doc correction

This commit is contained in:
Шишов Максим Денисович
2020-09-08 16:05:22 +03:00
committed by Gama
parent a0c53bf689
commit 012981baf7
3 changed files with 530 additions and 388 deletions

View File

@@ -28,18 +28,35 @@
#include "pimathvector.h"
#include "pimathcomplex.h"
/**
* @brief Inline funtion of compare with zero different types
*
* @param v is input parameter of type T
* @return true if zero, false if not zero
*/
template<typename T>
inline bool _PIMathMatrixNullCompare(const T v) {
static_assert(std::is_floating_point<T>::value, "Type must be floating point");
return (piAbs(v) < T(1E-200));
}
/**
* @brief Inline funtion of compare with zero colmplexf type
*
* @param v is input parameter of type colmplexf
* @return true if zero, false if not zero
*/
template<>
inline bool _PIMathMatrixNullCompare<complexf>(const complexf v) {
return (abs(v) < float(1E-200));
}
/**
* @brief Inline funtion of compare with zero complexd type
*
* @param v is input parameter of type colmplexd
* @return true if zero, false if not zero
*/
template<>
inline bool _PIMathMatrixNullCompare<complexd>(const complexd v) {
return (abs(v) < double(1E-200));
@@ -68,8 +85,19 @@ class PIP_EXPORT PIMathMatrixT {
static_assert(Rows > 0, "Row count must be > 0");
static_assert(Cols > 0, "Column count must be > 0");
public:
/**
* @brief Constructor that calls the private resize method
*
* @return identitied matrix of type PIMathMatrixT
*/
PIMathMatrixT() { resize(Rows, Cols); }
/**
* @brief Constructor that calls the private resize method
*
* @param val is the PIVector with which the matrix is filled
* @return identitied matrix of type PIMathMatrixT
*/
PIMathMatrixT(const PIVector<Type> &val) {
resize(Rows, Cols);
int i = 0;
@@ -79,7 +107,7 @@ public:
/**
* @brief Сreates a matrix whose main diagonal is filled with ones and the remaining elements are zeros
*
* @return identitied matrix of type PIMathMatrixT
* @return identity matrix of type PIMathMatrixT
*/
static _CMatrix identity() {
_CMatrix tm = _CMatrix();
@@ -177,7 +205,8 @@ public:
uint rows() const { return Rows; }
/**
* @brief Method which returns the selected column in PIMathVectorT format
* @brief Method which returns the selected column in PIMathVectorT format.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected column
* @return column in PIMathVectorT format
@@ -190,6 +219,7 @@ public:
/**
* @brief Method which returns the selected row in PIMathVectorT format
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected row
* @return row in PIMathVectorT format
@@ -201,7 +231,8 @@ public:
}
/**
* @brief Set the selected column in matrix
* @brief Set the selected column in matrix.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
@@ -214,6 +245,7 @@ public:
/**
* @brief Set the selected row in matrix
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
@@ -225,7 +257,8 @@ public:
}
/**
* @brief Method which changes selected rows in a matrix
* @brief Method which changes selected rows in a matrix.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
@@ -242,7 +275,8 @@ public:
}
/**
* @brief Method which changes selected columns in a matrix
* @brief Method which changes selected columns in a matrix.
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
@@ -297,7 +331,8 @@ public:
}
/**
* @brief Full access to elements reference by row "row" and col "col"
* @brief Full access to elements reference by row "row" and col "col".
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
@@ -306,7 +341,8 @@ public:
Type &at(uint row, uint col) { return m[row][col]; }
/**
* @brief Full access to element by row "row" and col "col"
* @brief Full access to element by row "row" and col "col".
* If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a parameter that shows the row number of the matrix of the selected element
* @param col is a parameter that shows the column number of the matrix of the selected element
@@ -315,7 +351,7 @@ public:
Type at(uint row, uint col) const { return m[row][col]; }
/**
* @brief Full access to the matrix row pointer
* @brief Full access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a row of necessary matrix
* @return matrix row pointer
@@ -323,7 +359,7 @@ public:
Type *operator[](uint row) { return m[row]; }
/**
* @brief Read-only access to the matrix row pointer
* @brief Read-only access to the matrix row pointer. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param row is a row of necessary matrix
* @return matrix row pointer
@@ -470,7 +506,7 @@ public:
/**
* @brief Transforming matrix to upper triangular
*
* @return transformed upper triangular matrix
* @return copy of transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (Cols != Rows) {
@@ -512,7 +548,7 @@ public:
/**
* @brief Matrix inversion operation
*
* @return inverted matrix
* @return copy of inverted matrix
*/
_CMatrix &invert(bool *ok = 0) {
static_assert(Cols == Rows, "Only square matrix invertable");
@@ -687,6 +723,13 @@ template<uint Rows, uint Cols, typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrixT<Rows, Cols, Type> & m) {s << "{"; PIMM_FOR_I(r, c) s << m[r][c]; if (c < Cols - 1 || r < Rows - 1) s << ", ";} if (r < Rows - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PICout type
* @param m PIMathMatrixT type
* @return bitwise left PICout
*/
template<uint Rows, uint Cols, typename Type>
inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
