notifyOne(); if (isNotEmpty) cond_var_rem->notifyOne();
@@ -165,7 +168,8 @@ public:
* return value is retrieved value * return value is retrieved value
* @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available * @return the head of this queue, or defaultVal if the specified waiting time elapses before an element is available
*/ */
T poll(T && defaultVal = T(), bool * isOk = nullptr) { template<typename Type = T>
T poll(Type && defaultVal = Type(), bool * isOk = nullptr) {
T t; T t;
mutex.lock(); mutex.lock();
bool isNotEmpty = data_queue.size() != 0; bool isNotEmpty = data_queue.size() != 0;
@@ -173,7 +177,7 @@ public:
t = std::move(data_queue.front()); t = std::move(data_queue.front());
data_queue.pop_front(); data_queue.pop_front();
} else { } else {
t = std::move(defaultVal); t = std::forward<Type>(defaultVal);
} }
mutex.unlock(); mutex.unlock();
if (isNotEmpty) cond_var_rem->notifyOne(); if (isNotEmpty) cond_var_rem->notifyOne();

View File

@@ -3,130 +3,315 @@
#include "testutil.h" #include "testutil.h"
#include "piblockingdequeue.h" #include "piblockingdequeue.h"
using ::testing::_;
using ::testing::Return; using ::testing::Return;
using ::testing::Eq; using ::testing::Eq;
using ::testing::Ne;
using ::testing::Matcher; using ::testing::Matcher;
using ::testing::Expectation;
using ::testing::Sequence;
using ::testing::NiceMock;
class MockConditionVar: public PIConditionVariable { class MockConditionVar {
public: public:
bool isWaitCalled = false; bool isWaitCalled = false;
bool isWaitForCalled = false; bool isWaitForCalled = false;
bool isTrueCondition = false; bool isTrueCondition = false;
int timeout = -1; int timeout = -1;
void wait(PIMutex& lk) override { MOCK_METHOD1(wait, void(PIMutex&));
isWaitCalled = true; MOCK_METHOD2(wait, void(PIMutex&, const std::function<bool()>&));
} MOCK_METHOD2(waitFor, bool(PIMutex&, int));
MOCK_METHOD3(waitFor, bool(PIMutex&, int, const std::function<bool()>&));
MOCK_METHOD0(notifyOne, void());
};
void wait(PIMutex& lk, const std::function<bool()>& condition) override { struct QueueElement {
isWaitCalled = true; bool is_empty;
lk.lock(); int value;
isTrueCondition = condition(); int copy_count;
lk.unlock();
}
bool waitFor(PIMutex& lk, int timeoutMs) override { QueueElement(): is_empty(true), value(0), copy_count(0) { }
isWaitForCalled = true; explicit QueueElement(int value): is_empty(false), value(value), copy_count(0) { }
timeout = timeoutMs;
return false;
}
bool waitFor(PIMutex& lk, int timeoutMs, const std::function<bool()>& condition) override { QueueElement(const QueueElement& other) {
isWaitForCalled = true; this->is_empty = other.is_empty;
lk.lock(); this->value = other.value;
isTrueCondition = condition(); this->copy_count = 0;
timeout = timeoutMs; const_cast<int&>(other.copy_count)++;
lk.unlock(); }
return isTrueCondition; QueueElement(QueueElement&& other) noexcept : QueueElement() {
} std::swap(is_empty, other.is_empty);
std::swap(value, other.value);
std::swap(copy_count, other.copy_count);
}
bool operator==(const QueueElement &rhs) const {
return is_empty == rhs.is_empty &&
value == rhs.value;
}
bool operator!=(const QueueElement &rhs) const {
return !(rhs == *this);
}
friend std::ostream& operator<<(std::ostream& os, const QueueElement& el) {
return os << "{ is_empty:" << el.is_empty << ", value:" << el.value << ", copy_count:" << el.copy_count << " }";
}
}; };
template<typename T> template<typename T>
class MockDeque { class MockDequeBase {
public: public:
MOCK_METHOD1_T(push_back, void(T&&)); MOCK_METHOD1_T(push_back_rval, void(T));
MOCK_METHOD1_T(push_back, void(const T&)); MOCK_METHOD1_T(push_back, void(const T&));
MOCK_METHOD0(size, size_t()); MOCK_METHOD0(size, size_t());
MOCK_METHOD0_T(front, T()); MOCK_METHOD0_T(front, T());
MOCK_METHOD0(pop_front, void()); MOCK_METHOD0(pop_front, void());
void push_back(T&& t) {
push_back_rval(t);
}
}; };
template<typename T> template<typename T>
class PIBlockingDequeuePrepare: public PIBlockingDequeue<T, MockDeque, MockConditionVar> { class MockDeque: public NiceMock<MockDequeBase<T>> {};
public:
typedef PIBlockingDequeue<T, MockDeque, MockConditionVar> SuperClass;
PIBlockingDequeuePrepare(size_t capacity = SIZE_MAX): SuperClass(capacity) { } class PIBlockingDequeuePrepare: public PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> {
public:
typedef PIBlockingDequeue<QueueElement, MockDeque, NiceMock<MockConditionVar>> SuperClass;
explicit PIBlockingDequeuePrepare(size_t capacity = SIZE_MAX): SuperClass(capacity) { }
