#version 150 //#extension GL_EXT_gpu_shader4 : enable in vec4 view_dir; in vec3 view_pos; uniform vec3 ambient; uniform sampler2D t0, t1, t2, t3, tb; uniform sampler2D td; uniform int gid, lightsCount; uniform float z_near, z_far; uniform bool firstPass; uniform vec2 dt; uniform vec4 back_color; uniform mat4 mat_proji; float light_diffuse(int model, vec3 l, vec3 n) {return max(0., dot(l, n));} //float light_specular(int model, vec3 l, vec3 n, vec3 h, vec3 v, float shininess) {return max(0., pow(dot(n, h), shininess));} vec4 pos, lpos; vec3 li, si, ldir, halfV; float sh_pow, sh_mul, dist, NdotL, spot, ldist, diff; void calcLight(in int index, in vec3 n, in vec3 v, in vec4 v2) { lpos = qgl_Light[index].position; ldir = lpos.xyz - (pos.xyz * lpos.w); ldist = length(ldir); ldir = normalize(ldir); NdotL = max(dot(n, ldir), 0.); spot = step(0., NdotL); if (NdotL > 0.) { /*if (gl_LightSource[index].spotCutoff < 180.) { spot = max(dot(-ldir, gl_LightSource[index].spotDirection.xyz), 0.); spot *= step(gl_LightSource[index].spotCosCutoff, spot); spot = pow(spot, (gl_LightSource[index].spotExponent + 0.001)); }*/ spot /= (qgl_Light[index].constantAttenuation + ldist * (qgl_Light[index].linearAttenuation + ldist * qgl_Light[index].quadraticAttenuation)); halfV = normalize(ldir + v); ///li += spot * gl_LightSource[index].diffuse.rgb * light_diffuse(0, ldir, n); ///si += spot * gl_LightSource[index].specular.rgb * sh_mul * light_specular(0, ldir, n, halfV, v, sh_pow); float NdotLs = NdotL*NdotL; float ndlc = (1. - NdotLs) / NdotLs; float der = NdotLs * (sh_mul + ndlc); diff = 2. / (1. + sqrt(1. + (1. - sh_mul) * ndlc)); li += spot * qgl_Light[index].color.rgb * diff;// * light_diffuse(0, ldir, n); si += spot * qgl_Light[index].color.rgb * (sh_mul / (der*der) / 3.1416); } } void main(void) { //if (d == 1.) discard; vec2 tc = qgl_FragTexture.xy; vec4 v0 = texture2D(t0, tc); if (v0.w == 0.) { qgl_FragData[0] = back_color; return; } vec4 v1 = texture2D(t1, tc), v2 = texture2D(t2, tc), v3 = texture2D(t3, tc); vec2 sp = gl_FragCoord.xy * dt * 2 - vec2(1, 1); vec3 dc = v0.rgb, n = v1.xyz * 2. - vec3(1.); float height = v2.w; li = qgl_AmbientLight.color.rgb * qgl_AmbientLight.intensity; //li = vec3(0.); si = vec3(0.); pos = vec4(sp, 0, 1)*mat_proji; pos.xyz *= v0.w; //pos.xy *= 10.; //pos.z = v0.w; vec3 v = normalize(-pos.xyz); sh_pow = 1. / max((1. - v1.w), 0.0001); sh_mul = max(1. - v1.w, 0.0001); //calcLight(0, n, v, v2); /*if (lightsCount > 0) { calcLight(0, n, v, v2); if (lightsCount > 1) { calcLight(1, n, v, v2); if (lightsCount > 2) { calcLight(2, n, v, v2); if (lightsCount > 3) { calcLight(3, n, v, v2); if (lightsCount > 4) { calcLight(4, n, v, v2); if (lightsCount > 5) { calcLight(5, n, v, v2); if (lightsCount > 6) { calcLight(6, n, v, v2); if (lightsCount > 7) { calcLight(7, n, v, v2); } } } } } } } }*/ //qgl_FragData[0].rgb = li * dc + si * v2.rgb + v3.rgb;// + texture2D(tb, tc).rgb; //vec4 lp = mat*qgl_Light[0].position; lpos = qgl_Light[0].position; ldir = lpos.xyz - pos.xyz; ldist = length(ldir); float d = texture2D(td, tc).r; //float z = ((z_near / (z_near-z_far)) * z_far) / (d - (z_far / (z_far-z_near))); float z = z_near * z_far / (d * (z_far - z_near) - z_far); //qgl_FragData[0].rgb = vec3(abs((v0.w)+(v3.z))-0.5); qgl_FragData[0].rgb = vec3((-z*view_pos)); }