diff --git a/libs/main/math/pimathmatrix.h b/libs/main/math/pimathmatrix.h index 6f76fbe0..57493788 100644 --- a/libs/main/math/pimathmatrix.h +++ b/libs/main/math/pimathmatrix.h @@ -81,10 +81,11 @@ class PIP_EXPORT PIMathMatrixT { typedef PIMathMatrixT _CMatrixI; typedef PIMathVectorT _CMCol; typedef PIMathVectorT _CMRow; - static_assert(std::is_arithmetic::value, "Type must be arithmetic"); - static_assert(Rows > 0, "Row count must be > 0"); - static_assert(Cols > 0, "Column count must be > 0"); + static_assert(std::is_arithmetic::value, "Type must be arithmetic"); + static_assert(Rows > 0, "Row count must be > 0"); + static_assert(Cols > 0, "Column count must be > 0"); public: +<<<<<<< HEAD /** * @brief Constructor that calls the private resize method * @@ -489,6 +490,308 @@ public: * @return matrix determinant */ Type determinant(bool *ok = 0) const { +======= + PIMathMatrixT() {resize(Rows, Cols);} + PIMathMatrixT(const PIVector & val) {resize(Rows, Cols); int i = 0; PIMM_FOR_I_WB(r, c) m[r][c] = val[i++];} + + /** + * @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros + * + * @return identitied matrix of type PIMathMatrixT + */ + static _CMatrix identity() {_CMatrix tm = _CMatrix(); PIMM_FOR_WB(r, c) tm.m[r][c] = (c == r ? Type(1) : Type(0)); return tm;} + + /** + * @brief Creates a matrix that is filled with elements + * + * @param v is a parameter the type and value of which is selected and later filled into the matrix + * @return filled matrix of type PIMathMatrixT + */ + static _CMatrix filled(const Type & v) {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = v; return tm;} + + /** + * @brief Rotation the matrix by an "angle". Works only with 2x2 matrix, else return _CMatrix + * + * @param angle is the angle of rotation of the matrix + * @return rotated matrix + */ + static _CMatrix rotation(double angle) {return _CMatrix();} + + /** + * @brief Rotation of the matrix by an "angle" along the X axis. Works only with 3x3 matrix, else return _CMatrix + * + * @param angle is the angle of rotation of the matrix along the X axis + * @return rotated matrix + */ + static _CMatrix rotationX(double angle) {return _CMatrix();} + + /** + * @brief Rotation of the matrix by an "angle" along the Y axis. Works only with 3x3 matrix, else return _CMatrix + * + * @param angle is the angle of rotation of the matrix along the Y axis + * @return rotated matrix + */ + static _CMatrix rotationY(double angle) {return _CMatrix();} + + /** + * @brief Rotation of the matrix by an "angle" along the Z axis. Works only with 3x3 matrix, else return _CMatrix + * + * @param angle is the angle of rotation of the matrix along the Z axis + * @return rotated matrix + */ + static _CMatrix rotationZ(double angle) {return _CMatrix();} + + /** + * @brief Scaling the matrix along the X axis by the value "factor". Works only with 3x3 and 2x2 matrix, else return _CMatrix + * + * @param factor is the value of scaling by X axis + * @return rotated matrix + */ + static _CMatrix scaleX(double factor) {return _CMatrix();} + + /** + * @brief Scaling the matrix along the Y axis by the value "factor". Works only with 3x3 and 2x2 matrix, else return _CMatrix + * + * @param factor is the value of scaling by Y axis + * @return rotated matrix + */ + static _CMatrix scaleY(double factor) {return _CMatrix();} + + /** + * @brief Scaling the matrix along the Z axis by the value "factor". Works only with 3x3 matrix, else return _CMatrix + * + * @param factor is the value of scaling by Z axis + * @return rotated matrix + */ + static _CMatrix scaleZ(double factor) {return _CMatrix();} + + /** + * @brief Method which returns number of columns in matrix + * + * @return type uint shows number of columns + */ + uint cols() const {return Cols;} + + /** + * @brief Method which returns number of rows in matrix + * + * @return type uint shows number of rows + */ + uint rows() const {return Rows;} + + /** + * @brief Method which returns the selected column in PIMathVectorT format + * + * @param index is the number of the selected column + * @return column in PIMathVectorT format + */ + _CMCol col(uint index) {_CMCol tv; PIMM_FOR_R(i) tv[i] = m[i][index]; return tv;} + + /** + * @brief Method which returns the selected row in PIMathVectorT format + * + * @param index is the number of the selected row + * @return row in PIMathVectorT format + */ + _CMRow row(uint index) {_CMRow tv; PIMM_FOR_C(i) tv[i] = m[index][i]; return tv;} + + /** + * @brief Set the selected column in matrix + * + * @param index is the number of the selected column + * @param v is a vector of the type _CMCol that needs to fill the column + * @return matrix type _CMatrix + */ + _CMatrix & setCol(uint index, const _CMCol & v) {PIMM_FOR_R(i) m[i][index] = v[i]; return *this;} + + /** + * @brief Set the selected row in matrix + * + * @param index is the number of the selected row + * @param v is a vector of the type _CMCol that needs to fill the row + * @return matrix type _CMatrix + */ + _CMatrix & setRow(uint index, const _CMRow & v) {PIMM_FOR_C(i) m[index][i] = v[i]; return *this;} + + /** + * @brief Method which changes selected rows in a matrix + * + * @param r0 is the number of the first selected row + * @param r1 is the number of the second selected row + * @return matrix type _CMatrix + */ + _CMatrix & swapRows(uint r0, uint r1) {Type t; PIMM_FOR_C(i) {t = m[r0][i]; m[r0][i] = m[r1][i]; m[r1][i] = t;} return *this;} + + /** + * @brief Method which changes selected columns in a matrix + * + * @param c0 is the number of the first selected column + * @param c1 is the number of the second