git-svn-id: svn://db.shs.com.ru/libs@702 a8b55f48-bf90-11e4-a774-851b48703e85

This commit is contained in:
2019-12-14 12:38:21 +00:00
parent 2136b4d30b
commit 64209212a9
6 changed files with 131 additions and 11 deletions

View File

@@ -301,7 +301,93 @@ void RendererBase::renderQuad(QOpenGLShaderProgram * prog, Mesh * mesh, Camera *
}
float RadicalInverse_VdC(uint bits) {
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
// ----------------------------------------------------------------------------
QVector2D Hammersley(uint i, uint N) {
return QVector2D(float(i)/float(N), RadicalInverse_VdC(i));
}
QVector3D ImportanceSampleGGX(QVector2D Xi, QVector3D N, float roughness) {
float a = roughness*roughness;
float phi = 2.0 * M_PI * Xi[0];
float cosTheta = sqrt((1.0 - Xi[1]) / (1.0 + (a*a - 1.0) * Xi[1]));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// преобразование из сферических в декартовы координаты
QVector3D H;
H[0] = cos(phi) * sinTheta;
H[1] = sin(phi) * sinTheta;
H[2] = cosTheta;
// преобразование из касательного пространства в мировые координаты
QVector3D up = qAbs(N[2]) < 0.999 ? QVector3D(0.0, 0.0, 1.0) : QVector3D(1.0, 0.0, 0.0);
QVector3D tangent = QVector3D::crossProduct(up, N).normalized();
QVector3D bitangent = QVector3D::crossProduct(N, tangent);
QVector3D sampleVec = tangent * H[0] + bitangent * H[1] + N * H[2];
return sampleVec.normalized();
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float k = (roughness * roughness) / 2.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
float GeometrySmith(QVector3D N, QVector3D V, QVector3D L, float roughness) {
float NdotV = piMax(QVector3D::dotProduct(N, V), 0.f);
float NdotL = piMax(QVector3D::dotProduct(N, L), 0.f);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
QVector2D IntegrateBRDF(float NdotV, float roughness) {
QVector3D V;
V[0] = sqrt(1.f - NdotV*NdotV);
V[1] = 0.f;
V[2] = NdotV;
float A = 0.f;
float B = 0.f;
QVector3D N = QVector3D(0.f, 0.f, 1.f);
const uint SAMPLE_COUNT = 256u;
for(uint i = 0u; i < SAMPLE_COUNT; ++i) {
QVector2D Xi = Hammersley(i, SAMPLE_COUNT);
QVector3D H = ImportanceSampleGGX(Xi, N, roughness);
QVector3D L = (2.f * QVector3D::dotProduct(V, H) * H - V).normalized();
float NdotL = piMax(L[2], 0.f);
float NdotH = piMax(H[2], 0.f);
float VdotH = piMax(QVector3D::dotProduct(V, H), 0.f);
if(NdotL > 0.f) {
float G = GeometrySmith(N, V, L, roughness);
float G_Vis = (G * VdotH) / (NdotH * NdotV);
float Fc = pow(1.f - VdotH, 5.f);
A += (1.f - Fc) * G_Vis;
B += Fc * G_Vis;
}
}
A /= float(SAMPLE_COUNT);
B /= float(SAMPLE_COUNT);
return QVector2D(A, B);
}
void RendererBase::initCoeffTextures() {
QImage im = QImage(":/coeffs_brdf.png").mirrored();
int size = im.width();
QVector<QVector2D> data(size*size);
int ind = -1;
for (int x = 0; x < size; ++x) {
//float c = x / double(size - 1) + 1.E-3;
for (int y = 0; y < size; ++y) {
//float r = y / double(size - 1);
QColor p = im.pixelColor(x, y);
data[++ind] = QVector2D(p.redF(), p.greenF());//IntegrateBRDF(c, 1.f - r + 1.E-3);
}
}
createCoeffTexture(tex_coeff[0], data.constData(), size, 2);
/*const int size = 512;
QVector<float> data_diff(size*size), data_spec(size*size);
double r, c, c2;
@@ -334,15 +420,19 @@ void RendererBase::initCoeffTextures() {
}
void RendererBase::createCoeffTexture(GLuint & id, const QVector<float> & data, int size) {
void RendererBase::createCoeffTexture(GLuint & id, const void * data, int size, int channels) {
QOpenGLExtraFunctions * f = view;
deleteGLTexture(f, id);
f->glGenTextures(1, &id);
f->glBindTexture(GL_TEXTURE_2D, id);
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
f->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
f->glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, size, size, 0, GL_RED, GL_FLOAT, data.constData());
GLenum iformat = GL_R16F, format = GL_RED;
if (channels == 2) {iformat = GL_RG16F; format = GL_RG;}
if (channels == 3) {iformat = GL_RGB16F; format = GL_RGB;}
if (channels == 4) {iformat = GL_RGBA16F; format = GL_RGBA;}
f->glTexImage2D(GL_TEXTURE_2D, 0, iformat, size, size, 0, format, GL_FLOAT, data);
}