template<typename Iterable> template<typename Iterable>
explicit PIBlockingDequeuePrepare(const Iterable& other): SuperClass(other) { } explicit PIBlockingDequeuePrepare(const Iterable& other): SuperClass(other) { }
MockConditionVar* getCondVarAdd() { return this->cond_var_add; } MockConditionVar* getCondVarAdd() { return this->cond_var_add; }
MockConditionVar* getCondVarRem() { return this->cond_var_rem; } MockConditionVar* getCondVarRem() { return this->cond_var_rem; }
MockDeque<T>& getQueue() { return this->data_queue; } MockDeque<QueueElement>& getQueue() { return this->data_queue; }
}; };
TEST(BlockingDequeueUnitTest, put_is_block_when_capacity_reach) { class BlockingDequeueUnitTest: public ::testing::Test {
size_t capacity = 0; public:
PIBlockingDequeuePrepare<int> dequeue(capacity); int timeout = 100;
dequeue.put(11); size_t capacity;
ASSERT_TRUE(dequeue.getCondVarRem()->isWaitCalled); PIBlockingDequeuePrepare dequeue;
ASSERT_FALSE(dequeue.getCondVarRem()->isTrueCondition); QueueElement element;
BlockingDequeueUnitTest(): capacity(1), dequeue(capacity), element(11) {}
void offer2_is_wait_predicate(bool isCapacityReach);
void put_is_wait_predicate(bool isCapacityReach);
void take_is_wait_predicate(bool isEmpty);
};
void BlockingDequeueUnitTest::put_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), wait(_, _))
.WillOnce([&](PIMutex& m, const std::function<bool()>& predicate){ conditionVarPredicate = predicate; });
dequeue.put(element);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
} }
TEST(BlockingDequeueUnitTest, offer2_timedout_is_false_when_capacity_reach) { TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_true) {
size_t capacity = 0; put_is_wait_predicate(false);
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
ASSERT_FALSE(dequeue.offer(11, timeout));
} }
TEST(BlockingDequeueUnitTest, offer2_timedout_is_block_when_capacity_reach) { TEST_F(BlockingDequeueUnitTest, put_is_wait_predicate_false_when_capacity_reach) {
size_t capacity = 0; put_is_wait_predicate(true);
int timeout = 11;
PIBlockingDequeuePrepare<int> dequeue(capacity);
dequeue.offer(11, timeout);
EXPECT_TRUE(dequeue.getCondVarRem()->isWaitForCalled);
EXPECT_EQ(timeout, dequeue.getCondVarRem()->timeout);
ASSERT_FALSE(dequeue.getCondVarRem()->isTrueCondition);
} }
TEST(BlockingDequeueUnitTest, offer1_is_true) { TEST_F(BlockingDequeueUnitTest, put_is_insert_by_copy) {
size_t capacity = 1; EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
PIBlockingDequeuePrepare<int> dequeue(capacity); .WillOnce(Return());
EXPECT_CALL(dequeue.getQueue(), size()) dequeue.put(element);
.WillOnce(Return(capacity - 1));
ASSERT_TRUE(dequeue.offer(10));
} }
TEST(BlockingDequeueUnitTest, offer1_is_pop) { TEST_F(BlockingDequeueUnitTest, put_is_insert_by_move) {
size_t capacity = 1; QueueElement copyElement = element;
int val = 10; EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
PIBlockingDequeuePrepare<int> dequeue(capacity); .WillOnce(Return());
EXPECT_CALL(dequeue.getQueue(), size()) dequeue.put(std::move(copyElement));
.WillRepeatedly(Return(capacity - 1));
EXPECT_CALL(dequeue.getQueue(), push_back(Matcher<const int&>( Eq(val)) )).Times(1);
dequeue.offer(val);
} }
TEST(BlockingDequeueUnitTest, offer1_is_false_when_capacity_reach) { TEST_F(BlockingDequeueUnitTest, put_is_notify_about_insert) {
size_t capacity = 1; EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
PIBlockingDequeuePrepare<int> dequeue(capacity); .WillOnce(Return());
EXPECT_CALL(dequeue.getQueue(), size()) dequeue.put(element);
.WillOnce(Return(capacity + 1));
ASSERT_FALSE(dequeue.offer(10));
} }
TEST(BlockingDequeueUnitTest, offer1_is_not_pop_when_capacity_reach) { TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_copy) {
size_t capacity = 1; EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
PIBlockingDequeuePrepare<int> dequeue(capacity); .WillOnce(Return());
EXPECT_CALL(dequeue.getQueue(), size()) ON_CALL(dequeue.getQueue(), size)
.WillRepeatedly(Return(capacity + 1)); .WillByDefault(Return(capacity - 1));
EXPECT_CALL(dequeue.getQueue(), front()).Times(0); dequeue.offer(element);
EXPECT_CALL(dequeue.getQueue(), pop_front()).Times(0);
dequeue.offer(10);
} }
TEST_F(BlockingDequeueUnitTest, offer1_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
dequeue.offer(std::move(copyElement));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_insert_when_capacity_reach) {
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_true_when_insert) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