s << "{";
@@ -698,6 +741,13 @@ inline PICout operator<<(PICout s, const PIMathMatrixT<Rows, Cols, Type> &m) {
}
/// Multiply matrices {Rows0 x CR} on {CR x Cols1}, result is {Rows0 x Cols1}
/**
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<uint CR, uint Rows0, uint Cols1, typename Type>
inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR, Type> &fm,
const PIMathMatrixT<CR, Cols1, Type> &sm) {
@@ -715,6 +765,13 @@ inline PIMathMatrixT<Rows0, Cols1, Type> operator*(const PIMathMatrixT<Rows0, CR
}
/// Multiply matrix {Rows x Cols} on vector {Cols}, result is vector {Rows}
/**
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sv second vector multiplier
* @return vector that is the result of multiplication
*/
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type> &fm,
const PIMathVectorT<Cols, Type> &sv) {
@@ -730,6 +787,13 @@ inline PIMathVectorT<Rows, Type> operator*(const PIMathMatrixT<Rows, Cols, Type>
}
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
/**
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param sv first vector multiplier
* @param fm second matrix multiplier
* @return vector that is the result of multiplication
*/
template<uint Cols, uint Rows, typename Type>
inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
const PIMathMatrixT<Rows, Cols, Type> &fm) {
@@ -745,6 +809,13 @@ inline PIMathVectorT<Cols, Type> operator*(const PIMathVectorT<Rows, Type> &sv,
}
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
/**
* @brief Multiplying value of type Type and matrix
*
* @param x first multiplier of type Type
* @param fm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<uint Cols, uint Rows, typename Type>
inline PIMathMatrixT<Rows, Cols, Type> operator*(const Type &x, const PIMathMatrixT<Rows, Cols, Type> &v) {
return v * x;
@@ -788,14 +859,33 @@ class PIP_EXPORT PIMathMatrix : public PIVector2D<Type> {
typedef PIMathMatrix<Type> _CMatrix;
typedef PIMathVector<Type> _CMCol;
public:
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @param f is type of matrix elements
*/
PIMathMatrix(const uint cols = 0, const uint rows = 0, const Type &f = Type()) { _V2D::resize(rows, cols, f); }
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param cols is number of matrix column uint type
* @param rows is number of matrix row uint type
* @param val is PIVector<Type> of matrix elements
*/
PIMathMatrix(const uint cols, const uint rows, const PIVector<Type> &val) {
_V2D::resize(rows, cols);
int i = 0;
PIMM_FOR_I(c, r) _V2D::element(r, c) = val[i++];
}
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param val is PIVector<Type> of PIVector, which creates matrix
*/
PIMathMatrix(const PIVector<PIVector<Type> > &val) {
if (!val.isEmpty()) {
_V2D::resize(val.size(), val[0].size());
@@ -803,6 +893,11 @@ public:
}
}
/**
* @brief Constructor of class PIMathMatrix, which creates a matrix
*
* @param val is PIVector2D<Type>, which creates matrix
*/
PIMathMatrix(const PIVector2D<Type> &val) {
if (!val.isEmpty()) {
_V2D::resize(val.rows(), val.cols());
@@ -824,23 +919,24 @@ public:
}
/**
* @brief Creates a matrix whose row equal to vector
* @brief Creates a row matrix of every element that is equal to every element of the vector
*
* @param val is the vector type PIMathVector
* @return identity matrix by vector
* @return row matrix of every element that is equal to every element of the vector
*/
static _CMatrix matrixRow(const PIMathVector<Type> &val) { return _CMatrix(val.size(), 1, val.toVector()); }
/**
* @brief Creates a matrix whose column equal to vector
* @brief Creates a column matrix of every element that is equal to every element of the vector
*
* @param val is the vector type PIMathVector
* @return identity matrix by vector
* @return column matrix of every element that is equal to every element of the vector
*/
static _CMatrix matrixCol(const PIMathVector<Type> &val) { return _CMatrix(1, val.size(), val.toVector()); }
/**
* @brief Set the selected column in matrix
* @brief Set the selected column in matrix. If there are more elements of the vector than elements in the column of the matrix
* or index larger than the number of columns otherwise there will be a SEGFAULT
*
* @param index is the number of the selected column
* @param v is a vector of the type _CMCol that needs to fill the column
@@ -852,8 +948,8 @@ public:
}
/**
* @brief Set the selected row in matrix
*
* @brief Set the selected row in matrix. If there are more elements of the vector than elements in the row of the matrix,
* or index larger than the number of rows otherwise there will be a SEGFAULT
* @param index is the number of the selected row
* @param v is a vector of the type _CMCol that needs to fill the row
* @return matrix type _CMatrix
@@ -864,7 +960,8 @@ public:
}
/**
* @brief Method which changes selected rows in a matrix
* @brief Method which replace selected columns in a matrix. You cannot use an index larger than the number of columns,
* otherwise there will be a SEGFAULT
*
* @param r0 is the number of the first selected row
* @param r1 is the number of the second selected row
@@ -876,10 +973,11 @@ public:
}
/**
* @brief Method which changes selected columns in a matrix
* @brief Method which replace selected rows in a matrix. You cannot use an index larger than the number of rows,
* otherwise there will be a SEGFAULT
*
* @param c0 is the number of the first selected column