selected column + * @return matrix type _CMatrix + */ + _CMatrix & swapCols(uint c0, uint c1) {Type t; PIMM_FOR_R(i) {t = m[i][c0]; m[i][c0] = m[i][c1]; m[i][c1] = t;} return *this;} + + /** + * @brief Method which fills the matrix with selected value + * + * @param v is a parameter the type and value of which is selected and later filled into the matrix + * @return filled matrix type _CMatrix + */ + _CMatrix & fill(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] = v; return *this;} + + /** + * @brief Method which checks if matrix is square + * + * @return true if matrix is square, else false + */ + bool isSquare() const {return cols() == rows();} + + /** + * @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros + * + * @return true if matrix is identitied, else false + */ + bool isIdentity() const {PIMM_FOR_WB(r, c) if ((c == r) ? m[r][c] != Type(1) : m[r][c] != Type(0)) return false; return true;} + + /** + * @brief Method which checks if every elements of matrix are zeros + * + * @return true if matrix is null, else false + */ + bool isNull() const {PIMM_FOR_WB(r, c) if (m[r][c] != Type(0)) return false; return true;} + + /** + * @brief Full access to elements reference by row "row" and col "col" + * + * @param row is a parameter that shows the row number of the matrix of the selected element + * @param col is a parameter that shows the column number of the matrix of the selected element + * @return reference to element of matrix by row "row" and col "col" + */ + Type & at(uint row, uint col) {return m[row][col];} + + /** + * @brief Full access to element by row "row" and col "col" + * + * @param row is a parameter that shows the row number of the matrix of the selected element + * @param col is a parameter that shows the column number of the matrix of the selected element + * @return element of matrix by row "row" and col "col" + */ + Type at(uint row, uint col) const {return m[row][col];} + + /** + * @brief Full access to the matrix row pointer + * + * @param row is a row of necessary matrix + * @return matrix row pointer + */ + Type * operator [](uint row) {return m[row];} + + /** + * @brief Read-only access to the matrix row pointer + * + * @param row is a row of necessary matrix + * @return matrix row pointer + */ + const Type * operator [](uint row) const {return m[row];} + + /** + * @brief Matrix assignment to matrix "sm" + * + * @param sm matrix for the assigment + * @return matrix equal with sm + */ + _CMatrix & operator =(const _CMatrix & sm) {memcpy(m, sm.m, sizeof(Type) * Cols * Rows); return *this;} + + /** + * @brief Compare with matrix "sm" + * + * @param sm matrix for the compare + * @return if matrices are equal true, else false + */ + bool operator ==(const _CMatrix & sm) const {PIMM_FOR_WB(r, c) if (m[r][c] != sm.m[r][c]) return false; return true;} + + /** + * @brief Compare with matrix "sm" + * + * @param sm matrix for the compare + * @return if matrices are not equal true, else false + */ + bool operator !=(const _CMatrix & sm) const {return !(*this == sm);} + + /** + * @brief Addition assignment with matrix "sm" + * + * @param sm matrix for the addition assigment + */ + void operator +=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] += sm.m[r][c];} + + /** + * @brief Subtraction assignment with matrix "sm" + * + * @param sm matrix for the subtraction assigment + */ + void operator -=(const _CMatrix & sm) {PIMM_FOR_WB(r, c) m[r][c] -= sm.m[r][c];} + + /** + * @brief Multiplication assignment with value "v" + * + * @param v value for the multiplication assigment + */ + void operator *=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] *= v;} + + /** + * @brief Division assignment with value "v" + * + * @param v value for the division assigment + */ + void operator /=(const Type & v) {PIMM_FOR_WB(r, c) m[r][c] /= v;} + + /** + * @brief Matrix substraction + * + * @return the result of matrix substraction + */ + _CMatrix operator -() const {_CMatrix tm; PIMM_FOR_WB(r, c) tm.m[r][c] = -m[r][c]; return tm;} + + /** + * @brief Matrix addition + * + * @param sm is matrix term + * @return the result of matrix addition + */ + _CMatrix operator +(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] += sm.m[r][c]; return tm;} + + /** + * @brief Matrix substraction + * + * @param sm is matrix subtractor + * @return the result of matrix substraction + */ + _CMatrix operator -(const _CMatrix & sm) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] -= sm.m[r][c]; return tm;} + + /** + * @brief Matrix multiplication + * + * @param v is value factor + * @return the result of matrix multiplication + */ + _CMatrix operator *(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] *= v; return tm;} + + /** + * @brief Matrix division + * + * @param v is value divider + * @return the result of matrix division + */ + _CMatrix operator /(const Type & v) const {_CMatrix tm = _CMatrix(*this); PIMM_FOR_WB(r, c) tm.m[r][c] /= v; return tm;} + + /** + * @brief Determinant of the matrix is ​​calculated + * + * @return matrix determinant + */ + Type determinant(bool * ok = 0) const { +>>>>>>> 9544d5e... Rotation remake _CMatrix m(*this); bool k; Type ret = Type(0); diff --git a/tests/concurrent/testutil.h b/tests/concurrent/testutil.h index 9df146ba..7c3c15c7 100644 --- a/tests/concurrent/testutil.h +++ b/tests/concurrent/testutil.h @@ -3,7 +3,6 @@ #include "pithread.h" #include -#include "pistring.h" /** * Minimum wait thread start, switch context or another interthread communication action time. Increase it if tests @@ -58,5 +57,4 @@ public: } }; - #endif //AWRCANFLASHER_TESTUTIL_H