ASSERT_TRUE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_false_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), push_back(_))
.WillByDefault(Return());
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
ASSERT_FALSE(dequeue.offer(element));
}
TEST_F(BlockingDequeueUnitTest, offer1_is_notify_about_insert) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity - 1));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.WillOnce(Return());
dequeue.offer(element);
}
TEST_F(BlockingDequeueUnitTest, offer1_is_not_notify_about_insert_when_capacity_reach) {
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(capacity));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.Times(0);
dequeue.offer(element);
}
void BlockingDequeueUnitTest::offer2_is_wait_predicate(bool isCapacityReach) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce([&](PIMutex& m, int timeout, const std::function<bool()>& predicate) {
conditionVarPredicate = predicate;
return isCapacityReach;
});
dequeue.offer(element, timeout);
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isCapacityReach ? capacity : capacity - 1));
ASSERT_EQ(conditionVarPredicate(), !isCapacityReach);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_true) {
offer2_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_wait_predicate_false_when_capacity_reach) {
offer2_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_copy) {
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back( Eq(element) ))
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_insert_by_move) {
QueueElement copyElement = element;
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce(Return(true));
EXPECT_CALL(dequeue.getQueue(), push_back_rval( Eq(element) ))
.WillOnce(Return());
dequeue.offer(std::move(copyElement), timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_insert_when_timeout) {
EXPECT_CALL(*dequeue.getCondVarRem(), waitFor(_, Eq(timeout), _))
.WillOnce(Return(false));
EXPECT_CALL(dequeue.getQueue(), push_back(_))
.Times(0);
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_true_when_insert) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(true));
ASSERT_TRUE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_false_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(false));
ASSERT_FALSE(dequeue.offer(element, timeout));
}
TEST_F(BlockingDequeueUnitTest, offer2_is_notify_about_insert) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.WillOnce(Return());
dequeue.offer(element, timeout);
}
TEST_F(BlockingDequeueUnitTest, offer2_is_not_notify_about_insert_when_timeout) {
ON_CALL(*dequeue.getCondVarRem(), waitFor(_, _, _))
.WillByDefault(Return(false));
EXPECT_CALL(*dequeue.getCondVarAdd(), notifyOne)
.Times(0);
dequeue.offer(element, timeout);
}
void BlockingDequeueUnitTest::take_is_wait_predicate(bool isEmpty) {
std::function<bool()> conditionVarPredicate;
EXPECT_CALL(*dequeue.getCondVarAdd(), wait(_, _))
.WillOnce([&](PIMutex& m, const std::function<bool()>& predicate) { conditionVarPredicate = predicate; });
dequeue.take();
ON_CALL(dequeue.getQueue(), size)
.WillByDefault(Return(isEmpty ? 0 : 1));
ASSERT_EQ(conditionVarPredicate(), !isEmpty);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_true) {
take_is_wait_predicate(false);
}
TEST_F(BlockingDequeueUnitTest, take_is_wait_predicate_false_when_queue_empty) {
take_is_wait_predicate(true);
}
TEST_F(BlockingDequeueUnitTest, take_is_get_and_remove) {
Expectation front = EXPECT_CALL(dequeue.getQueue(), front())
.WillOnce(Return(element));
EXPECT_CALL(dequeue.getQueue(), pop_front())
.After(front)
.WillOnce(Return());
QueueElement takenElement = dequeue.take();
ASSERT_EQ(element, takenElement);
}
TEST_F(BlockingDequeueUnitTest, take_is_notify_about_remove) {
EXPECT_CALL(*dequeue.getCondVarRem(), notifyOne)
.WillOnce(Return());
dequeue.take();
}
/*
// TODO change take_is_block_when_empty to prevent segfault // TODO change take_is_block_when_empty to prevent segfault
TEST(DISABLED_BlockingDequeueUnitTest, take_is_block_when_empty) { TEST(DISABLED_BlockingDequeueUnitTest, take_is_block_when_empty) {
size_t capacity = 1; size_t capacity = 1;
@@ -299,3 +484,4 @@ TEST(BlockingDequeueUnitTest, drainTo_is_ret_eq_to_maxCount) {
PIBlockingDequeuePrepare<int>::QueueType deque; PIBlockingDequeuePrepare<int>::QueueType deque;
ASSERT_EQ(blockingDequeue.drainTo(deque, refDeque.size() - 1), refDeque.size() - 1); ASSERT_EQ(blockingDequeue.drainTo(deque, refDeque.size() - 1), refDeque.size() - 1);
} }
*/