* @param c1 is the number of the second selected column
* @param c0 is the number of the first selected row
* @param c1 is the number of the second selected row
* @return matrix type _CMatrix
*/
_CMatrix &swapRows(uint c0, uint c1) {
@@ -908,7 +1006,7 @@ public:
/**
* @brief Method which checks if main diagonal of matrix consists of ones and another elements are zeros
*
* @return true if matrix is identitied, else false
* @return true if matrix is identity, else false
*/
bool isIdentity() const {
PIMM_FOR(c, r) if ((c == r) ? _V2D::element(r, c) != Type(1) : _V2D::element(r, c) != Type(0))return false;
@@ -918,7 +1016,7 @@ public:
/**
* @brief Method which checks if every elements of matrix are zeros
*
* @return true if matrix is null, else false
* @return true if matrix elements equal to zero, else false
*/
bool isNull() const {
PIMM_FOR_A(i) if (_V2D::mat[i] != Type(0)) return false;
@@ -1050,7 +1148,7 @@ public:
}
/**
* @brief Determinant of the matrix is calculated
* @brief Determinant of the matrix is calculated. Works only with square matrix
*
* @return matrix determinant
*/
@@ -1070,7 +1168,7 @@ public:
}
/**
* @brief Trace of the matrix is calculated
* @brief Trace of the matrix is calculated. Works only with square matrix
*
* @return matrix trace
*/
@@ -1088,9 +1186,9 @@ public:
}
/**
* @brief Transforming matrix to upper triangular
* @brief Transforming matrix to upper triangular. Works only with square matrix
*
* @return transformed upper triangular matrix
* @return copy of transformed upper triangular matrix
*/
_CMatrix &toUpperTriangular(bool *ok = 0) {
if (!isSquare()) {
@@ -1130,9 +1228,9 @@ public:
}
/**
* @brief Matrix inversion operation
* @brief Matrix inversion operation. Works only with square matrix
*
* @return inverted matrix
* @return copy of inverted matrix
*/
_CMatrix &invert(bool *ok = 0, _CMCol *sv = 0) {
if (!isSquare()) {
@@ -1218,6 +1316,13 @@ template<typename Type>
inline std::ostream & operator <<(std::ostream & s, const PIMathMatrix<Type> & m) {s << "{"; for (uint r = 0; r < m.rows(); ++r) { for (uint c = 0; c < m.cols(); ++c) { s << m.element(r, c); if (c < m.cols() - 1 || r < m.rows() - 1) s << ", ";} if (r < m.rows() - 1) s << std::endl << " ";} s << "}"; return s;}
#endif
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PICout type
* @param m PIMathMatrix type
* @return bitwise left PICout
*/
template<typename Type>
inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
s << "Matrix{";
@@ -1232,12 +1337,26 @@ inline PICout operator<<(PICout s, const PIMathMatrix<Type> &m) {
return s;
}
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PIByteArray type
* @param v PIMathMatrix type
* @return bitwise left PIByteArray
*/
template<typename Type>
inline PIByteArray &operator<<(PIByteArray &s, const PIMathMatrix<Type> &v) {
s << (const PIVector2D<Type> &) v;
return s;
}
/**
* @brief Add matrix "m" at the end of matrix and return reference to matrix
*
* @param s PIByteArray type
* @param v PIMathMatrix type
* @return bitwise right PIByteArray
*/
template<typename Type>
inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
s >> (PIVector2D<Type> &) v;
@@ -1246,6 +1365,13 @@ inline PIByteArray &operator>>(PIByteArray &s, PIMathMatrix<Type> &v) {
/// Multiply matrices {CR x Rows0} on {Cols1 x CR}, result is {Cols1 x Rows0}
/**
* @brief Multiplying matrices by each other. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<typename Type>
inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
const PIMathMatrix<Type> &sm) {
@@ -1265,6 +1391,13 @@ inline PIMathMatrix<Type> operator*(const PIMathMatrix<Type> &fm,
}
/// Multiply matrix {Cols x Rows} on vector {Cols}, result is vector {Rows}
/**
* @brief Multiplying matrix and vector. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param fm first matrix multiplier
* @param sv second vector multiplier
* @return vector that is the result of multiplication
*/
template<typename Type>
inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
const PIMathVector<Type> &sv) {
@@ -1283,6 +1416,13 @@ inline PIMathVector<Type> operator*(const PIMathMatrix<Type> &fm,
/// Multiply vector {Rows} on matrix {Rows x Cols}, result is vector {Cols}
/**
* @brief Multiplying vector and matrix. If you enter an index out of the border of the matrix will be SEGFAULT
*
* @param sv first vector multiplier
* @param fm second matrix multiplier
* @return vector that is the result of multiplication
*/
template<typename Type>
inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
const PIMathMatrix<Type> &fm) {
@@ -1299,6 +1439,13 @@ inline PIMathVector<Type> operator*(const PIMathVector<Type> &sv,
}
/// Multiply value(T) on matrix {Rows x Cols}, result is vector {Rows}
/**
* @brief Multiplying value of type Type and matrix
*
* @param x first multiplier of type Type
* @param fm second matrix multiplier
* @return matrix that is the result of multiplication
*/
template<typename Type>
inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v) {
return v * x;
@@ -1307,6 +1454,12 @@ inline PIMathMatrix<Type> operator*(const Type &x, const PIMathMatrix<Type> &v)
typedef PIMathMatrix<int> PIMathMatrixi;
typedef PIMathMatrix<double> PIMathMatrixd;
/**
* @brief Searching hermitian matrix
*
* @param m conjugate transpose matrix
* @return result of the hermitian
*/
template<typename T>
PIMathMatrix<complex<T> > hermitian(const PIMathMatrix<complex<T> > &m) {
PIMathMatrix<complex<T> > ret(m);

View File

@@ -34,24 +34,22 @@ bool cmpMatrixWithValue(PIMathMatrix<double> matrix, double val)
TEST(PIMathMatrix_Test, identity)
{
PIMathMatrix<double> origMatr;
PIMathMatrix<double> matrix;
int i;
bool b;
matrix = origMatr.identity(3, 3);
for(i = 0; i < 3; i++)
{
if(matrix[i][i] == 1.0)
{
b = true;
}
else
{
b = false;
break;
auto matrix = PIMathMatrix<double>::identity(3, 3);
for(int i = 0; i < 3; i++){
if(matrix[i][i] != 1.0){
ASSERT_TRUE(false);
}
}
ASSERT_TRUE(b);
for(int i = 0; i < 3; i++){
for(int j = 0; j < 3; j++){
if(i != j){
if(matrix[i][j] != 0.0){
ASSERT_TRUE(false);
}
}
}
}
ASSERT_TRUE(true);
}
TEST(PIMathMatrix_Test, matrixRow)

View File

@@ -38,31 +38,22 @@ bool cmpMatrixWithValue(PIMathMatrixT<rows, cols, double> matrix, double val)
TEST(PIMathMatrixT_Test, identity)
{
PIMathMatrixT<rows, cols, double> matr;
PIMathMatrixT<rows, cols, double> matrix;
double d;
double i = 1.0;
bool a;
bool output;
matrix = matr.identity();
d = matrix.determinant();
uint j;
for(j = 0; j < cols; j++)
{
if(matrix.at(i, i) == 1.0) a = true;
else
{
a = false;
break;
auto matrix = PIMathMatrixT<rows, cols, double>::identity();
for(int i = 0; i < 3; i++){
if(matrix[i][i] != 1.0){
ASSERT_TRUE(false);
}
}
if((i == d) && (a == true)){
output = true;
for(int i = 0; i < 3; i++){
for(int j = 0; j < 3; j++){
if(i != j){
if(matrix[i][j] != 0.0){
ASSERT_TRUE(false);
}
else{
output = false;
}
ASSERT_TRUE(output);
}
}
ASSERT_TRUE(true);
}
TEST(PIMathMatrixT_Test, at)